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Ratzeburger Allee 160
23538 Lübeck

Ralf Möller
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Abstract

In healthcare, managing small patient cohorts, particu-
larly those with rare diseases, presents a unique chal-
lenge due to the scarcity of data required for effective
machine learning applications. Addressing this issue,
our paper investigates if a specific conditional data syn-
thesis prior to learning the machine learning model us-
ing the CTGAN architecture improves the result. Data
synthesis refers to the artificial generation of synthetic
data with certain properties from the original data. We
choose the specific learning task of predicting hospital
length of stay (LoS) of patients leaving the emergency
department. It can, e.g., be used to predict the bed oc-
cupancy in a hospital and thus enables better planning.
The accuracy of the LoS-prediction is strongly depen-
dent on rarity of the patients disease, ranging from an
acceptable accuracy, e.g., for often occurring homoge-
neous cases to worse accuracy for, e.g., inhomogeneous
and rare ones. To increase the accuracy for such cohorts,
we enrich the dataset with new, synthesized patient ad-
missions. Then, for each cohort, a model is trained to
predict the LoS of a patient of this cohort. Our experi-
ments show that adding synthetic data is able to increase
the accuracy for the majority of cohorts. Indicators for
a benefit of synthetic data seem to be cohorts that have
a high LoS with high variance within in cohort.

Introduction
In machine learning, having data to learn from is critical.
In the medical domain, data is often very scarce, especially,
for patient cohorts with rare diseases or other special char-
acteristics. The scarcity and specificity of data in these in-
stances pose significant obstacles for traditional ML ap-
proaches, which typically thrive on large datasets. These
smaller cohorts often lack the volume of data necessary to
train robust and accurate models, leading to suboptimal per-
formance for these groups. The issue of data scarcity is fur-
ther compounded by stringent privacy regulations in health-
care, which restrict the use and sharing of patient data.

In this paper, we investigate the task of predicting hospi-
tal length of stay (LoS) for patients leaving the emergency
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department with rare diagnoses. Emergency units of hos-
pitals require efficient and quick actions to cope with the
amount of patients and time-critical tasks. Therefore, there
is a need for optimizing and automatizing such processes
as much as possible. In this study, we use the well-known
freely accessible MIMIC-IV electronic health record (EHR)
dataset (Johnson et al. 2023). The data consists, beside a few
often occurring cases, of many small cohorts, as depicted in
Figure 1.

The problem of unbalanced data occurs in many domains
and is a widely researched topic. Different solutions, such as
over-sampling (e. g. synthetic minority oversampling tech-
nique (SMOTE)), under-sampling, specific error functions,
and many more can be found in the literature (see, e.g.,
the overview of (Wang et al. 2021)). SMOTE is a good ex-
ample where individuals are not simply copied but where
new synthetic individuals are created with a nearest neigh-
bors based approach (Chawla et al. 2002). All these ap-
proaches assume that we have a large dataset, with pa-
tient’s sharing a common data structure where the differ-
ent classes just need to be balanced. In reality, practition-
ers often have selected small datasets that are not part of a
big global database. Due to privacy regulations they cannot
easily add more patients from other cohorts to their study.
Therefore, we take a different approach in this paper and
synthesize patients with the same condition as the patients
in the cohort from a generative model based on the CT-
GAN (conditional generative adversarial network) architec-
ture (Xu et al. 2019). In this paper, we loosely define data
synthesis as the process to generate artificial data based on
real data to be used in a specific task (Jordon et al. 2022b).
According to the authors, CTGAN’s synthesized data can
replace real data for data science. Several studies have
shown promising results for synthesizing data with CTGAN
to learn machine learning models (Kuo and others 2020;
Bourou et al. 2021) while others have also identified open
issues to be solved (Mendikowski and Hartwig 2022).

To imitate the described use case, we split the dataset into
cohorts per diagnosis and train and evaluate the individual
models solely for the corresponding cohort. We use the con-
ditional synthetic patient admissions to enrich the cohorts
with artificial patients sharing the leading diagnoses of the
corresponding cohort. We use two baselines for predicting
the LoS of specific cohort: a model trained solely on the



Figure 1: Size of all 5660 patient cohorts aggregated by their
ICD-code (Primary diagnose)

training data from this cohort and a global model using all
patients except the test set (a small sample of the specific
cohort). That test set is used to evaluate the overall accuracy
of that trained model.

