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Abstract: In manufacturing dynamic scheduling is a complex task which is influenced by various
factors, including several possibly contrary optimization objectives. While multi-objective
optimization approaches are not novel anymore, prevailing deep learning solutions lack in the
ability to dynamically adjust the preferences of the different objectives. For this reason, we
developed a collaborate human-AT scheduling algorithm where Reinforcement Learning (RL) is
utilized for the optimization of single objectives, while the human is left in control to flexibly
mix and weight the influence of each objective into the final schedule. The approach performs on
par with prevailing RL multi-objective approaches. However, it surpasses the later in its ability
to dynamically adjust the preferences of the objectives without retraining.
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1. INTRODUCTION

In manufacturing dynamic scheduling is a complex task
which is influenced by various factors, including several
possibly contrary optimization objectives. With increased
attention on environmental sustainability objectives such
as CO2 emission and energy consumption are getting more
important. Nevertheless, manufacturing aiming at the ad-
herence to delivery deadlines as well as for a high through-
put is just as important for the economic efficiency of a
company. While multi-objective optimization approaches
are not novel anymore, prevailing deep learning solutions
lack in the ability to dynamically adjust the preferences of
the different objectives. In RL the optimization objectives
are included in the reward function. The most common
way to handle multi-objective optimization problems is to
use the weighted sum of all objectives as reward function
(Popper et al., 2021a) (Yuan et al., 2024). Preferences
between the objectives can then be addressed by adjust-
ing the weight for each objective. However, this common
solution lacks in situation where the schedule must be
optimized for multiple objectives while the preferences of
the objectives dynamically change. Due to the necessary
training time of RL, the model must be retrained whenever
the reward function changes. Beyond this Hayes et al.
(2022) state even more disadvantages of using a single
scalar additive reward function for multi-objective opti-
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mization. The process of finding the correct weights for
each objective is tedious. The relationship between the
reward weights and the actual objective outcome might
be non-linear. Hence, the Al-engineers have to make an
educated guess at the scalarisation a priori. This leaves the
decision of the objectives preferences with the Al-engineers
and not the domain experts. Different reward functions are
tested until the behavior of the policy is satisfactory which
results in a semi-blind manual process. The necessity to
iteratively re-engineer the reward function can eventually
have a large hidden cost in terms of sample-complexity
and computation time. Furthermore, the approach lacks a
posteriori explainability of the results.

Hence, a collaborate human-Al dynamic scheduling algo-
rithm is necessary utilizing RL for the optimization of
single objectives, while the human is left in control to
flexibly mix and weight the influence of each objective into
the final schedule. We extended an auction-based online
scheduling algorithm using reinforcement learning (ABOS-
RL) to the multi-objective setting. In the algorithm the
machines bid for the tasks. The machine with the highest
bid wins and the task is assigned to this machine. RL is
utilized to compute the bidding of a machine. For each
single objective a separate policy is trained. The different
policies are combined using a utility function of the bids
for each objective.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an introduction into the scheduling prob-
lem and the state-of-the-art of multi-objective optimiza-
tion with RL. The scheduling algorithm is introduces on
which our proposed multi-objective scheduling approach



described in section 3 is build upon. Experimental results
are presented in section 4 and discussed in section 5.

2. RL-BASED SCHEDULING
2.1 Flexible Job Shop Problem

In this paper we focus on the scheduling for a modular
production. This scheduling problem is known as flexible
job shop problem (FJSP) (Pinedo, 2012). In this problem n
jobs J = {j1, j2, .-, jn } must be processed on m machines
M = {mqi,ma,...,m;}. Each job j; is being composed of
a set of tasks T; = {t{,5,...,t; } which must be processed
in a given sequential order. Let d; be the deadline for
job j; and D = {dj,ds,...,d,} be the set of deadlines.
A task can be process by a specific subset M;; C M of all
machines. A machine can only process one operation at a
time. The processing time and energy consumption of task
t% on machine [ are denoted by p;” and e’

2.2 Multi-objective Optimization in RL

Roijers et al. (2013) divide the multi-objective optimiza-
tion approaches into two classes: single policy and multiple
policy. In the single policy case only one policy is trained.
The objectives are scalarized using weights which must
be known a priori. In contrast multiple solutions can be
inferred in the multi-policy case such that the Pareto
front of the optimization problem can be explored. The
later approach is preferred in cases were the weights are
unknown and change over time.

