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Abstract. Tables are one of the prevalent means of organising and rep-
resenting structured data. They contain a wealth of valuable informa-
tion that is challenging to extract automatically, yet can be leveraged
for downstream tasks such as question answering and knowledge base
construction. Table Type Classification (TTC) is one of the tasks which
contributes to better semantic understanding and extraction of knowl-
edge in tabular data. While multiple classification schemas exist, almost
all of them are focused on web tables. Therefore, these classifications
might overlook certain types which are common in other areas such as
scientific research. This paper addresses this gap by introducing ten novel
TTC taxonomies tailored towards tables used in scholarly publications.
We also evaluate the applicability of taxonomies derived from web tables
to scientific tables. Additionally, we propose a new dataset containing
13,000 annotated table images, called TD4CLTabs. Our results indicate
that both existing and newly proposed taxonomies are suitable and ef-
fective for classifying scientific tables.

Keywords: Table type classification · taxonomy construction · table
understanding.

1 Introduction

Tables are used to summarise and present information in a structured manner
across various areas such as business, finance, science, education, and health-
care [40]. With a growing interest in the field of Table Understanding (TU),
several studies have focused on the automatic extraction of knowledge from
tables [16,3,45,36] and applying it to various tasks, e. g., question answering
[43,50,33,20,48,5,7,22,29,9], knowledge base construction [27,25], table-to-text
generation [28], tabular data augmentation [45,44,12], content extension and
completion [27,21], fact-checking [6,1], and natural language inference [17].

Table Type Classification (TTC) is the TU sub-task aimed to categorise
tables according to a predefined schema based on their layout structure, content
or purpose of use [45]. Classifying tables into specific types helps to uncover
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the semantics of the data they contain, facilitating tasks such as detecting and
filtering layout tables (which do not contain any meaningful data), recognising
table structures, and information extraction [15,14,25,23]. Even though various
TTC schemas exist [11,26,41,4,27,25,8], most were designed focusing on tabular
structures that exist in web pages, commonly referred to as web tables [26]. As a
consequence, these classifications might overlook certain table features and types,
especially domain specific ones. In particular, they might not be fully applicable
to tables found in scholarly papers. We refer to such tables as scientific tables,
defining them as tabular structures found in (digital) scholarly publications and
labelled as a table by the authors. To the best of our knowledge, there is only
one study by Kruit et al. [25] that proposed a table type taxonomy derived
from scientific tables. No taxonomies based on structural or layout features exist
for the field of scientific publications. The present paper addresses this gap by
developing ten novel taxonomies based on scientific tables. To this end, we collect
a corpus of tables extracted from Computational Linguistics (CL) articles. We
develop various taxonomies based on two well-established classification schemas
and by considering table features identified in previous studies and our own
corpus analysis. We train and evaluate classifiers on the dataset of scientific
tables that we annotated according to the two pre-existing schemas and our
newly proposed taxonomies.

Our contributions can be summarised as follows:

– We construct and release the TD4CLTabs dataset with 13,000 annotated
images of scientific tables extracted from CL articles.

– We propose and evaluate ten novel TTC taxonomies defined based on scien-
tific tables.

– We assess the applicability of taxonomies derived from web tables to scientific
tables.

– We offer a list of table features which are potentially important for TTC.
The list includes attributes considered by previous taxonomies, alongside
those overlooked by these schemas but identified in the literature and in our
TD4CLTabs dataset.

This article is structured as follows: Section 2 discusses related work. Sec-
tion 3 describes our approach to the dataset and taxonomies construction. Sec-
tions 4 and 5 present the evaluation results and main findings, respectively.
Section 6 outlines limitations. Concluding remarks are provided in Section 7.