The opinion on enriching medical datasets with synthe-
sized data is ambivalent (see, e.g., (Hittmeir, Ekelhart, and
Mayer 2019; Kuchin, Mukhamediev, and Yakunin 2020).
Our experiments, however, show that in the context of the
prediction of the LoS, it is a promising approach for creat-
ing machine learning models for small cohorts.

If a cohort is relatively large, training a model by adding
synthetic data to the large cohort does almost nothing to im-
prove the mean absolute error. As a rule of thumb, adding
synthetic improves the trained model if the average LoS of
the cohort is high and has a high variance in comparison to
the whole dataset.

Our paper is structured as follows: After a discussion of
the related work, we present the dataset MIMIC-IV in de-
tail. Then, we describe the methodology of our experiments
including the baseline model and the model training with
the synthesis step. Afterwards, the results are evaluated and
discussed. The paper ends with a short conclusion.

Related Work
Data synthesis is used in many contexts, e.g., for preserving
privacy, de-biasing data or balancing imbalanced datasets
(Jordon et al. 2022a). In this paper, the focus is to synthesize
data from a model learned from a broader patient database to
use for machine learning when the cohort of interest is rela-
tively small. The related work can be structured around work
on tabular data synthesis, using synthetic data for machine
learning and our application of predicting hospital length of
stay.

Approaches of synthesizing data are dependent on the
properties of the data, here, as electronic health records
(EHRs) are considered, tabular synthesis is of relevance.
A widely acknowledged technique in this domain involves
generative adversarial networks (GANs), especially CT-
GANs (Xu et al. 2019; Torfi, Fox, and Reddy 2022; Sauber-
Cole and Khoshgoftaar 2022). These have been extensively
used and further developed (Fang, Dhami, and Kersting
2022; Mendikowski and Hartwig 2022). There are also other
approaches to synthesize data, e.g., a rule-based creation of
new patient data, as in Synthea (Walonoski et al. 2017).

There are a lot of evaluation studies that investigate the

usage of synthetic data instead of the real data for ma-
chine learning tasks (Hittmeir, Ekelhart, and Mayer 2019;
Rashidian et al. 2020; Mendikowski et al. 2023). There are
use cases where data synthesis is used to balance a dataset
when e.g. the labels for a prediction task are unbalanced
(Wang et al. 2021; Son et al. 2023). This turned out to be
a useful data augmentation strategy, see, e.g., (Hoffmann et
al. 2019) for a case study for crumpled sheets, (Perets and
Rappoport 2023) for applications with ensemble models and
(Sutojo et al. 2020) for general considerations. Other exam-
ples for the use of data synthesis are digital twins in sleep
research (Kumi et al. 2023), simulation of chronic coronary
disorders (Koloi et al. 2023). The focus of this paper is not
to do a classical balance of labels in the dataset but to gen-
erate more training examples for a specific individual co-
hort. A related study has been performed by on CT-images
(Prasanna Das et al. 2022), where the authors suggest to
transfer the idea to other types datasets.

The promising results in related problem field show that
it is a reasonable task to apply these techniques in the con-
text of EHR data and LoS-prediction. The prediction of LoS
for the MIMIC-dataset has been done, e.g., by (Hasan et al.
2023) for MIMIC-III and by (Winter, Hartwig, and Kirsten
2023) for MIMIC-IV, however, always on big datasets. A
LoS-prediction which accounts for imbalanced data was pre-
sented by (Alsinglawi et al. 2022), however, does not use a
CTGAN and is restricted to patients with lung cancer. As
shown by (Hartwig et al. 2024), the predicted LoS can be
further used, for example, to predict bed occupancy in a hos-
pital.

Dataset
In our experiments, we extract data from the MIMIC-IV
dataset (Johnson et al. 2023). MIMIC-IV is a freely avail-
able EHR dataset collected from the Beth Israel Deaconess
Medical Center located in Boston. The collection of the data
spans almost a decade between the years 2008 and 2019.
More than 180k different patients were admitted to the hos-
pital resulting in over 400k unique admissions. All patients
where deidentified according to the HIPAA (Health Insur-
ance Portability and Accountability Act) standard. For in-
stance, dates are shifted for each patient consistently by a
fixed offset such that the exact date of birth can not be recon-
structed. However, by subtracting the admission time from
the date of birth, one still gets the age of a patient. We extract
the same features from the MIMIC-IV dataset as described
by Winter et al. in (Winter, Hartwig, and Kirsten 2023). The
total LoS of a patient in the hospital is predicted for patients
leaving the emergency department (ED), therefore, for pre-
diction only information given at that point in time is used.

