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ABSTRACT
Designing realistic eye movements for animated avatars poses a
challenge, as gaze behavior is predominantly unconscious. Accu-
rately modulating those movements is crucial to avoid the Un-
canny Valley. The human gaze exhibits di�erent characteristics in
conversations, depending on speaking or listening. Albeit these
distinctions are known, data for synthesizing eye movement mod-
els suitable for avatars is scarce. This research introduces a novel
dataset involving human gaze behavior during remote screen con-
versations. The data are collected from 19 participants, o�ering 4
hours of gaze data labeled as Speaking and Listening. Our data analy-
sis substantiates prior knowledge of gaze behavior while providing
new insights through higher precision. Furthermore, we demon-
strate the dataset’s suitability for machine learning algorithms by
training a classi�er, achieving 88.1% binary classi�cation accuracy.

CCS CONCEPTS
• Computing methodologies! Activity Recognition; Anima-
tion.
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1 INTRODUCTION
Conversational animated avatars are employed in a wide range
of scenarios, appearing as teachers to boost educational success
[Amemiya et al. 2022; Pataranutaporn et al. 2022], as physicians
to raise patients’ motivation for self-disclosure [Lucas et al. 2014;
Moriuchi 2022], or as intermediaries to communicate with autistic
children [Kellems et al. 2020].

An avatar’s success usually depends on believable acting, imply-
ing that its movements must match its appearance. If their behav-
ior is less human than their appearance suggests, they will su�er
from the Uncanny Valley, resulting in less acceptance by human
observers [Mori et al. 2012]. Since animation technologies make
avatars look more and more realistic and humanoid robots’ ap-
pearances get closer to real humans, it is essential to design even
the most subtle movements accurately. Various approaches rely on
statistical, rule-based models [Le et al. 2012; Lee et al. 2002], while
others leverage neural networks [Cudeiro et al. 2019; Tian et al.
2019] or a combination of both [Edwards et al. 2020] to generate
facial movements for avatars. Most previous research focuses on
correctly dubbing the mouth for text or audio input, excluding eyes
or leaving their control to simple models.

To account for the intricacies of human gaze behavior in gen-
eral and especially during conversations, deep learning-powered
generators are a promising technique. However, they require large
amounts of curated data to train. To our knowledge, there is no
dataset publicly available, that accurately captures �ne-grained
movements for conversations and is suitable for deep-learning
models. In this work, we introduce a new dataset that serves to �ll
this gap 1. We tracked the gaze of 19 participants while they talked
and listened to their partner in a video call. We extract �xations and
saccades from the data and analyze them statistically, comparing
it to the previous work of Lee et al., who also analyzed the move-
ments of eyes during conversation [Lee et al. 2002]. Further, we
create a dataset for machine learning and prove its applicability by
training neural network classi�ers that predict whether a sequence
of �xations was created when talking or listening and achieve an
accuracy of 88.1%.

1available at https://github.com/psyberlab/eye-gaze-during-conversation-dataset
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In this article, we will �rst show the signi�cance of eye move-
ment in communication and introduce previous work on conversa-
tional avatars. Then we provide details on how we collected and
preprocessed the gaze data, before analyzing the data statistically
and comparing it to previous work. Subsequently, the classi�ca-
tion using neural networks is presented. Finally, we discuss all the
signi�cant limitations of the data we collected.

2 RELATEDWORK
2.1 Signi�cance of Eye Movements in

Communication
During a conversation, the majority of communication takes place
non-verbally between conversants [Watanabe et al. 2021], with eye
contact being a fundamental behavior in social interactions [Kleinke
1986; Zhang et al. 2017]. The gaze may facilitate engaging in con-
versations by expressing shared attention [Wohltjen and Wheatley
2021] or is used to manage who speaks next in multi-person in-
teractions [Jokinen et al. 2009]. Eye movement is triggered more
frequently than head movement, especially during conversations,
where �xation points are locally nearby [Duchowski and Jörg 2015;
Vrzakova et al. 2016]. Previous experiments have indicated that
humans receive avatars exhibiting realistic eye movements better
[Garau et al. 2003; Heylen et al. 2002; Lee et al. 2002]. Heylen et al.
showed that a very simplistic rule set deciding whether to look
at the partner or to gaze away increases the perceived quality as
long as it is designed to mimic realistic movements. Garau et al.
demonstrated that a realistic appearance of the avatar comes with
an increased demand for accurate eye movements, as random mo-
tions result in a less engaging and natural-looking avatar. Similarly,
Lee et al. compared the acceptance of conversational avatars that
did not move their eyes to those that used random motions or a
statistical model. They found the latter to appear most interested,
engaged, and lively to human observers.