2 Related Work

Tables are ubiquitous data structures, often stored in relational databases (e. g.,
MySQL, PostgreSQL), spreadsheets (e. g., Microsoft Excel, Google Sheets), web
pages (e. g., Wikipedia), and scientific articles. Tables vary greatly in terms of
their layout structures and content, posing challenges for automatic TU [2,46].
In order to effectively process and extract knowledge from tables, several TTC
schemas have been proposed.
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The existing schemas vary in their complexity, ranging from simple binary
classifications to multi-layer taxonomies. Additionally, most TTC schemas have
been designed based on tables found in web pages. For instance, in the pioneer-
ing work by Wang and Hu [42], web tables were classified into two categories:
genuine, i. e., leaf tables (not containing other tables, lists, images, etc.) and
non-genuine. Later Cafarella et al. [4] distinguished between extremely small
tables, HTML forms, calendars, non-relational (contain low-quality data), and
relational (contain high-quality data) tables. Subsequent studies proposed more
fine-grained classifications by organising table types into hierarchical taxonomies.
Crestan et al. [11] introduced the categories of relational knowledge tables, which
contain relational data, and layout tables, which do not contain any meaningful
data at all. The former class included sub-types defined based on the positioning
of table headers: vertical listing, horizontal listing, matrix, attribute/value, enu-
meration, and calendar. The layout category contained formatting and naviga-
tional tables. Lautert et al. [26] refined this taxonomy by revisiting the relational
knowledge tables class and incorporating types derived from cell features. On the
first layer, relational knowledge tables were categorised as horizontal, vertical,
and matrix. These were subsequently divided into concise (contain merged cells),
nested (contain a table in a cell), splitted (contain repeated labels in headers),
simple and composed multivalued (contain multiple values in a single cell) cat-
egories. Chen and Cafarella [8] devised an alternative TTC taxonomy focusing
on the use-case of web spreadsheets. In contrast to previous studies, this taxon-
omy incorporates major classes such as data frame spreadsheets and non-data
frame (flat) spreadsheets, along with their respective sub-categories. More re-
cent studies have shifted back to single-level classification schemas. Eberius et
al. [14] distinguished between three main table types, namely matrix, horizontal
listing, and vertical listing (see Appendix A). Similarly, Lehmberg et al. [27] also
classified tables into three major categories: relational, entity, and matrix.

In contrast to web tables, there is currently only one TTC taxonomy de-
fined based on scientific tables extracted from Computer Science papers. It was
proposed by Kruit et al. [25] for the development of Tab2Know, i. e., a novel
end-to-end system for building a knowledge base from scientific tables. This tax-
onomy consists of four root classes (observation, example, input, other) with their
respective sub-classes and primarily focuses on the narrative role tables play in
scholarly articles rather than their structural characteristics.

As emphasised by Zhang and Balog [45], the established approaches to TTC
were designed for different use-cases. Therefore, it is not surprising that ex-
isting schemas might overlook certain table features. For instance, Shigarov et
al. [39,38] highlighted that current classifications fail to address header and cell-
related characteristics such as header hierarchies, the presence of non-textual
content and diagonally split cells. Additionally, the schemas do not consider the
concepts of complicated tables (i. e., containing spanning cells) and void cells in-
troduced by Chi et al. [10] and Rolan et al. [35], respectively (see Appendix B).

In earlier studies, TTC relied on traditional machine learning algorithms such
as decision trees, support vector machines, and logistic regression [42,4,11,26,14,25].
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Recent research has shifted towards the adoption of deep learning techniques
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs),
and attention mechanisms for automatic feature extraction from tables [31,18].
Previous approaches primarily utilised plain-text and HTML representations of
tables. However, not all tables are readily accessible in a machine-readable for-
mat. For instance, scientific tables are commonly embedded in unstructured PDF
documents. Such tables have to be extracted and transformed into a format suit-
able for training and testing models. One of the widely used approaches involves
obtaining the image-like representations of tables from a PDF file [25,24,49]
which can either be directly used as model input or first converted into struc-
tured formats like CSV or JSON.