Popper et al. (2021a) and Yuan et al. (2024) both use
the single policy approach for scheduling of FJSPs. In an
auction based multi-agent reinforcement learning (MARL)
scheduling algorithm Popper et al. (2021a) used the linear
weighted sum of the objectives as reward function. The
proposed approach outperforms the shortest-job-next and
first-come-first-serve heuristic in minimizing the contrary
designed optimization goals of energy costs and the num-
ber of delayed jobs. Using also the weighted sum of the
objectives inside the reward function, Yuan et al. (2024)
optimizes for three different objectives: makespan, mean
lateness and mean flow time.

Hayes et al. (2022) developed a guide for multi-objective
optimization using the multi policy approach. It proposes
to use a utility function which maps the state values of the
objectives to a scalar value.

u:R* = R (1)

Vi =u(V7) 2)
This approach is also adopted by Méndez-Herndndez et al.
(2019) and Huo and Wu (2023). While Méndez-Herndndez
et al. (2019) investigate the optimization of the job shop
problem for makespan and tardiness, Huo and Wu (2023)
do this for the FJSP and the objectives maximum comple-
tion time and total machine load. Both approaches use a
MARL algorithm and use the borda rule to select among
the given policies.

Our approach differs from the above in that it uses a
multi-policy approach combining the different policies not
using the value or action value function of each objective.
Instead using a gradient-based RL algorithm the utility

function of the multi-policy approach is directly applied
on the RL action, which is the bid of an auction process.
Furthermore, we stress that the weights of the objectives
can be dynamically controlled by the human, resulting
in a joint and collaborative scheduling process of Al and
human.

2.8 ABOS-RL

We use an auction-based online scheduling algorithm using
reinforcement learning (ABOS-RL) which is based on the
RL-algorithm by Popper et al. (2021b). Let S be the set
of currently open tasks, i.e. a task is in this set, if the
precedence task has already finished and the task has not
been assigned to a machine yet. For each task ¢ € S an
auction process is started. Each machine is requested to
issue a bid for ¢. The highest bid for a given machine m
and task ¢ wins. If the bid is above a given threshold, the
task is assigned to the machine and added into its waiting
queue. Afterwards, set S = S\ {o}. As soon as ¢ is finished
being processed, the successive operation of ¢ is included
into S. This procedure is depicted in algorithms 1 and 2.

Algorithm 1: ABOS-RL auction
input : set of jobs J, set of machines M,
threshold B
S = {t, 13, ...t}
while § # {} do
forallt € S,m € M do
0bst™ := m.get__observations(t)
bidb™ = get_ bid(obst™)
t,m 1= argmax;c s e aq bid"™
if bid®™ > B then
m.process(t)

S:=38\{t}

Algorithm 2: ABOS-RL machine

input : task queue Q
while True do

5 := Q.pop()
process(t’)
S=8U t§'+1

The bid is computed by using MARL, where each machine
is represented by one RL agent. The reward is only given
at the end of each problem instance. Proximal Policy
Optimization (PPO) (Schulman et al., 2017) is used for
optimization.

3. MULTI-OBJECTIVE RL FOR ABOS-RL

In our improved multi-objective approach we use the bid
instead of the reward to combine all objectives into one.
Even through we use PPO which is a policy gradient
method, the bid is similar to a state value in RL. Hence,
we can use a utility function as in Hayes et al. (2022) only
applied to the bids not the state values of each policy.
The procedure of one RL step for scheduling with ABOS-
RL in a multi-objective setting is depicted in algorithm 3.
Algorithm 3 differs from algorithm 1 in that it extends the



original algorithm by a second for-loop over all objectives.
For each task ¢, machine m and objective o a bid is
created. Afterwards the bid for task ¢t and machine m
over all objectives O is calculated using a utility function.
We exemplary use the weighted sum of the bids for each
objective.

Algorithm 3: multi-objective ABOS-RL auction

input : set of jobs J, set of machines M,
threshold B, set of objectives O,
utility function u : RI®l - R
S = {t}, 13, ...t}
while § # {} do
forall t € T,m € M do
obst™ = m.get_ observations(t)
forall o € O do
| bid™ := get_bid(obs"™)
bidb™ = u(bidb™, ..., bidb™ )

o1 7° o|10|

~

, M 1= arg Max,c g e bid"™
if bid®™ > B then
m.process(t)

| 5=8\{1)

4. RESULTS

A set of 10000 FJSP was randomly generated with m =
M| =4,n=1J| =10, k=|T;| =5 and and p; € [10 —
100)Vi € J,j € T;,l € M. The energy e,” was constructed

contrary to the processing time p,’ using equation 3, i.e.
tasks with a long processing time require less energy while
tasks with a small processing time require more energy.
ey = N (101 — p)?,0.5%) (3)
Hence, a task can be processed either fast with high energy
consumption or slow with low energy consumption. The
deadlines of the jobs are constructed in a way, that they
almost always can be reached if the task is processed on the
machine with shorter processing time, but higher energy
consumption. On the other side the deadlines cannot be
reached, if the task is processed on the machine with larger
processing time, but lower energy consumption.