LoS The length of stay (LoS) of a patient spans the time
between the patient leaving the ED and leaving finally the
hospital. The date of the admission is extracted from the
ED module and the date of discharge from the hosp mod-
ule of MIMIC-IV.

Admission location The location of the patient before be-
ing admitted to the hospital.



ICD-code Each patients admission is associated with a pri-
mary diagnosis encoded either with an ICD-9 or ICD-10
code. Half of the diagnosis are encoded with ICD-9 and
the other half with ICD-10.

Age Each patient has an anchor year and an
anchor age attribute in the dataset. For instance,
if the patient is admitted to the hospital in the year 2060,
has the anchor year 2040, and the anchor age 20, then the
patient is 20 years old in the year 2040 and 40 years old
at time of hospitalisation.

Insurance The insurance a patient has at time of admission.
In 9% of all cases, a patient has medicaid, in 38% has
medicare and in all other 53% it is not further specified,

Ethnicity The ethnicity of a patient.

Gender A patient is either female or male in the dataset.

Resprate The respiratory rate of a patient during the triage
right before the patient is admitted to the hospital. Values
are normal distributed and have a mean of 17.77 breaths
per minute and standard derivation of 2.52.

sbp The sbp (systolic blood pressure) is the measurement
of the blood pressure.

Pain All patients are asked during the triage right before be-
ing admitted to the ED how much pain they have between
0 and 10.

Diagnosis count A count of the total number of diagnosis
ICD-9 or ICD-10 codes associated with the patients ad-
mission.

Medication count The total count of all medications a pa-
tient enters during the triage.

ED LoS Time spend by a patient in the ED is extracted from
the dataset as the ED LoS.

Average LoS of previous admissions The average LoS of
a patient at previous admissions at the hospital. In the case
of 52%, the patient was admitted to the hospital and for all
other patients who are admitted to the hospital for the first
time, we set the value to 0.

After extracting features from the MIMIC-IV dataset, ap-
proximately half of the admissions are filtered out, as not
all patients are admitted to the ED at all. Additionally, we
classify all admissions having a LoS longer than 50 days as
outliers, resulting in a LoS distribution, as depicted in Fig-
ure 2. As one can see, the distribution has a high skew and
only a few patients have a LoS higher than 20.

Methodology
Primary diagnoses, encoded as either an ICD-9 or ICD-10
code for each patients admission are used with varying fre-
quency, as some diseases are more frequent than others, as
presented in Figure 1. One can see in the figure that out of all
5660 codes, only 29 have a frequency higher than 1000, 258
a frequency between 10 and 100, and that most ICD-codes
have a frequency lower than 10. Approximately half of the
ICD-codes in our dataset are ICD-9-codes and the other half
ICD-10-codes. The most and least common ICD-codes part

Figure 2: LoS distribution with a mean of 3.87 and standard
derivation of 4.95 of patients admissions in our dataset after
extracting features

ICD-code #patients Description
78650 6607 Unspecified chest pain
R079 4488 Other chest pain
R109 3886 Unspecified abdominal pain
F329 3273 Major Depressive Disorder

...
...

...
I519 1 Heart disease, unspecified

K3520 1 Acute appendicitis
A35 1 Other tetanus

Table 1: The most and least frequently occurring ICD-codes
from our data set with their respective descriptions

of our dataset can be found in Table 1. The least common
ICD-codes are chosen randomly, as 2080 patients have an
ICD-code as the primary diagnose that occurs exactly once
in our dataset.

In this paper, we examine how one could reduce the pre-
diction error of the LoS of small cohorts of patients hav-
ing the same ICD-code. As for synthesizing data a suffi-
cient variety of real data is necessary, we consider only co-
horts with more than 30 patient admissions. For each cohort
considered, we split our data extracted from the MIMIC-IV
database, as depicted in Figure 3. On the left hand side of
the figure, one can see all cohorts Cohort1, . . . , Cohortn−1

sorted in an arbitrary order except for Cohortn (the cohort
considered) which is depicted on the right hand side of the

Cohort1

Cohort2

. . .