2.2 Avatar Generation
Since the movement of the lower face is linked directly to the pro-
cess of forming speech, many researchers focused on accurate lip
and mouth movement, using a wide range of techniques like Varia-
tional Autoencoders or LSTM architectures, ignoring the eyes [Cud-
eiro et al. 2019; Richard et al. 2021; Tian et al. 2019; Villanueva Ay-
lagas et al. 2022].

In contrast to the mouth, the movement of the eyes is not im-
mediately linked to the words spoken, forcing researchers to con-
centrate on other sources that in�uence them [Le et al. 2012; Lee
et al. 2002; Ma and Deng 2009; Masuko and Hoshino 2006]. Lee
et al. collected statistical information on eye movements during
conversation and used them to create a rule-based model that ran-
domly selects actions to match the statistics collected. Similarly,
Masuko and Hoshino used a single set of rules to simultaneously
control head and eye movements. Ma and Deng take the underlying
coupling between head and eye agitation to statistically predict the
latter from the input of a head motion sequence. Le et al. stacked
multiple statistical models that control the head and eyes but rely
on expensive motion-capture data to �t their models. Noteworthy
is the recent work of Edwards et al., who combined various models
to control the avatar’s entire face. It automatically synchronizes

Table 1: The statistical information gathered from the par-
ticipants, based on their self-disclosure. We only display the
information of those participants we included in the later
analysis.

Gender Nationality/Ethnicity
Male 10 (53%) Western Europe 6 (32%)
Female 7 (37%) India 9 (47%)
Non-binary 2 (11%) Other 4 (21%)

Wearing glasses Knew their partner
Yes 8 (42%) Yes 7 (37%)
No 11 (58%) No 12 (63%)

Eye diseases or Experience with
mental health issues Eye-Tracking studies
None 16 (84%) Yes 15 (79%)
ADHD 3 (16%) No 4 (21%)

Figure 1: The data collection’s setup, from one participant’s
view. The orange border is a reminder, not to look outside
the screen.

mouth movements to audio input in di�erent languages and con-
trols head, gaze, blinks, and further facial movements. The usage
of their model in the video game Cyberpunk 2077 has shown the
e�ectiveness and adaptability of their model to di�erent languages
and speaking styles. On the �ip side, the model requires a lot of
manual labor to prepare the data, including a tagged transcript of
the audio [Edwards et al. 2020].

3 DATASET
3.1 Participants
To conduct the study, we recruited 22 people from the university.
We obtained consent from the participants in accordance with the
General Data Protection Regulation (GDPR) and participants had
the option to withdraw from the experiment at any point. To avoid
unconscious bias among participants, a priori we asked them to
exclusively focus on the conversation. After the data collection, we
explained that their data could be used for the eye generation of an
avatar. As compensation, every participant was o�ered a 10 Euro
Amazon gift card, which one participant declined.
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We had to exclude three participant’s data from the analysis.
One reported not having paid attention to the experiment, one
reported su�ering from a vision-impeding disease, and one reported
su�ering from a depressive disorder. The participants were paired
randomly, which resulted in four pairs knowing their counterparts.
In retrospect to the study, we collected some statistical information
from the participants, presented in Table 1.

3.2 Study Setup
We collected the gaze behavior in a controlled lab condition where
two participants talked to each other in an online video call. First,
we placed each one in front of a large computer screen2 in di�erent
rooms, centering their heads on the built-in camera and calibrat-
ing the Eye-Tracker at an approximate head-to-screen distance of
67.5cm. We used the Tobii 4c Eye-Tracker, which samples at 90 Hz
and can track the gaze inside the boundaries of the PC screen and,
to some extent, beyond. We marked the borders of the monitor
using orange duct tape to remind the participants not to look out-
side the screen, as can be seen in Figure 1. We recorded the entire
video call, both in video and audio, to ease the labeling process. To
collect data, we asked the participants to engage with each other in
three rounds, each announced by the supervisor. The three rounds
invited the participants to introduce themselves, tell a story from
their everyday lives, and �nally discuss some projects they are
working on. They took turns, letting one participant talk freely
from 30 seconds to �ve minutes, while the other listened before
switching roles. At the end of each round, the participants were
allowed to enter a dialogue and exchange questions if desired. The
participants should not monitor their speaking time, and they were
allowed to deviate from the prescribed topic to feel as unrestricted
as possible.

