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ABSTRACT We utilize hybrid quantum deep reinforcement learning to learn navigation tasks for a simple,
wheeled robot in simulated environments of increasing complexity. For this, we train parameterized quantum
circuits (PQCs) with two different encoding strategies in a hybrid quantum-classical setup as well as a
classical neural network baselinewith the double deepQ network (DDQN) reinforcement learning algorithm.
Quantum deep reinforcement learning (QDRL) has previously been studied in several relatively simple
benchmark environments, mainly from theOpenAI gym suite. However, scaling behavior and applicability of
QDRL to more demanding tasks closer to real-world problems e. g., from the robotics domain, have not been
studied previously. Here, we show that quantum circuits in hybrid quantum-classic reinforcement learning
setups are capable of learning optimal policies in multiple robotic navigation scenarios with notably fewer
trainable parameters compared to a classical baseline. Across a large number of experimental configurations,
we find that the employed quantum circuits outperform the classical neural network baselines when equating
for the number of trainable parameters. Yet, the classical neural network consistently showed better results
concerning training times and stability, with at least one order of magnitude of trainable parameters more
than the best-performing quantum circuits. However, validating the robustness of the learning methods
in a large and dynamic environment, we find that the classical baseline produces more stable and better
performing policies overall. For the two encoding schemes, we observed better results for consecutively
encoding the classical state vector on each qubit compared to encoding each component on a separate qubit.
Our findings demonstrate that current hybrid quantum machine-learning approaches can be scaled to simple
robotic problems while yielding sufficient results, at least in an idealized simulated setting, but there are yet
open questions regarding the application to considerably more demanding tasks. We anticipate that our work
will contribute to introducing quantummachine learning in general and quantum deep reinforcement learning
in particular to more demanding problem domains and emphasize the importance of encoding techniques
for classic data in hybrid quantum-classical settings.

INDEX TERMS Reinforcement learning, Autonomous agents, Robotics, Quantum machine learning,
Quantum computing

I. INTRODUCTION

Robotics research and applications pose various algorithmic
challenges, ranging from large-scale optimization, processing
of high-dimensional sensory input, planning the execution of
complex tasks in demanding environments, and learning of
autonomous, adaptable behaviors. On the latter, deep rein-
forcement learning is used to produce impressive results in
tasks such as learning complex manipulation behaviors [1],
reaching, tracking and, navigation [2], manipulation based
on visual input [3] as well as dexterous hand movements [4]

among many others. It constitutes a central role on the path
toward autonomous and life-long learning robots.

Quantum computing algorithms [5] present a novel way
of approaching algorithmic problems and offer theoretical
advantages over classical algorithms for specific problems
like factoring numbers [6], unstructured search [7], and solv-
ing systems of linear equations [8]. With more development
and further resources, quantum computing and, in particular
quantum machine learning [9] may contribute to the develop-
ment of artificial intelligence in general and the learning of

VOLUME 11, 2023 1



Take Action

Observation / Reward

FIGURE 1. Main contribution: We use parameterized quantum circuits
(PQCs) as function approximators in the DDQN Deep Reinforcement
Learning algorithm to learn optimal policies for a simulated Turtlebot
robotic system in several simulated navigation tasks.

autonomous behaviors for robots in particular [10].
The idea of robots controlled by quantum computers, inter-

actingwith an environment on the scale of individual quantum
states has arguably first been hypothesized and described by
quantum computing pioneer Paul Benioff in the late 1990s
and early 2000s [11]–[14]. While those envisioned Quantum
Robots are very different from typical mechanical robotic
systems as they can be found in various practical applications
today, the idea of a mobile system utilizing quantum comput-
ing hardware remains intriguing.

Quantum computing technology has not yet reached the
state of mobile, embedded, and potentially battery-powered
quantum hardware but has made remarkable progress over
the last two decades. Research institutions and companies are
building quantum computers with increasing capabilities, and
while current Noisy Intermediate-Scale Quantum Computers
(NISQ) are limited in the number of qubits, coherence times,
and fidelity of operation [15], they already enable exploring
solutions for various problems [16].

One potential application for NISQ devices is the hybrid
training of parameterized quantum circuits (PQCs) as ma-
chine learning models [17]. While this technique has been
studied in various domains of machine learning [18], deep
reinforcement learning has only recently attracted substan-
tial research interest in this context. Existing works (see
Sec. II-D) demonstrate the applicability of hybrid quantum-
classical approaches for reinforcement learning tasks, with
performances similar to classical algorithms while learning
notably more compact models. However, their scope is cur-
rently limited to relatively simple benchmark environments,
mainly from the OpenAI gym suite [19].