Cohortn−1

Dataset

Train Data

Test Data

Cohortn

Figure 3: Dataset division for our models to be trained



figure. For Cohortn, we aim to improve the prediction of
the LoS of the patient admissions. It is split into a 70% train
dataset for training and a 30% left out test dataset. In our
evaluation, we create three different models, each trained
with another training data collection. All models are trained
using CatBoost (Prokhorenkova et al. 2018), as described
by Winter et al. in (Winter, Hartwig, and Kirsten 2023), that
we compare with each other. The test dataset is identical for
each of the three models for an accurate and fair compar-
ison. CatBoost is an open-source gradient boosting library
for gradient boosting on decision trees that has the advan-
tage of supporting, in addition to numerical data, categorical
data as input. Categorical data such as the ICD-code of a pa-
tients admission do not need to be converted into a numerical
feature prior training a model.

Using GridSearchCV from the scikit-learn library, we
searched for the best parameters at where for each set of
parameters the train dataset is split randomly into a train and
evaluation dataset three times. Each of the three times, the
model is trained with fixed parameters and evaluated with
the evaluation dataset. The parameters we performed grid-
search on are the learning rate, the maximum depth of a tree
and L2 leaf regularization and all other parameters CatBoost
offers are left by their default as can be found in the docu-
mentation1. The learning rate is used for reducing the gradi-
ent step. As CatBoost is based on trees, the parameter depth
determines the maximum depth of the trees and the opti-
mal depth ranges from 4 to 10. Any positive value for the
L2 regularization coefficient of the cost function is allowed.
The higher the value, the lower will be the value of the corre-
sponding leaf. In the following, we present all three models.
Specifically, we discuss which data we use to train them and
what we expect from the results.

Model I: Training on All Cohorts
For training Model I, we use data from Cohort1 to
Cohortn−1, and the training data part of Cohortn. Only
the test data of Cohortn is left out to measure the accuracy
of the trained model. This model is only realistic if the per-
formed study on a cohort can also leverage data from other
studies. We include the model as a benchmark for further
comparisons.

Model II: Training on Cohort Data
For training the second model, we use only the training data
of Cohortn and evaluate it on the test data. This training
regime often occurs in the real-world when a study is per-
formed on a selected subset of patients without additional
generated data. If Cohortn is small, then only a few train-
ing samples are given. If the model that is trained only on
an individual cohort of patients would outperform the first
model trained on all cohorts, then one can use it in combina-
tion with the other individual models trained for cohorts as
ensemble method to improve the overall accuracy of predict-
ing the LoS of the patients (This is of course also possible

1https://catboost.ai/en/docs/references/
training-parameters/

for model III where each model of the ensemble then con-
tains additional synthesized data).

Model III: Training on Cohort and Synthetic Data
In addition to the real data of a patient cohort, the third
model is trained on synthesized data. Data is synthesized
from fitting a CTGAN on Cohort1 to Cohortn−1 and on
the training data part of Cohortn to synthesize data belong-
ing to Cohortn.

We synthesize the data using conditional generative ad-
versarial network (Xu et al. 2019) which is designed for
fitting a model on a single table. The fitted model then is
able to synthesize realistic data that is similar to the data the
model was fitted on. Naive approaches which, e.g., dupli-
cate rows of the data while preserving the data distribution
do not protect the privacy of individuals in the data and do
mostly not help to improve the training of any model. In con-
trast, CTGAN fitted on real data, synthesizes synthetic data
not equal but similar to the real data. The SDV (synthetic
data vault) library2 is equipped with an API for checking the
quality of synthesized data. Two metrics, namely the shapes
of synthesized columns and column pair trends are summa-
rized as an overall score, such that the library returns three
scores. An overall score of 100% means that the synthe-
sized data is identical to the real data and a score of 0% that
synthesized data contains the opposite from the real data.
Hence, ideally the score is never either close to 100% or
to 0% as the data is then not useful for enriching real data
with synthesized data for training a model. According to the
documentation of SDV, column shapes is the marginal dis-
tribution of the pairwise comparison between a real and the
corresponding synthetic column. The second measure, col-
umn pair trends, is the correlation between pairs of columns.
If the overall score is around 80%, then the cohort can be en-
riched with synthetic data, that is close to the real data, but
not equal. In that case, there is a chance that training the
model with augmented data improves the result.