3 Methodology

3.1 Data

To assess the applicability of web tables-based taxonomies to the area of science
and to construct novel TTC taxonomies, we created a corpus of table images
from scholarly articles in the ACL Anthology.3 We fetched a total of 3,219 pa-
pers from the year 2022, chosen as the latest collection of publications in the
readily available ACL Anthology corpus.4 As ACL papers are available only in
PDF, Tab2Know was used to obtain table images. Out of the 3,219 PDF files,
Tab2Know successfully processed 2,687, resulting in a total of 15,292 table im-
ages. Since Tab2Know is designed to locate and extract tables without their
respective captions and titles, these are not present in our corpus.

3.2 Taxonomies Construction

We applied two established schemas based on web tables to the corpus of scien-
tific tables, i. e., the classifications proposed by Eberius et al. [14] and Crestan
et al. [11]. We picked these two taxonomies based on their usage in recent ap-
plications and tasks. We did not consider the taxonomy proposed by Kruit et
al. [25] since it classifies tables based on their narrative role in scientific articles
rather than their layout structure.

In order to determine whether any adjustments are needed in the two tax-
onomies, such as excluding under-represented classes, we examined their presence
and distribution in a sample of 1200 table images from our corpus. The results
are presented in Figure 1. Eberius et al.’s schema, featuring the classes listing
and matrix, was directly adopted to the TTC task due to their high frequency in
the corpus. The taxonomy by Crestan et al. was adjusted by keeping horizontal
listing, vertical listing, matrix, and enumeration, while disregarding other classes
(e. g., calendar, form, layout tables, etc.) since these could not be observed in

3 https://aclanthology.org
4 https://github.com/shauryr/ACL-anthology-corpus
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the sample data. Additionally, all tables of the attribute/value class were clas-
sified as either vertical listing or horizontal listing since they represent specific
instances of these classes [11]. Together with the class other tables, which was
introduced for tables that do not fit any of the pre-defined classes, we refer to the
final two taxonomies as Baseline_I and Baseline_II, respectively. The graphical
illustration of the baseline taxonomies is provided in Figure 2 (a).

Fig. 1. The distribution of table types defined by Crestan et al. [11] and Eberius et
al. [14] in a sample of 1200 table images extracted from the ACL Anthology Corpus.

In addition, ten novel taxonomies were defined by incorporating the table
types from the baseline taxonomies as well as header and cell features. As a
fist step, we determined which classes should be preserved from Baseline_I and
Baseline_II by analysing the results of their preliminary frequency of occurrence
(Figure 1). Hence, only the matrix and horizontal listing classes were considered
while designing the taxonomies. Vertical listing and enumeration were disre-
garded due to their low frequencies in the dataset. Then, we compiled a list of
table layout features which are neglected by the existing taxonomies but distin-
guished by previous studies (see Section 2). We further extended the list with
additional features observed during the examination of the 1200 sample tables.
The collected features fall into header and other table attributes and are outlined
in Table 1.

Initially, we constructed the TTC taxonomies by combining the selected ta-
ble types and additional header features. We refer to these as Header-Feature
Table Taxonomies (HFTTs) and present them in Figures 2 (b) and (c). Thus,
taking into account the absence or presence of a header hierarchy, we extended
Baseline_I with the classes flat listing, flat matrix, hierarchical listing, and hi-
erarchical matrix classes, and called it HFTT_Novel_I. Then, we incorporated
the positioning of hierarchical headers (HHs) within the classes matrix and hori-
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Table 1. Header and other features potentially significant for Table Type Classifica-
tion. Attributes identified based on a sample of 1200 tables extracted from ACL papers
are highlighted in italics.