Or main contributions, illustrated in Fig. 1, are as follows.
We demonstrate the feasibility of quantum deep reinforce-
ment learning in three simulated robotic navigation tasks of
increasing size and difficulty. Thereby, we extend the scope of
previously introducedmethods to substantially more complex
tasks in the robotic domain, aswe show by comparative exper-
iments with typical benchmark environments. Furthermore,
we compare to different encoding strategies for the classical
state of the robot into a quantum circuit and also analyze
the scaling behavior of the quantum circuits relative to a
classical baseline. To validate the robustness of the presented
methods, we additionally demonstrate their application in

a substantially larger, more demanding and dynamic envi-
ronment. In comparison to previous works in the field of
quantum deep reinforcement learning, we thereby increase
the complexity of considered learning tasks and furthermore
provide a systematic evaluation of the scaling behaviour of
quantum models in this context. Finally, we discuss various
challenges and limitations of quantum deep reinforcement
learning in a robotic context, as well as potential areas of
research for quantum machine learning to contribute to the
future advancements in autonomous robotics.
The rest of this paper is outlined as follows: In Sec. II,

we provide an overview of previous works regarding deep
reinforcement learning with PQCs. Subsequently, we outline
the quantum deep reinforcement learning framework underly-
ing this work in Sec. III. Afterwards, the learning setup with
regard to the simulated environments and learning methods
is documented in Sec. IV. We present the training results of
the suggested methods compared to a classical baseline in
Sec. V before summarizing our main findings and discussing
their implications and limitations in Sec. VI. Finally, we
give an outlook toward potential future research directions in
Sec. VII.

II. RELATED WORK
Introducing quantum algorithmic techniques and quantum
mechanical effects into reinforcement learning (RL) methods
is an active and growing field of research. Meyer et al. [20]
give an overview over various proposed methods and appli-
cations in this area. In the following, we highlight important
methods and results from this line of research.

A. QUANTUM RL AND QUANTUM INSPIRED RL
Quantum mechanics and quantum computing were intro-
duced reinforcement learning by Dong et al. [21], who pro-
posed Quantum Reinforcement Learning (QRL). In the QRL
algorithm, the classical states and actions of the agent are
expressed in the orthonormal eigenbasis of a Hermitian ob-
servable. Actions are chosen by measuring in that basis from
a superposition state, where the amplitudes of that super-
position state are modified during learning utilizing ampli-
tude amplification, the essential building block of Grover’s
algorithm [7]. The authors evaluate the QRL algorithm in a
discrete maze world, comparing it to the tabular TD(0) RL
algorithm [22], achieving convincing performance. Quantum-
inspired Reinforcement Learning (QiRL) [23] is a classi-
cal RL algorithm that builds on the ideas of QRL, using a
quantum-inspired probabilistic sampling technique to address
the exploration vs. exploitation [22] problem in RL and a
classical technique inspired by amplitude amplification to
control the sampling probabilities. The algorithm is demon-
strated on a simulated grid world and real-world robot nav-
igation task with a wheeled MT-R robot. A variant of QiRL
with flexible rotation angles in the amplitude amplification
step is proposed in Ref. [24], which shows better perfor-
mance on a UAV navigation problem compared to tabular Q-
learning [25] with two different exploration strategies. Hu et
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al. [26] apply QRL to the MountainCar and CartPole
problems from the OpenAI Gym [19] suite, focusing on the
exploration vs. exploitation problem, finding better overall
learning performance compared to the classical Q-learning
algorithm with an ϵ-greedy policy. Quantum-inspired Expe-
rience Replay (QER) [27] is an extension of the concepts of
QiRL to the representation of experiences and sampling from
the replay buffer in Deep Reinforcement Learning (DRL),
which the authors evaluate in several Atari 2600 game
environments [19] and compare to baseline experience replay
and prioritized experience replay with several variants of the
DQN [26] algorithm.

This line of work with QRL and QiRL emphasizes the
expression of states and actions in RL problems in quan-
tum states, efficiently updating measurement probabilities
leveraging amplitude amplification, and expressing the same
concepts in a classical learning setup. QER extends these
ideas to experience replay in DRL. Our contribution is con-
ceptually different, as we focus on substituting classical neu-
ral networks in DRL with parameterized quantum circuits
while keeping the learning algorithm and representation of
all aspects of the learning task unchanged.

B. QUANTUM ENVIRONMENTS
Dunjko et al. [28] propose a quantum-enhanced framework
that, in principle, covers supervised, unsupervised, and rein-
forcement learning but, in its formulation, is closest to the
latter. In this framework, the agent and the environment ex-
change actions and percepts by applying completely positive
trace-preserving (CPTP) maps to a shared quantum register
and their local quantum memory. The authors analyze the
conditions under which an agent in this framework can out-
perform its classical counterpart. They extend this work to
a meta-learning scenario in Ref. [29] demonstrating further
improvements.