As already mentioned, the synthesizer is fitted on
Cohort1 to Cohortn−1 and the training data of Cohortn.
However, we only want to enrich the training data of
Cohortn only with synthetic data from the same cohort, i.e.,
having the same ICD-code. For that case, SDV has the abil-
ity to condition on a specific ICD-code during sampling syn-
thetic data. Currently, only rejection sampling is supported
when using the CTGAN synthesizer, as we do. Hence, syn-
thesization of very small cohorts of approximately 30 patient
admissions or less took too much time and was therefore
omitted in our evaluation, as it is not promising due to miss-
ing variety in the data. For each cohort, we synthesized 4000
patient admissions and added them to the real cohort data.

Evaluation
In the evaluation, we selected different patient cohorts de-
pending on different statistics in order to cover as many dif-
ferent cohorts as possible as testing all cohorts was not pos-
sible due to its computational requirements. First of all, we

2https://docs.sdv.dev/sdv/
single-table-data/evaluation/data-quality

https://catboost.ai/en/docs/references/training-parameters/
https://catboost.ai/en/docs/references/training-parameters/
https://docs.sdv.dev/sdv/single-table-data/evaluation/data-quality
https://docs.sdv.dev/sdv/single-table-data/evaluation/data-quality


Figure 4: Average and standard derivation distribution of all
cohorts in our dataset

Figure 5: Correlation of 0.798 between the average LoS and
its standard derivation for cohorts with more than 30 admis-
sions

chose cohorts based on their average and standard deriva-
tion of their LoS. The distribution is depicted in Figure 4.
Both the average and standard derivation of the patient co-
horts LoS have a high positive skew. If one takes all cohorts
with more than 30 patients admissions into account, then
the average LoS and its standard derivation are correlated
with each other as depicted in Figure 5. Hence we chose
large, medium, and small cohorts each with patient admis-
sions having a long and short LoS mean and standard deriva-
tion respectively. Another statistic we take into account is
the skew of the LoS distribution of each individual cohort.
The distribution of the skew is depicted in Figure 6 with an
average of 0.89 and standard derivation of 0.24. Hence, we
also chose cohorts with different skews.

Figure 6: Distribution of the skew of all cohorts with more
than 30 patients admissions

The final results of our evaluation can be found in Table 2.
The first column of Table 2 is the cohort we are analysing,
i.e., all patient admissions having the same ICD-code as the
primary diagnose at when the patient enters the ED of the
hospital. The columns All, Cohort and Synthetic correspond
the accuracy in tearms of mean absolute error of Models I, II
and III respectively. A - C is the difference between All and
Cohort and A - S the difference between All and Synthetic.
The table is sorted in descending order by A - S, at where
the most upper rows represent the best results we got from
adding synthesized data to real cohort data for training. The
other columns are statistics about the cohort under consider-
ation. Quality is the overall quality of the synthesized data
returned by the SDV library. Avg(L) is the average, Stddev(L)
the standard derivation, and Skew(L) the skew of the LoS of
the corresponding patient admissions of the cohort. Finally,
# denotes the number of patient admissions of the cohort.

Discussion
We tested 26 patient cohorts in our evaluation, as listed in
Table 2. In roughly two thirds of the cases, adding synthetic
data to patient cohorts prior training has led to an improve-
ment in the accuracy of the trained model in contrast to a
model trained only on the cohort’s data. The same ratio holds
true when we compare the accuracy to a model trained on all
data. Adding synthetic data is particularly effective when the
average LoS and the standard derivation are large while the
cohort itself is rather small. All others cases, separated by
a horizontal line at the table, the accuracy of the model is
worse than the one of the model trained on all cohorts.

As a rule of thumb, if a cohort is very large, then the mod-
els accuracy differs only moderately. If a cohort is small, the
average of the LoS and its standard derivation is high, then
one could consider adding synthetic data to the cohort before
training a model.

The LoS distribution in the synthesized data has a high
effect on whether the model that is trained on both real and
synthetic data performs better than a model trained on real
cohort data alone, as depicted in Figure 7. On the bottom
right of Figure 7, the LoS distribution of all cohorts is de-
picted. The distribution has a high positive skew and most
patient admissions have a length of roughly one day. On
the bottom left one can see the LoS distribution of both the
real and synthetic data of the patients cohort with the pri-
mary diagnose 78097. Both distributions are not identical,
however mostly similar in contrast to the others. That is re-
flected by the results from Table 2. Adding synthetic data
to the cohort 78097 has almost no effect, as model All has
an mean absolute error of 2.66, model Cohort of 2.55, and
model Synthetic of 2.63. At the top right of Figure 7, the dis-
tribution of the synthetic data of cohort with the ICD-code
0389 is almost identical to the distribution of the real data
at the bottom right of the image. This is also reflected in the
performance of the models. Adding synthetic data to the pa-
tient cohort improves our baseline model All by 0.44. As a
counter example, the LoS distribution of the synthetic data
on the top left of cohort with the ICD-code 95901 is dissim-
ilar to the real LoS distribution of all cohorts. Especially, the