3.3 Methods
Using the recordings, we labeled the data by extracting the times-
tamps of each speaker’s turn from the recordings. We assigned one
of the three labels Speak, Listen, and Dialogue. The �rst two being
opposites, describe prolonged sequences of speaking and listening
without interruption. The latter is assigned to both participants si-
multaneously, describing phases where both participants converse
in short succession, switching between speaking and listening fre-
quently.

Extracting the gaze positions was limited by the Tobii Eye-
Tracker’s capabilities, as it only tracks the gaze reliably inside the
screen. Looking too far outside or occluding the eyes through ges-
tures or extreme head poses will result in missing positional data
(denoted as NaN), rendering data points useless. We interpolate
brief gaps of less than 50ms linearly, which is less than half a
�xation. Following, we did Fixation-Saccade extraction by using
Dispersion-Based Identi�cation (I-DT), where subsequent gazes close
to each other are counted as one �xation [Salvucci and Goldberg
2000]. We used a sliding window, counting the window as a �xation
if the calculated dispersion was below a threshold and included
the following points, as long as their dispersion did not pass the
threshold. We assume the Tobii 4c to have similar properties to the

2Microsoft Surface Studio 1. Gen with 637.35 ⇥ 438.90 mm screen size.

Figure 2: The transformation of the raw gaze data to �xation-
saccade data. The raw data on the left has more small move-
ments than the extracted data on the right. The gray box
marks the dimensions of the screen.

older EyeX 3, being found to have an accuracy of < 0.6� [Gibaldi
et al. 2017]. We select a threshold of 30px (or 0.85cm) as diameter,
corresponding to an eyeball rotation of ⇠ 0.72�, to stay above the
resolution of the eye-tracker. This threshold allows us to argue
about individual �xation points, ignoring micro-saccadic move-
ment, which is de�ned below 0.5� [Poletti and Rucci 2016]. We
require each �xation to last at least 0.1s. An example of the process
can be seen in Figure 2.

4 RESULTS
When analyzing the data, we divided each recording into segments
according to the label. However, the labeling process is only mean-
ingful up to a certain granularity, as the beginning and end of speak-
ing are characterized by thinking about what to say and waiting
for the other participant or supervisor to seize the word. Because
we want to extract the eyes while the conversation runs smoothly,
we remove the beginning and end (3 seconds) of the data for each
round. To further exclude missing gaze values, or NaNs, from our
data, we divide the round into various segments, cutting and remov-
ing each NaN occurrence. With this data, we perform a statistical
analysis and machine learning analysis.

4.1 Statistical analysis
4.1.1 Data. The analyzed data was built from the extracted �x-
ations, removing the NaNs. Each segment contained a varying
amount of �xations, with Table 2 exhibiting the exact dataset com-
position. We will not explicitly include an in-depth analysis for the
Dialogue class, as it is, by construction, a middle-ground between
speaking and listening.

4.1.2 Gaze Position. Comparing the distribution of �xations around
the screen, we notice that the distribution is similar to previous
�ndings [Lee et al. 2002], with the �xations beingmuchmore spread
out when speaking than in listening mode, as can be seen in Fig-
ure 3. When listening, 90% of the �xations are less than 5.2cm apart
from the center point, which is less than 4.4� eyeball rotation, while
during speaking a circle with radius 6.8cm (5.7�) only contains 50%
of the data. We assumed that the partner’s face is the center of
3as described in this post: https://developer.tobii.com/community/forums/topic/accuracy-
of-tobii-4c/

https://developer.tobii.com/community/forums/topic/accuracy-of-tobii-4c/
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Table 2: The composition of the statistical dataset, where snippets contain a varying amount of �xations.