Saggio et al. [30] suggest a reinforcement learning setting
in which the agent and environment exchange information
on a classical and a quantum channel in an alternating way
and show how, in such a setting, an agent performs better
than with strictly classical information exchange. The authors
validate the concept by performing experiments on a photonic
quantum processor. Theoretical performance analysis of this
framework is provided in Ref. [31], where the authors find a
quadratic learning speed-up, which still holds under hardware
noise and limited coherence times. Dalla et al. [32] suc-
cessfully demonstrate a classical deep reinforcement learner
in a quantized maze environment based on quantum walks,
considering potentially noisy dynamics.

Quantum-enhanced learning frameworks, as considered
in these works, require some form of quantum informa-
tion based interaction between agent and environment and
are, in that aspect, different from our contribution. We con-
sider an environment from the robotic domain, where agent-
environment interaction is strictly classical.

C. PROJECTIVE SIMULATION
Projective simulation [33] is an extension of the RL learning
framework by an episodic and compositional memory, which
allows the agent to predict potential future events using ran-
dom walks on that memory. In Ref. [34], the authors propose
an extension of this learning method using quantum walk on
quantum memory instead to achieve a quadratic speed-up,
which was later demonstrated in a proof-of-principle experi-
ment on an ion-trap based quantum system by Sriarunothai et
al. [35].
The deep reinforcement learning algorithm we use in our

work does not utilize any form of episodic memory, hence
the suggested techniques in this line of research are not
immediately applicable.

D. QUANTUM DEEP REINFORCEMENT LEARNING
In quantum deep reinforcement learning (QDRL), the line of
research from which our contribution originates, one or mul-
tiple classical neural networks are replaced or extended by pa-
rameterized quantum circuits. In contrast, agent-environment
interaction and as the learning procedure are kept classical.
We give a detailed account of the underlying theory in Sec. III.
The focus in this relatively new field so far has mostly been
on showing the feasibility of the methods, understanding
their capabilities and limitations, as well as finding quantum-
classical separations in learning tasks.
In several works the Q-function approximation in the DQN

algorithm is implemented by a PQC. Chen et al. [36] use basis
encoding [37] followed by CNOT entanglements and param-
eterized Pauli rotations without a data re-uploading struc-
ture for the FrozenLake [19] and a CognitiveRadio
task [38] with discrete state and action spaces. Lockwood et
al. [39] use a different encoding technique and combine the
parameterized circuit with quantum pooling operations [40]
and classical neural network layers without data re-upload.
This setup is able to learn a Blackjack environment but
do not successful learn Cartpole-v0 [19]. In Ref. [41]
the circuit layout and encoding scheme is similar to the one
that we employ in this work. The architecture also includes
data re-uploading and enables learning on FrozenLake and
Cartpole-v0.
In addition, PQCs have also been used in the policy gra-

dient methods REINFORCE [22]. In Ref. [42] the PQC
architecture also includes data re-upload scheme. Included
in the REINFORCE algorithm, the setup is able to solve
Cartpole-v1, Mountaincar-v0 and Acrobot-v1.
Additionally, the authors demonstrate experimentally and for-
mally that hybrid quantum deep reinforcement learning can
solve environments based on the discrete logarithm prob-
lem [43] which are intractable for classical learning methods.
A variant of the REINFORCE algorithm is used in Ref. [44]
to optimize PQCs, which replace the classical attention head
layers originally introduced in Ref. [45], to solve the vehicle
routing problem and achieve similar results as the classical
counterpart.
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Furthermore, actor critic methods such as proximal policy
optimization (PPO) [46] and soft actor-critic (SAC) [47] have
also been adapted with PQCs. In Ref. [48] the PPO algorithm
is augmented with PQCs by exchanging the actor approxi-
mation network. The PQC has no data re-uploading scheme
and is trained on Cartpole-v0without completely solving
it. In Ref. [49] unentangled PQCs with a fully connected
classical layer as post processing unit replace the classical
estimator for the actor and critic. This setup solves Ope-
nAI Gym environments Cartpole-v1, Acrobot-v1 and
LunarLander-v2.
Nagy et al. [50] simulate a hybrid quantum version of

PPO on a photonic processor which demonstrates that PQC
equivalences on photonic quantum computers can be used
for reinforcement learning as well. In Ref. [51] the author
demonstrates that the critic network in SAC can be exchanged
with a PQC followed by a classical neural network and still
solve the Pendulum-v0 problem from OpenAI gym with
continuous state and action spaces.