ICD-Code Cohort A - C Synthetic A - S All Quality Avg(L) Stddev(L) # Skew(L)
K652 7.66 0.08 7.07 0.67 7.74 66.32% 11.19 9.91 49 1.58
0389 4.54 −0.10 4.00 0.44 4.44 67.19% 7.62 6.30 451 0.80
28800 4.27 −0.01 3.87 0.39 4.26 71.02% 6.64 6.45 225 0.91
28419 9.58 −1.48 7.82 0.28 8.10 66.74% 8.45 9.84 35 1.12
D708 6.81 −1.30 5.28 0.23 5.51 68.14% 8.87 9.52 106 1.06
4589 4.00 0.23 4.00 0.23 4.23 68.48% 5.14 5.74 286 1.08
J9601 4.73 0.63 5.14 0.22 5.36 69.81% 7.99 7.10 52 1.00
8080 1.70 −0.37 1.20 0.13 1.33 67.92% 4.44 2.67 59 0.01
R188 3.51 −0.09 3.31 0.11 3.42 69.19% 6.43 5.94 178 1.17
R410 4.51 −0.62 3.80 0.09 3.89 68.73% 5.87 6.41 252 0.92
A419 5.40 −0.31 5.02 0.07 5.09 65.01% 8.42 7.70 912 0.97
3489 3.69 0.02 3.65 0.06 3.71 62.97% 7.54 6.90 117 0.45
N179 4.37 0.03 4.34 0.06 4.40 67.15% 6.21 6.17 1483 1.02
78097 2.55 0.11 2.63 0.03 2.66 65.22% 3.47 4.99 2329 1.03

J90 4.34 −0.26 4.08 0.00 4.08 68.19% 7.50 7.23 332 1.02
I6201 4.33 0.22 4.56 −0.01 4.55 66.26% 6.90 7.10 123 0.97
I509 3.93 −0.11 3.83 −0.01 3.82 60.32% 7.53 6.19 1946 0.79
R110 1.83 0.13 2.04 −0.08 1.96 70.23% 3.06 3.09 151 0.42
79902 3.94 0.13 4.17 −0.10 4.07 69.60% 4.98 6.45 126 0.93
R17 5.41 −0.38 5.15 −0.12 5.03 69.32% 6.73 7.58 226 1.02

M25562 2.25 0.03 2.59 −0.31 2.28 64.85% 3.25 4.86 115 1.28
430 6.58 −0.21 6.71 −0.34 6.37 65.89% 9.55 7.99 110 0.60

G939 3.18 −0.44 3.16 −0.42 2.74 67.33% 7.73 5.57 96 0.56
8082 1.47 0.08 2.06 −0.51 1.55 69.07% 2.90 1.92 80 0.22
71946 1.52 0.07 2.39 −0.80 1.59 65.82% 2.42 3.14 162 1.38
95901 1.12 0.26 2.82 −1.44 1.38 66.61% 1.73 2.30 341 1.26

Table 2: Overview of the results of our evaluation

Figure 7: LoS distribution of different patient cohorts with
purple representing the real and green synthetic data.

synthetic data contains too many patient admissions with a
LoS longer than 5 days.

Conclusion

The considerations in this paper show that enriching patient
data with snythesized data for LoS-prediction is promising.
However, it turned out that it is not a miracle cure for solving
the problem of data scarcity for this topic and thus opens up
a wide range of topics based on synthesizing data for LoS-
prediciton that can be considered in detail. Although, the dis-
cussion shows that there are some rules determinable to dis-
criminate between advantageous and non-advantageous syn-
thetizations, it is necessary to examine that in detail, e.g., by
enhancing the study to a greater variety of ICD-codes, to dif-
ferent cohorts than the ones based on ICD-codes or to other
datasets. Additionally, as mentioned in the discussion, CT-
GAN suffers from some drawbacks regarding EHRs. Thus,
it would be worth examining whether it is possible to cir-
cumvent some of the limitations of the models by using a
different, case-specific approach for data synthesis.
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