Header Features

– Positioning of headers [11,26]
– Hierarchy of headers [39]
– Varied positioning of hierarchical headers in Matrix
– Presence of diagonally split cells in Matrix [38]

Other Features

– Presence of missing and void cells [35]
– Presence of non-textual content [38]
– Presence of hierarchical rows
– Presence of spanning cells [26,10]
– Presence of other complex cells
– Table splitting [26]

zontal listing into HFTT_Novel_I. For the former, HH might exclusively appear
in a column header (CH), row header (RH), or in both. We refer to these three
additional classes as type-1, type-2, type-3 hierarchical matrix. In the case of
horizontal listing, HH may be positioned on the left, right or middle of a table,
potentially with repetitions. We name the resulting taxonomy HFTT_Novel_II.
As can be seen from Figure 2 (b), for HFTT_Novel_III, we further distinguished
between matrix with diagonally split cells at the top-left cell (pseudo matrix )
and without those (regular matrix ). Note that pseudo matrices often bear a
resemblance to listing. For the final HFTT_Novel_IV, we excluded HH and
the three respective HH positioning types related to matrix and pseudo matrix.
Eventually, the ten different taxonomies developed vary in terms of their num-
ber of classes, from 3 to 17. Baseline_I contains the fewest number of categories,
while FFTT_Novel_V includes the highest number.

As outlined in Table 1, HFTT can be extended with other table features
related to cell types and table splitting. Thus, each feature introduces a new
category within each table type across HFTTs. When focusing solely on header
features, the resulting table types are mutually exclusive. For instance, if a table
is categorized as matrix, it cannot simultaneously belong to the listing class.
Similarly, once it falls into the type-1 hierarchical matrix, it cannot be classified
as type-2, type-3 or pseudo matrix. However, when considering both header and
other table features, the resulting table types become inclusive. Thus, matrix
can exhibit features such as spanning cells and being split at the same time,
leading to a new category called split complex matrix. We refer to the refined
HFTTs, containing header features, cell-related attributes, and table splitting,
as Full-Feature Table Taxonomies (FFTTs). Figure 3 shows two examples.
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Fig. 2. The table type taxonomies proposed in this study: Figure (a) depicts two
baseline taxonomies, while (b) and (c) illustrate four newly defined taxonomies. The
colours highlight each taxonomy and its respective classes.

Fig. 3. Examples of scientific tables belonging to the Full-Feature Table Taxonomies.
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3.3 Annotation

To label the corpus of 15,292 table images according to the defined taxonomies,
we run an annotation project. LabelStudio5 was used as the annotation tool and
since there was only one annotator involved, a Master student of Data Science,
no inter-annotator agreement (IAA) score was calculated. To ensure that the
final corpus contains well-structured images, displaying only the complete and
clear layout of tables, we filtered out inappropriate samples while annotating. To
this end, we introduced the class non-table and used the following rules during
the annotation:

– If a table is partially extracted, as if incorrectly cropped, it is not considered
to be a complete table and should be annotated as non-table.

– If a table is fully extracted but labelled as Figure in a paper, it should be
annotated as non-table.

– If a table is fully extracted but there is other information in the image, such
as segments of text, it should be annotated as non-table.

– If a table is fully extracted but an image contains multiple scattered tables,
it is considered as incorrect input and should be annotated as non-table.

As a result, 280 table images belong to the non-table category and were
excluded from the corpus. We also checked the labelled data with respect to
annotation errors. Consequently, 54 images were removed from the corpus.

The final dataset comprises 13,301 annotated scientific table images along
with their respective metadata (image name, image label, image path, and
dataset split). We refer to the final corpus as TD4CLTabs (Type Detection
for Computational Linguistics Tables) dataset.6 As a post-processing step, we
encoded the categorical features with numerical values. Then we divided the
dataset into a training set containing 10,347 table images and a test set com-
prising 2,954 samples.

3.4 Models

Considering recent advances of deep learning in computer vision (CV), alongside
the proven successful application of table images for TU tasks such as table
detection and table structure recognition [34,49,30,32,37], we approach TTC as
an image classification task. In particular, TTC based on HFTTs was tackeled
as a multi-class problem, while classification based on FFTTs was addressed as
a multi-label task.