Several works introduce parameterized quantum circuits
into a hybrid quantum-classical learning setup, without
strictly falling into the category of deep reinforcement
learning. Cherrat et al. [52] implement a quantum ver-
sion of policy iteration to solve FrozenLake and the
InvertedPendulum environment. Franken et al. [53] im-
plement a gradient-free method based on evolutionary meth-
ods to optimize a PQC that receives input data encoded by
a tensor network. This setup is able to solve MiniGrid
worlds [54] with discrete state space.

Or contribution extends upon these previous works in the
following way:

• We extend the scope of QDRL to considerably more
complex learning tasks from the robotic domain. We
establish that increase in complexity by comparative
experiments (see Appendix A).

• We systematically evaluate the scaling behaviour of pa-
rameterized quantum circuits in QDRl across task com-
plexity as well as model size, which has previously not
been done.

• We compare different encoding strategies suggested in
the literature for re-uploading circuits with regards to
their performance in a QDRL scenario.

Thereby we extend the understanding of the feasibility of
QDRL from very simple benchmark environments towards
more realistic application scenarios from the robotics domain
and contribute to the understanding of the model scaling
behaviour in this context.

III. QUANTUM DEEP REINFORCEMENT LEARNING
A. DOUBLE DEEP Q-NETWORKS
For all our experiments, we used the Double Deep Q-
Network (DDQN) [55] algorithm as it performed slightly bet-
ter on average compared to e. g., the basic Deep Q-Network
algorithm (DQN) [56]. DDQN is a model-free, off-policy
deep RL algorithm that uses a neural network to approximate
the Q-function from the basic Q-learning algorithm [25].

FIGURE 2. Reinforcement Learning setup (left) and main parts of the
DDQN algorithm (right). An agent interacts with an environment by
performing action at after observing a state of the environment st ,
causing a transition to state st+1 and receiving a reward rt . For the DDQN
algorithm, these interactions are stored in a replay buffer, from which
regularly random mini-batches are sampled to train an artificial neural
network Qθ approximating the action-value function.

RL is used to solve Markov Decision Processes (MDPs),
that is, discrete-time, stochastic processes (S,A,T , r , p0)
with

• S: The state space, a set of all possible states of an
environment

• A: The action space, a set of all possible actions for an
agent

• T : S × A × S → [0, 1]: The possibly stochastic
transition function with T (s, a, s′) = p(s′|s, a) being the
probability of transitioning to state s′ after taking action
a in state s.

• r : S × A × S → R: A reward function with r(s, a, s′)
denoting a numeric reward for taking action a in state s
and transitioning to state s′ and

• p0: A probability for each state to be a starting state of
the MDP.

The general scheme of interaction for an agent in an envi-
ronment governed by an MDP is illustrated on the left side of
Fig. 2. At each time step t , the agent observes a state st of the
environment, takes an action at , which causes a transition to
state st+1 and the agent to receive a reward rt . The agent’s
action selection is governed by a policy π : S → A and
the goal is to maximize the total cumulative reward R for a
possibly infinite time horizon, given by

R =

∞∑
t=0

γtrt (1)

with γ ∈ [0, 1], called discount factor, encoding the prefer-
ence for immediate over long-term rewards.
In the DDQN algorithm, this is achieved by learning an

optimal action-value function Q : S × A → R. The action-
value functionQ(s, a) expresses the expected total cumulative
reward for taking action a in state s

Q(s, a) := ⟨R⟩s,a,π, (2)

and the greedy policy can be expressed in terms of Q(s, a) by

π(s) := argmax
a

Q(s, a). (3)
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The action-value function, also referred to as Q-function,
is approximated by an artificial neural network Qθ with pa-
rameters θ. The neural network takes a state s ∈ S as input
and computes Q(s, a(i)) for all a(i) ∈ A as output. During
learning, an ϵ-greedy policy is employed by the agent, that is
at each time step t with probability ϵ ∈ [0, 1], the agent takes
a random action from A to further explore the environment
and with probability 1 − ϵ, it follows the greedy policy (3)
to exploit its current knowledge. At the beginning of training,
ϵ is commonly chosen with a value close to 1 and gradually
reduced toward 0 as learning progresses.

Interactions (st , at , rt+1, st+1) are stored in a replay
buffer [57] from which at a predefined interval e. g., at each
time step, a mini-batch is sampled to updateQθ with stochas-
tic gradient descent, minimizing the loss

L(θ) = (yt − Qθ(st , at))2, (4)

with yt given by

yt = rt+1 + γQθ′(st+1, argmax
a′

Qθ(st+1, a′)). (5)

The target network Qθ′ is used to stabilize the training pro-
cess [56]. It has the identical structure as Qθ and is periodi-
cally updated with θ′ ← θ.