Speak Listen Dialogue
Total Number of Fixations 15209 17717 7007
Total Time covered (Fix.+Sacc.) 6715.5s 7405.6s 3200.9s
Min/Max/Mean Number of Fixations per Segment 1/75/3.44 1/61/4.42 1/52/3.51
Min/Max/Mean Number of gaze points per Fixation 2/144/20.05 10/284/23.60 10/157/22.62
Min/Max/Mean Time per Fixation 0.1/1.6/0.2s 0.1/3.2/0.3s 0.1/1.7/0.3s

Figure 3: The heatmaps and histograms show the �xations’
distribution. Each participant’s gaze is centered individually
to accommodate for varying positioning of the partner’s face
on the screen. The gray box marks the boundaries of the
monitor. The circles indicate how much data lies inside of
them. We can observe that the gaze extends out more during
speaking compared to listening.

attention and for each participant individually centered the gaze,
by calculating the mean of all �xational points per participant.

4.1.3 Fixation & Saccades. The statistics of the saccades between
�xations reinforce these �ndings. For both classes, smaller saccades
are most prominent. However, while there are few saccades above
10� when listening, there is a tail stretching up to around 20� in

the Speak distribution. The listening distribution follows the same
shape as the one reported by Lee et al., although we note a steeper
downward slope in ours [Lee et al. 2002].

In opposition to their �ndings, we found only subtle di�erences
in the �xation duration between the two modes. In general, they
report longer �xation durations, di�ering between mutual gaze and
gaze away. For speaking, the di�erences amount to a factor of two
on the x-axis, corresponding to a one-second shift, and for listening,
the factor totals 10 (around nine seconds). The visualizations for sac-
cade magnitude and �xation duration can be seen in Figure 4, also
denoting the bin width X . We model the four distributions through
polynomials, with the exact parameters given in the supplementary
materials.

Additionally, we extract the directions in which saccades move
from �xation to �xation. We sort them according to the direction of
the saccade itself, independent of the monitor region the participant
is looking at. We distinguish between horizontal, vertical, and diag-
onal movements. Figure 5 shows the relative frequency of di�erent
movement directions, opposing listening and speaking behavior.
Further, we distinguish between big magnitudes with more than
2� (83 px) eyeball rotations and small ones. As seen previously, the
fraction of relatively small saccades is higher when listening than
when speaking. During listening and speaking, the small saccades
are equally as likely in each of the eight directions. Larger saccades
exhibit di�erent behaviors for the two modes: When speaking, most
large movements are in the horizontal direction, while there seems
to be no di�erence between the frequency of vertical and diag-
onal movements. In listening mode large horizontal and vertical
movements are more dominant than diagonal ones, but there is no
di�erence between left-right and up-down movement. This later
�nding is in line with the results from Lee et al., whereas they did
not report large horizontal movements when speaking.

4.1.4 Comparison. While the general statistics of our dataset tally
those reported by Lee et al., the apparent di�erences can be traced
back to various methodical di�erences. First, they used a worn eye-
tracker, ignoringmovements of the head, while we used a stationary
one that extracts the gaze position on the screen. Hence, we extract
more horizontal movement, which is associated with head move-
ment, opposing to their method which ignored head movement.
Second, we processed the raw data by extracting �xation-saccade
movements through I-DT, while they used a median �lter to sta-
bilize the gaze positions. This smoothing may remove valuable
information on subtle motion, combining gaze data into a single
�xation, that we would have unraveled into several nearby ones.
This explains why we �nd more of the short saccades since we
can di�erentiate between di�erent �xations even when close by.
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(a) Saccade Magnitude (X = 0.5� ) (b) Fixation Duration (X = 0.01s)

Figure 4: The histograms show the magnitude of saccades and the duration of �xations, comparing speaking and listening
modes. The orange line is a polynomial �tting curve. X denotes the bin width. During speaking, the magnitude of saccades
ranges up to around 20�, while they stay below 10� during listening. The �xations’ lengths show no signi�cant di�erences.

Figure 5: The distribution of saccade directions when speak-
ing and listening. Blue shows big saccades and orange shows
small ones. Small saccades are evenly distributed. Larger ones
prefer horizontal movement when speaking and axis-aligned
motion when listening.

If they accumulate many di�erent �xations that are spatially and
timely close into one single �xation, this grows its duration, lead-
ing to higher �xation times. This also explains their preference for
axis-aligned movement, as it appears in bigger saccades. Hence,
they miss the information of the equally distributed small saccades.
Finally, they only analyzed data of one single conversation between
two people, lasting nine minutes in total, while we had a total of
19 participants covering 4 hours of speaking and listening data,
making our data more robust and statistically reliable.