Two models, ResNet50 [19] and Vision Transformer (Vit) [13], were trained.7
ResNet50 is a deep CNN model widely utilised in CV tasks, exhibiting efficient
performance in image classification problems. ViT presents a newer approach
to CV, utilising the Transformer architecture’s unique ability to capture global
5 https://labelstud.io
6 https://zenodo.org/records/10972922
7 The code is available on Software Heritage: https://shorturl.at/mCGHT

https://orcid.org/0009-0004-6151-2015
https://orcid.org/0000-0002-3447-9860
https://orcid.org/0000-0002-7800-1893
https://labelstud.io
https://zenodo.org/records/10972922
https://shorturl.at/mCGHT


Towards a Novel Classification of Table Types in Scholarly Publications 9

image information, outperforming traditional CNN models. We combined pre-
encoded labels from all hierarchy levels into one flat list and fed them as input
into the models along with table images.

ResNet50 was implemented using the Fastai framework.8 For the Vit model,
we utilised the Hugging Face implementation.9 To enhance the robustness and
reliability of the image classification models, cross-validation was applied with
k set to 4. For both models, the batch size was set to 16. The resize dimensions
of (500, 900) and (224, 224) were chosen for ResNet50 and Vit, respectively.
FocalLoss was employed as the loss function for ResNet50, while the default
CrossEntropy was used for Vit. The training process for ResNet50 extended to 30
epochs with early stopping enabled and a patience of 5 epochs. Vit was trained
for 15 epochs with the option to save the best model. Both models utilised
pretrained weights, with ResNet50 set to True and Vit using the ‘google/vit-
base-patch16-224-in21k’ pretrained configuration.

3.5 Evaluation Metrics

To evaluate the performance of the two models on the multi-class classification
task, error rate, precision (weighted), recall (weighted), and F1 score (weighted)
were used. In the case of multi-label classification, hamming loss, macro and
micro F1 scores were utilised.

4 Results

4.1 Dataset Analysis

The table images in our dataset have a wide range of resolutions, spanning from
a minimum of 100×100 pixels to a maximum of either 1200×200 or 1000×1400
pixels. In terms of dimensions, tables average 7.60 rows and 6.68 columns.

The distribution of tables per class within each HFTT is presented in Fig-
ure 4. As can be seen, with the increase in the number of classes, the degree
of data imbalance also rises. The analysis shows that matrix tables are approxi-
mately 15% more common than listings in the dataset. Interestingly, other tables
comprise less than 5%. Among the matrix tables, those with HHs constitute ap-
proximately half of all (49%). Furthermore, the majority of such tables (about
64%) fall under type-1 hierarchical matrix, i. e., have HHs located in a CH. Ma-
trix tables with diagonally split cells are quite frequent (about 71%). The least
common across the matrix sub-categories are type-2 hierarchical and type-3 hier-
archical. In terms of the listing class, horizontal tables are more frequent (about
84% of the total) than vertical and enumeration types. In contrast to hierarchical
matrix tables, the number of hierarchical listings in the dataset is considerably
lower (approx. 8% of all listings).

8 https://www.fast.ai
9 https://huggingface.co
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Fig. 4. The distribution of table types in the baseline and Header-Feature Table Tax-
onomies within the TD4CLTabs dataset. Note that only proportions exceeding 5% are
explicitly labelled with numerical values.

Figure 5 illustrates the distribution of table splitting and cell-related features
incorporated into FFTTs within the TD4CLTabs dataset. The results indicate
the infrequent occurrence of those across the given corpus of scientific tables. The
highest value of about 13% was achieved for the missing and void cells type,
followed by the presence of hierarchical rows (approximately 10%). A limited
number of tables contain cells with non-textual content (about 3%) and other
complex cells (about 2%).