B. QUANTUM COMPUTING
We give a short introduction to the common notation of
quantum computing and refer the interested reader to [58] for
a comprehensive explanation of basic and advanced concepts
of this topic. The fundamental objects in quantum computing
are qubits, analogous to bits in classical computing. Unlike
classical bits, which can be in one of the two states, 0 and
1, a qubit can be in a state, which is a linear combination of
those states. Using the bra-ket notation, a qubit state |Ψ⟩ can
be written as

|Ψ⟩ = α |0⟩+ β |1⟩ ,with α, β ∈ C, |α|2 + |β|2 = 1, (6)

where |0⟩ and |1⟩ are basis states of the underlying single-
qubit Hilbert Space. During the probabilistic measurement
process, the qubit will collapse to one of the two basis states,
and |α|2 and |β|2 can be interpreted as the probabilities for
the respective basis states. Before the measurement, the state
can be modified by applying quantum gates U

|Ψ′⟩ = U |Ψ⟩ , (7)

formally described by unitary operators U . This formulation
can be extended to multi-qubit systems by preparing an n-
qubit quantum register. For quantum computers, this is com-
monly initialized in its computational basis state |0⟩⊗n.

C. PARAMETERIZED QUANTUM CIRCUITS FOR DEEP
REINFORCEMENT LEARNING
Variational quantum algorithms are a promising method to
implement algorithms on current and near-term quantum
computers as they are well suited for systems with a rela-
tively small number of qubits, noisy operations, and limited

FIGURE 3. Basic principle of a parameterized quantum circuit as function
approximator. A unitary U(θ, x), which may be composed of any number
of quantum gates, is applied to an n qubit register initialized in its basis
state. The unitary is parameterized by trainable parameters θ and input
data x. Thereby, the expectation value of an observable ⟨O⟩ can be
defined as a parameterized function fO(θ, x). The parameters θ are
optimized toward a desired outcome, by minimizing a task specific loss L
using a classical optimization technique e. g., gradient descent.

coherence times [59]. Their basic principle of operation is
the combination of a parameterized quantum circuit whose
parameters are adjusted by a classical optimizer toward the
desired outcome while evaluating the quantum circuit with
adjusted parameters at each optimization step [60]. First intro-
duced in the context of variational quantum eigensolvers [61],
they became a major research area in quantummachine learn-
ing [59].
A parameterized quantum circuit (PQC) is a series of uni-

tary quantum gatesU(θ, x), which is applied to the computa-
tional basis of n qubits |0⟩⊗n. These gates are parameterized
by variational parameters θ and classical input data x. Fig. 3
shows this general ansatz for a machine learning application.
The PQC’s quantum state |U(θ, x)⟩ = U(θ, x) |0⟩⊗n

is computed and measured for many repeated iterations to
gather sufficient statistics for the expectation value

⟨O⟩ = ⟨U(x,θ)| O |U(θ, x)⟩ (8)

for an observable O. ⟨U(x,θ)| denotes the conjugate trans-
pose of |U(θ, x)⟩. The measured expectation value of the
quantum computation can be interpreted as the computation
of a parameterized function fO(θ, x) depending on the ob-
servable, circuit parameters, and input.
The parameters θ are tuned with an appropriate method to

fit a target function. E.g., in the domain of supervisedmachine
learning, a loss function L can be minimized by performing
gradient descent. Several analytic and numeric methods en-
able calculating gradients of quantum circuits with respect to
their parameters, such as the finite difference methid [62], the
parameter shift rule [63] and adjoint differentiation [64].
Various encoding methods for quantum machine learning

tasks have been suggested [37], but recent results on the
expressiveness of quantum circuits emphasize the advantages
of repeated encodings, also referred to as data re-upload [65],
[66]. Such an ansatz enables the circuit to compute functions
of the form

f (θ, x) =
∑
ω∈Ω

cω(θ)eiωx , (9)

which is a partial Fourier series with frequency spectrum
Ω depending on the data encoding and coefficients cω(θ)
determined by trained variational parameters θ and the en-
tanglement gates [66].
PQCs with data re-upload have L layers, which consist of

data encoding unitaries Uin(x l) followed by parameterized
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FIGURE 4. Data re-upload in parameterized quantum circuits: After an
initial parameterized unitary V (θ0), L layers of data encoding unitaries
Uin(x l ) and parameterized unitaries V (θl ) are applied to the n qubit
quantum register.

unitaries V (θl) in each layer l. As introduced in [66], the
circuit starts with parameterized unitaries V (θ0) applied on
the n-qubit register |0⟩⊗n followed by a sequential implemen-
tation of the layers. Fig. 4 depicts the circuit layout for such
an ansatz.