In the implementation of ABOS-RL the observations vec-
tor of machine [ and task ¢} includes the following infor-
mation:

. . ij
processing time: p,

[ ]

e remaining time till deadline: d; — now

e duration how long m is approximately still occupied

e number of task which are queued already for the
machine

e total number of jobs currently being manufactured in
the plant

e energy consumption: e’

In the remainder of the paper ABOS-RL combined with
our improved multi-objective approach using the linear
weighted bid is denoted by RL-SB while ABOS-RL in
combination with the linear weighted sum of the objectives
as reward function is denoted by RL-SR. Depending on the
objective the reward in the algorithm RL-SB is computed
as in equation 4 and 5:

energ !
r Y=1- o 11 (4)
ateness
T‘l t — (5)

FE denotes the total energy consumption, e* an upper
bound, €' a lower bound of E and L the total lateness of
all jobs J. The objectives are combined using the utility
function in equation 6

. tm . tm _ ;i Jt,m
u(bldenergy’ bZdlateness) =Wenergy * bldeher!]?/ (6)
bidy"
+ Wiateness - 00 lateness

In the first experiment we use a weight of 0.1 for the
energy objective and 0.9 for the lateness objective. In
this way we can minimize the environmental impact as
much as possible while still meeting delivery deadlines. For
comparison reasons we use the same weights in the reward
of RL-SR which is depicted in equation 7.

r=0.1-7""9 41 0.9. ,,,lateness (7)

All results of RL-SB and RL-SR are averaged over 10
different training runs.

Furthermore, we apply the dispatching rules service in
random order (SIRO), minimum energy (ENERGY) and
minimum slack (MS). Comparing our results to SIRO gives
us an impression of how much we actually improve. We
use ENERGY and MS to easily get a good estimated of
the optimal value of one objective. ENERGY reaches the
actual optimum while MS gives only an estimation. For

a better estimate we calculated MS by d; — now + p;’.
Instead of subtracting the processing time as usually, we
add it. Since in this case a task, which can be processed
on two different machines, is preferably processed on the
machine with the smaller processing time instead of the
higher processing time. Hence, the dispatching rule gives
a good comparison in relation to the lateness objective.
Figures 1-3 show the results of the different algorithms
evaluated on 100 FJSP instances. The mean is depicted
by a green triangle and the median by an orange line.
In both objectives RL-SB performs on par with RL-
SR. RL-SB achives a mean lateness of 10.5 and energy
consumption of 2233.9 while RL-SR a mean lateness of 8
and energy consumption of 2256.3. The dispatching rules
ENERGY and MS perform good for one objective while
poor for the other objective. ENERGY achieves a mean
energy consumption of 1818 and mean lateness of 61.1.
MS achieves a mean energy consumption of 2685 and mean
lateness of 11.6. SIRO is in between the above two with
a mean energy consumption of 2248 and mean lateness of
12.8. Figure 3 shows the results of the reward. The reward
is calculated for each algorithm using the reward of RL-
SR. In this way we can compare the overall performance of
the different algorithms. RL-SB performs the best with a
mean reward of 0.917 followed by RL-SR with 0.925, SIRO
with 0.854, MS with 0.805 and ENERGY with 0.717.

In the second experiment we use the two models trained
beforehand for RL-SB and vary the weights of the ob-
jectives. Without more training being necessary, we com-
pute approximate values for the Pareto front. We use 0.2
increments for Wenergy, Wigteness € [0, 1] while Wepergy +
Wigteness = 1 holds. Figures 4 and 5 how the results
averaged over 100 FJSP instances. Gradually increasing
Wenergy € [0,1] leads to a total energy consumption de-
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Fig. 3. Reward achieved by each algorithm
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mean_lateness

weights
median A mean
10?
) e 8 9
102 4 g g E
8
o
110! a g
¢ g 8 ]
© [}
8 g
© o o}
107 4 o
o} o 8
0 - — — — —
T T T T T T
™ o
*\Q g o > o © SSe o® v 'ﬂ‘\' o
O S o S S S O
& o o &7 & & &
o NN e A R o @
h ¢ Ce e @ A
T 7 hG P
weights

Fig. 5. Mean lateness of RL-SB using different weights

creases from 2350 to 1918.9. In contrast the mean lateness
increases from 5.8 to 66.4 when wigteness € [0, 1] is gradu-

all

y decreased.