Fig. 5. The distribution of cell types and table splitting across the TD4CLTabs dataset
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4.2 Table Type Classification

Table 2 presents the TTC results across HFTTs. The Vit model outperforms
ResNet50 in all but one case, namely HFTT_Novel_II. We can also see a general
trend of decreasing performance among the models as the number of classes in
the taxonomy increases. The class imbalance indicated in Section 4.1 might have
also influenced the predictions. The best F1 value (0.82) was obtained for Vit
based on Baseline_I. This is not surprising since it is a 1-level schema with
the least number of classes and the most balanced data. The second highest
F1 scores (0.78) were achieved by Baseline_II and HFTT_Novel_IV, both of
which contain two additional categories when compared to Baseline_I. Even
though HFTT_Novel_III contains four more categories than HFTT_Novel_II,
the models based on these taxonomies result in very similar results (approx. 1%
difference). The study also shows that HFTT_Novel_IV achieved the highest
scores among the novel taxonomies.

Table 2. Multi-class classification results based on baseline and Header-Feature Table
Taxonomies

Taxonomy ResNet50 Vit

Error Rate Precision Recall F1 Error Rate Precision Recall F1

Baseline_I 0.22 0.78 0.78 0.77 0.17 0.82 0.83 0.82
Baseline_II 0.23 0.76 0.77 0.76 0.21 0.77 0.79 0.78
HFTT_Novel_I 0.26 0.74 0.74 0.73 0.23 0.74 0.77 0.75
HFTT_Novel_II 0.27 0.73 0.73 0.72 0.26 0.72 0.74 0.71
HFTT_Novel_III 0.28 0.73 0.72 0.71 0.27 0.72 0.73 0.72
HFTT_Novel_IV 0.25 0.76 0.75 0.75 0.21 0.78 0.79 0.78

The results for multi-label classification based on FFTTs are provided in
Table 3. In terms of micro F1, the Vit model demonstrates overall better perfor-
mance compared to ResNet50 across all taxonomies, except FFTT_Novel_IV
and FFTT_Novel_V. However, all models exhibit low macro F1 scores, indi-
cating the dataset imbalance. The hamming loss values are also consistently low
across the models (0.05-0.07), suggesting an overall good performance of the
classifiers. Similar to the classification based on HFTTs, we note a trend where
models tend to perform worse on FFTTs with a larger number of classes. Further-
more, the highest score (0.75) for FFTTs is about 7% and 2% lower compared
to those obtained for the baselines and HFTTs, respectively.

To address the problem of class imbalance, we applied the random oversam-
pling technique [47] on novel HFTTs.10 This involved duplicating instances of
the minority classes to align with the majority classes. As shown in Table 4,
oversampling consistently improved F1 scores by 1-5% across the models. The

10 Note that we have not addressed the data imbalance for FFTTs.
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Table 3. Multi-label classification results based on Full-Feature Table Taxonomies.
The threshold is set to 0.5. If the probability of the prediction is greater than 0.5, it as
a positive prediction. Otherwise, it is a negative prediction.

Taxonomy ResNet50 Vit

F1Micro F1Macro Hamming Loss F1Micro F1Macro Hamming Loss

FFTT_Novel_I 0.73 0.54 0.07 0.75 0.38 0.07
FFTT_Novel_II 0.69 0.49 0.06 0.72 0.32 0.06
FFTT_Novel_III 0.70 0.55 0.07 0.71 0.37 0.07
FFTT_Novel_IV 0.69 0.58 0.06 0.68 0.36 0.06
FFTT_Novel_V 0.66 0.53 0.05 0.61 0.25 0.05
FFTT_Novel_VI 0.70 0.54 0.07 0.72 0.47 0.06

Vit model based on HFTT_Novel_IV is the only instance where a slight de-
crease in score (by about 2%) is observed. All other evaluation scores also in-
creased in the majority of HFTT classifiers. Furthermore, comparable results
to ResNet50 with Baseline_I were achieved on ResNet50 with HFTT_Novel_I
and HFTT_Novel_IV. However, despite the overall improvement in model per-
formance, the prediction accuracy for novel taxonomies still remains lower (by
approximately 5%) than that of Baseline_I based on Vit.