We consider two different re-upload strategies resulting in
two different implementations ofUin(x l). In the first case, we
follow [41] by rescaling each continuous classical feature si of
the state s with trainable parameters ξli for each layer l using
the function xli = arctan(ξlisi) ∈ [−π, π]. The index sets
of the trainable input parameters are given by i ∈ {1, . . . , ns}
and l ∈ {1, . . . ,L} resulting in Lns parameters. In the follow-
ing, x denotes the set of all encoded and rescaled input data
and x l a subset of all encoded, and rescaled input data for
layer l. In this encoding style, each state feature si is encoded
on one qubit:

s 7→ Uin,1(x l(s)) =
n⊗

q=1

U (q)
in,1(xlq), (10)

where U (q)
in,1 is one of the Pauli rotations Rx ,Ry,Rz with ro-

tation angle xlq depending on state feature sq acting on qubit
q. For this type of encoding the number of qubits n has to be
equal to the number of input features ns.
In the second case, we encode, in line with [65], three

features of the rescaled state s in a universal, single qubit
gate U (q)

in,3 composed of three parameterized Pauli rotation
gates. Any combination of rotation gates capable of repre-
senting a general single qubit rotation, e. g. RxRyRx , suffices
for U (q)

in,3. The state features si are encoded as the rotation
angles. Therefore, the rescaling is done by using different
trainable variables ξqli for each qubit q ∈ {1, . . . , n}, which
formally can be written as: xqli = arctan(ξqlisi) ∈ [−π, π].
This encoding uses nLns trainable input parameters. Similar
to the first encoding, all trainable parameters used for layer l
are denoted by x l . A state s is encoded as:

s 7→ Uin,3(x l(s)) =
n⊗

q=1

U (q)
in,3(x

q
l1, x

q
l2, x

q
l3). (11)

For a state space with more than three features, Uin,3 is re-
peated until all features are encoded. Each Uin,3 then encodes
a subset of three features, potentially padding the state space
with features set to zero to make its dimensionality divisible
by three [65]. We perform experiments with both encoding
styles, Uin,1(x) and Uin,3(x), and unify the notation by refer-
ring to both with Uin(x).

The parameterized part of the PQC, V (θ), consists of two
parts. One part includes universal, single qubit gates:

Upar(θl) =

n⊗
q=1

U (q)
par (θ

q
l1, θ

q
l2, θ

q
l3), (12)

which can be implemented by any general, parameterized
rotationwith three Pauli-rotation gates contributing 3nL train-
able circuit parameters. The second part contains fixed en-
tangling gates Uent to create entanglement by acting on all n
qubits. We choose controlled Z gates on all neighboring pairs
of qubits and between the last and the first qubit.
Combining all segments, the PQC ansatz with data re-

upload is constructed by applying the parameterized part
V (θ0) to the initial register, followed by a layer of data en-
coding Uin(x l) and another parameterized part V (θl), which
are repeated L times. The entire circuit is given by:

U(θ, x) =
L∏
l=1

(
UentUpar(θl)Uin(x l)

)
UentUpar(θ0). (13)

This operator is applied to the initial state |0⟩⊗n leading to
the final state |U(θ, x)⟩, and the expectation value of an
observable O:

fO(θ, s) := ⟨O⟩θ,s =
〈
U
(
x(s),θ

)∣∣ O ∣∣U(
θ, x(s)

)〉
. (14)

As observables, we choose Pauli-Z gates σ(1)
z ⊗ . . .⊗σ

(n)
z ,

each acting on another qubit to obtain n different output
values. The output values can either be directly interpreted as
values for Q(s, a) in the reinforcement learning scenario or
combined, scaled, or further post-processed by any classical
means including additional classical neural network layers.
Let aj be one action of the action space A = {a0, . . . ana}

with na ≤ ns. If na < ns, the PQC output values can either be
combined, e. g., by multiplying some of them [41], to reduce
the number of output values to the number of possible actions
na, or the first na qubits are measured. Four our comparative
experiments with the Cartpole-v0 environment we use
the former strategy, for the dynamic robot navigation envi-
ronment the latter.
In our learning scenario, the Q-values range exceeds the

interval [−1, 1] and thus needs additional post-processing.
The authors of [41] suggest rescaling each output value with
an additional trainable parameter ωj:

Q(s, aj) = ⟨σ(j)
z ⟩θ,s · wj, (15)

which adds na trainable output variables to the model.