4.2 Machine Learning Analysis
To show the suitability of our collected data for machine learning,
we transform it into a format usable for ML. Therefore, we assemble
windows of, = 10 subsequent �xations, including their length,
the gap before the next one starts, and its x and y position. This
results in data points of the shape (4,, ). Starting from the �rst,
we shifted each window one �xation ahead. We make sure that
windows do not overlap between training and evaluation sets. This
results in some randomness in the exact dataset’s composition. We

average over multiple runs, to achieve a more robust estimate of
the performance. The datasets consist of 2698.5 ± 45.5 windows
that span an average of 5.6 seconds per window.

We train a neural network classi�er to distinguish between speak-
ing and listening data. The architecture consists of two convolu-
tional inputs with channel-wise and time-wise convolution side-
by-side, followed by two linear layers of width 128 and 32. Dropout
layers surround the second hidden layer. The model is trained
over 500 epochs with a batch size of 40 windows, using the Adam
optimizer with learning rate U = 0.0005 and cross-entropy loss.
The results are averaged over 20 iterations. The training accuracy
converges towards 100%, while the evaluation accuracy converges
towards 87%, maxing out after around 25 epochs at 88.1%. The
behavior indicates insu�cient generalization from this point on.
Figure 6 presents the model’s accuracy curve and confusion matrix.
For increased interpretability, we normalized the confusion matrix
over the actual label (row). It reveals a small di�erence between
classifying the two di�erent labels, being worse at speaking sam-
ples. Overall we have shown, that the dataset is suitable to train
neural network classi�ers.

5 LIMITATION
Our dataset presents a valuable contribution to future research on
human gaze behavior during conversations. Nevertheless, we are
aware of some limitations inherent to our data. The study setup
itself was restricted and controlled, as participants were placed in
separate rooms and had to talk through a video call rather than
a more realistic face-to-face communication. This limits the par-
ticipants’ possibilities, to e�ectively use and react to gestures and
other non-verbal cues. Additionally, the labeling process was not
�ne-grained and could be enhanced in multiple aspects. First, the
time annotation relied on the timestamps in the recording of the
video call, which had to be extracted by hand and were only given
in seconds, so the partition always happens between two seconds.
Second, the labels do not take any personal factors into account,
like engagement, stress, and similar, which might in�uence eye
movements.
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(a) Accuracy Curve (b) Confusion Matrix

Figure 6: The performance graphs for our trained classi�er. The results are achieved by averaging over multiple runs. The
model shows signs of over�tting, with speaking samples beeing slightly more di�cult.

Regarding technical aspects, the data collected using the Tobii
Eye Tracker contained many NaN values for positional data. To
tackle those, we had to make several assumptions, interpolating
gaps of less than 50ms linearly and segmenting the data on longer
NaN gaps. Additionally, the Tobii Eye Tracker only recognizes the
screen position the participant is looking at. We do not take into
account, what exactly he is looking at, for example, the other partic-
ipant’s eyes, mouth, or other things. Since the other participant may
have altered their position during the conversation, eye movements
may be provoked by this, although our data does not take such
scenarios into account.

6 CONCLUSION
This research presented the collection and preparation of a new
dataset which consists of human gaze behavior during conversa-
tions. The data was collected from a heterogeneous group of young
people in video-call talk using eye trackers. The tracker followed
their gaze on the screen, which displayed their partner’s face. We
extracted the �xations and saccades that de�ne the eyes’ behavior
from the raw data collected. Analyzing the data statistically, we
found that the results are substantially consistent with previous
research on eye behavior during conversations, enhancing the data
available to this point. By training a neural network classi�er on
the �xation statistics, we proved the applicability of our data for
machine learning tasks. We achieved an average binary classi�ca-
tion accuracy of 88.1%. We �nalize the data collection by pointing
out several process hurdles and justifying assumptions. Those re-
marks may serve for future research to enhance the collected data.
In summary, this research contributes a novel dataset for studying
human gaze behavior during conversations and veri�es the data’s
suitability for machine learning applications. It allows future re-
searchers to generate realistic, fresh eye movements and visualize
them using the collected data.
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