Table 4. Multi-class classification results based Header-Feature Table Taxonomies
after applying oversampling

Taxonomy ResNet50 Vit

Error Rate Precision Recall F1 Error Rate Precision Recall F1

HFTT_Novel_I 0.22 0.78 0.78 0.77 0.24 0.77 0.76 0.76
HFTT_Novel_II 0.25 0.75 0.75 0.74 0.24 0.76 0.76 0.76
HFTT_Novel_III 0.24 0.77 0.76 0.75 0.24 0.77 0.77 0.75
HFTT_Novel_IV 0.22 0.78 0.78 0.77 0.24 0.78 0.76 0.76

5 Discussion

The study indicates that matrix and listing tables are the most commonly used
across CL papers. In particular, matrix with hierarchical headers, frequently
found in CHs, matrix with diagonally split cells, and horizontal listings are
prevalent. Hence, these types are worth considering when classifying scientific
tables. In contrast, the findings suggest that incorporating table splitting and
cell features may not be advantageous, as they seem to be relatively uncommon
in scientific tables.

The study further showcased the applicability of the TTC schema by Eberius
et al. to scientific tables. In this sense, Crestan’s et al. taxonomy also proved to
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be adaptable after smaller adjustments. The models based on these baseline
schemas demonstrate greater efficiency on TTC than those trained on the newly
proposed taxonomies. Hence, although the two established classification schemas
were designed for web tables, they are still suitable for scientific tables.

While the experimental results do not demonstrate a clear advantage of the
novel domain-specific taxonomies, they do show the promising outcomes. Among
the newly developed taxonomies, HFTT_Novel_I and HFTT_Novel_VI have
proven to be the most successful. This could potentially be attributed to the
smaller number of categories within those, indicating a lower level of complexity,
compared to other schemas. These taxonomies also achieved efficiency compa-
rable to the results obtained for ResNet50 with the baseline schemas.

6 Limitations

While this study sheds light on devising TTC taxonomies for scientific tables,
it is not without limitations. First, the annotations may be subjective and con-
tain errors due to the involvement of only one annotator. Having at least one
additional annotator and curator, and subsequently validating the results by cal-
culating the IAA score, would be beneficial. Second, the novel taxonomies were
constructed and tested based on scientific tables from CL papers. Thus, the ap-
plicability of those to other domains remains an open research question, which
we leave for future work. Third, the study considered only two existing web ta-
ble based taxonomies, limiting the analysis to types within them and potentially
neglecting other categories relevant to scientific tables. Finally, the hierarchy of
the taxonomies’ labels was not taken into account in this study. Additionally, to
tackle class imbalance, we considered only oversampling and applied it only to
taxonomies with header features. Future endeavours could incorporate the label
hierarchy in the model training process and focus on annotating more samples
for the minority classes or on utilising other automatic methods for solving class
imbalance (e. g., resampling).

7 Conclusion

In this paper, we developed and evaluated the effectiveness of ten novel TTC
taxonomies tailored for tables found in scholarly publications. Additionally, we
examined the applicability of well-established schemas designed for and based on
web tables to the use-case of scientific tables. The findings reveal that existing
taxonomies are indeed suitable for classifying scientific tables. However, while
established taxonomies demonstrate their efficiency, comparable performance
can also be achieved with two novel domain-specific taxonomies. Finally, our
study indicates that header features are essential for classifying scientific tables,
whereas cell features and table splitting have not shown to provide significant
advantages. The proposed taxonomies can be beneficial for downstream tasks
such as information retrieval from scholarly papers by helping to reduce the
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search space, data integration allowing mapping of scientific tables with similar
structures across different datasets, and scientific table structure recognition.
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A Examples of Matrix, Horizontal Listing, and Vertical
Listing Tables

Fig. 6. Examples of web tables falling under the categories within the table type clas-
sification schema by Eberius et al. [14]. The samples are taken from WDC Web Table
Corpus 2015.

B Illustrations of Table Features

Fig. 7. Illustration of a splitting table with spanning cells, diagonally split cells, void
cells, hierarchical headers, and cells with non-textual content.
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