IV. METHOD
A. ENVIRONMENTS
In our experiments, we use four environments based on a
simulated Turtlebot 2 robot1. We chose this robotic system
as it enables relatively simple yet realistic navigation tasks
while being a readily available and extensible system we can
build upon in future work. The robot is controlled via two

1https://www.turtlebot.com/turtlebot2/
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(a) 3×3 Environment (b) 4×4 Environment (c) 5×5 Environment

FIGURE 5. The three simulated static navigation environments for the Turtlebot 2 robot. In each, the robot has to navigate from its starting position in the
upper left corner to the position marked with a green circle in the lower right while avoiding collisions with the enclosing walls and any obstacles. With
the configured control scheme, this takes about 20 steps in the 3×3 environment (left), 30 in the 4×4 (center), and 45 steps in the 5×5
environment (right) for a (near) optimal trajectory. Possible paths the robot can take to solve each environment are marked with a red dotted line.

FIGURE 6. Dynamic environment in which the robot is equipped with a
front facing lidar, depicted with orange rays. The robot starts in the center
of the environment, the goal position is sampled at random from either of
the four corners at the start. While navigating to the goal, the robot has to
avoid several static and moving obstacles. The trajectories of the moving
obstacles is indicated by green arrows. Solving the environment takes
between 60 and 70 individual steps, depending on the sampled goal,
position of dynamic obstacles and path the robot takes.

independent motors by setting target velocities for its two
wheels.

The first three environments are static navigation tasks
depicted in Fig 5. The 3×3 environment shown on the left
is the smallest, the 4×4 environment (center) is of medium
size, and the 5×5 environment (right) is the largest. In each
environment, the robot starts at a fixed position in the upper
left corner and has to navigate to a fixed goal position marked
with a green sphere while avoiding collisions with the outer
walls and the obstacles within the environment. The robot has
a state space with three components for these tasks. The first
two are its position in the plain in sx and sy coordinates, and
the third is its orientation sφ around the z-axis in radians. We
use these environments to understand the scaling behavior of
parameterized quantum circuits in the learning task, assess
their behavior and performance for trajectories of increasing
length and complexity and evaluate the effect of an increasing
exploration demand.

We furthermore created a considerably more demand-

ing environment to validate the robustness of the presented
method with a higher dimensional state space and dynamic
components in the learning task. In this environment, shown
in Fig. 6, the robot is equipped with a simple, front-facing
lidar that covers a range of 180◦ in the plane. The robot’s state
space contains ten distance measures in 20◦ intervals as well
as the current distance and orientation to the goal. The robot
starts in the center of the environment and has to navigate to
a goal position, which is sampled at random at the beginning
of each episode to be in either of the four corners.

We created all environments with the pybullet [67] real-
time physics engine and set a control frequency of 100Hz for
collision detection and calculating forward dynamics.

The robot has three actions available (forward, turn left,
turn right) to move in the environment. To move forward, the
same target velocity is applied to both wheels, whereas for
turning left and right, equal velocities but with opposing di-
rections are set. Turning left or right causes a change in orien-
tation between 40◦ and 50◦ depending on the current forward
and angular velocity of the robot. Similarly, the robot moves
between 0.15 and 0.2 units in the direction of its current
orientation, where one unit corresponds to the length of one
square on the environment floor. An action is chosen every 50
simulation steps, corresponding to an execution time of 0.5
seconds. With this control scheme, the robot needs about 20
consecutive actions to reach the goal in the 3×3 environment
on a near-optimal trajectory, 30 steps in the 4×4 environment,
and 45 steps in the large 5×5 environment. Possible paths the
robot can take to solve the static environments are marked
with red dotted lines in Fig. 5. In the dynamic environment,
where the robot is equipped with a lidar, a typical trajectory
leading to the goal takes about 60 to 70 steps, depending on
the current goal, position of dynamic objects and path taken
by the robot.

We use the same simple yet informative reward function
to train the robot in all environments. The agent receives a
positive reward for decreasing the distance to the goal as
well as for reaching it, whereas increasing or maintaining
the distance as well as collisions are penalized. The reward
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FIGURE 7. Circuit layout for layer l of our PQC ansatz used for the static
environments. The encoding unitary Uin on each qubit q is given by U (q)

in,1,
resp. U (q)

in,3. The encoding is followed by a general rotation gate Upar with
three variational parameters θ

q
l0, θ

q
l1, θ

q
l2 for each qubit and a full

entanglement among all qubits with three controlled-Z gates. We omit
the qubit index on all gates for readability. For the dynamic environment
we use the same ansatz extended to 12 qubits.