5. DISCUSSION

The RL-SB and the RL-SR approach achieve equal per-
formance with only negligible difference. However, the
superiority of RL-SB over RL-SR is in its flexible and

dy

namic adaptation to changing objectives. In RL-SB the

objectives are mixed outside of the actual RL algorithm
while in the RL-SR approach the objectives are mixed
inside of the RL algorithm using the reward function. The
former approach might have higher costs in the beginning,
since a separate policy must be trained for each individual



objective. The required sample complexity, training time
and disk space scale linearly with the number of objectives.
However, training can be done prior to deployment. Once
the set of policies is trained the whole Pareto front of
optimal solutions between the objectives can be explored.
No additional training time and disk space is required
after the deployment. In contrast, RL-SR only explores
one solution of the Pareto front with one training run.
Disk space consumption is at all times lower compared to
RL-SB, since only one model must be stored at all times.
Training time and sample complexity scale linearly with
the number of times that the preferences are adjusted. If
there are more objective changes than objectives in total
RL-SB outperforms RL-SR in this point. Contrary to RL-
SB the training phase cannot be prepend to initial deploy-
ment. Instead it is scattered over the usage. With each ob-
jective change a new training phase and fresh deployment
is necessary. During this time the production either must
be stopped or runs on with the old objectives and reduced
performance. In summary, if the objective preferences are
not known in advance or change often, RL-SB achieves
a lower sample complexity and training time in the long
run. The training phase can be completed beforehand such
that the preference changes can be executed immediately
and without interrupting the production. This comes at
the cost of a higher disk space usage.

The decision making process is split between the human
operator and the artificial intelligence (AI). By selecting
and adjusting the weights for each objective the production
manager is in control over the influence of each objective on
the final schedule. During production he can dynamically
adjust them to his preferences. This can be done by domain
experts and not the Al algorithm engineers. The AI on
the other hand is left in control over the computation
of the actual schedule with the given objectives. In this
way the AI aids the human. Both human and AI have
their own fields of responsibility. The output of the human
tasks, i.e. the selection of the preferences, is the input
to the AI task, i.e. the computation of a schedule. This
gives a defined interface between the human and the Al
for a joint decision making process within the presented
dynamic multi-objective scheduling algorithm.

The dynamic multi-objective scheduling approach has the
unique subsequent phases training, deployment and pro-
duction. In the training phase one model for each objective
is trained. In the deployment phase these models are
deployed to the machines. In the production phase the
production manager is monitoring the production. As soon
as one metrics shift to far from its desirable value, he can
intervene in the production by setting new weights for the
objectives.

6. FUTURE WORK

In the future, the dynamic multi-objective scheduling al-
gorithm will be deployed to one testbed of the Smart-
Factory®" (see Figure 6). This allows investigation of its
applicability to modular production systems which focus
on flexibility, resilience and robustness. By facilitating all
resources of the factory like machines and transportation
units with software agents, the factory can control itself to
a high degree autonomously. The dynamic multi-objective

Fig. 6. Modular testbed of the SmartFactory®":

scheduling algorithm hereby allows a threefold flexibility.
On the one hand there is the flexibility in the factory
setup. Due to the auction component in the scheduling
algorithm the factory setup can change. Machines which
are currently out of order due to maintenance or failures,
do not take part in the auction while new machines will
participate after their corresponding software agent is
spawned. Secondly, there is flexibility in the products. The
production is not planned in advance. Instead every task
is scheduled after its predecessor has successfully finished.
Hence, quality issues or defects of the product can be taken
care of as soon as they are identified. New product types
can be easily incorporated into the factory by defining
the sequence of tasks necessary to produce them. And
at last there is the flexibility in the objectives which can
be changed and adjusted dynamically during production.
New objectives can be added after training a new model
and deploying it to the machines.

This flexibility fosters not only robustness and resilience,
but also sustainability concerns can be addressed. In the
example above we already minimized the energy consump-
tion. Further research can be conducted to examine the
algorithm performance together with a demand side man-
agement system, where the energy consumption combined
with dynamic energy prices can be monitored.

7. CONCLUSION

Our improved multi-objective scheduling algorithm uti-
lizes the gradient-based RL-algorithm PPO and an auction
procedure. The objectives are combined using a utility
function on the bids of the auction. We shown that our
approach performs as good as the common multi-objective
RL approach where the objectives are combined using
the reward function. Nevertheless, it outperforms it in its
applicability and flexibility. The control is split between
the human and the RL algorithm. RL is utilized for single
objective optimization and controls the next task-machine
assignment in the scheduling process. The human on the
other hand retains the control over the influence of the
objectives into the schedule and is able to dynamically
mix them.
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