FIGURE 8. The two input encoding strategies used for training a
parameterized circuit as action-value function. For the PQC-1 strategy
shown on the left, each feature of the state s = (sx , sy , sφ) is encoded on
an individual qubit in each layer using a single Rx gate. The PQC-3
encoding scheme uses three consecutive parameterized rotation gates
Rx Ry Rx to encode the entire state s on each qubit and layer as depicted
on the right. For both strategies, before encoding, each feature of the
state is scaled by a trainable parameter λq

li individual to each encoding
gate, and an activation function g : R → R is applied. Through all our
experiments, we use arctangent as activation functions.

function is given by:

r(st , st+1) =


10.0 if st+1 is within the goal area
0.1 if dgoal(st+1) < dgoal(st)
−1.0 for any collision
−0.2 else

(16)

where dgoal : S → R is the euclidean distance of the robot to
the goal area. The penalties in the reward function ensure that
shorter trajectories are preferred by the agent. We consider
the static environments solved when a total reward of 10.5
(3×3), 11.0 (4×4), and 10.0 (5×5) is reached. Higher rewards
are possible, as the two larger environments have more than
one possible path to the goal and we furthermore allow some
tolerance for the length of the trajectory and the exact route.
Therefore, these thresholds are a lower bound based on sev-
eral manually determined valid trajectories. For the dynamic
environment we do not set a threshold and observe the average
evaluation reward over the entire training time.

In all environments, an episode ends when the robot
reaches the goal, collides with an object, or when a maximum
of 200 steps were executed during training.

B. LEARNING
We trained the simulated robot using three different
paradigms: A baseline with a classical neural network as
approximator for the action-value function and two different

parameterized quantum circuits, distinguished by their encod-
ing strategy for the classical input data.
For the classical baseline agent, we employ a three-layer,

fully connected neural network with rectified linear unit acti-
vation on all but the final layer, which has a linear activation.
In the static environments, the network takes the three com-
ponents of the robot’s state s = (sx , sy, sφ) as input, followed
by two layers with u1 and u2 number of hidden units and
three outputs corresponding to Q(s, ai), i ∈ {1, 2, 3}. For
the dynamic environment, we use the same neural network
architecture, albeit with a 12 dimensional input for the ten
lidar distance measurements as well as the distance and ori-
entation to the goal. The number of trainable parameters |θNN |
including weights and biases for the classical neural network
is therefore given by:

|θNN | = |s|u1 + u1︸ ︷︷ ︸
first layer

+

second layer︷ ︸︸ ︷
u1u2 + u2 +3u2 + 3︸ ︷︷ ︸

third layer

. (17)

Here |s| is the dimensionality of the state space and ui the units
in the i-th layer.
In both quantum cases, we build our circuit on three qubits

for the static environments, which aligns well with the dimen-
sionality of the state space and the number of actions avail-
able to the agent. Both circuits follow the general approach
depicted in Fig. 4 and are only different in their data encoding
structure Uin and the number of layers L. The circuit layout
for a single layer l > 0 is illustrated in Fig. 7, whereas the
encoding strategies are shown in Fig. 8.
Our first data re-upload PQCmodel uses the encodingU (q)

in,1
on each qubit with the rotation gate Rx to encode one state
feature on each qubit (PQC-1). For the second model, we use
U (q)

in,3 for each qubit with rotation gates RxRyRx to encode all
three state features on each qubit (PQC-3). As introduced in
Sec. III, we scale each feature with a trainable parameter that
is individual for each encoding gate and furthermore apply an
activation function for which we choose the arctangent in all
our experiments. The universal rotation U (q)

par on each qubit is
composed of three parameterized Pauli rotation gates RxRyRz
with trainable parameters.

For the large, dynamic environment with a 12 dimensional
state space, we use circuits with 12 qubits. The PQC-1 as
described above directly translate to this setting, whereas for
the PQC-3 encoding we distribute all 12 features of the state
space across four layers, each encoding three of the features,
as outlined in Sec. III.

The number of trainable parameters for each quantum cir-
cuit |θPQC | is the sum of variational parameters in the initial
parameterized and the following L layers, the input scaling
and the output scaling parameters, in total:

|θPQC | = 3Q(L + 1)︸ ︷︷ ︸
variational

+

input︷ ︸︸ ︷
QnencL+ 3︸︷︷︸

output

. (18)

Here nenc = 1 for the PQC-1 and nenc = 3 for the PQC-3
encoding, Q is the number of qubits in the circuit.
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TABLE 1. The configurations used for the classical baseline in all three
static environments with the number of units u1 and u2 for the first two
layers of the neural network and the number of trainable parameters
|θNN | for each configuration.

Hidden units Parameters

u1 u2 static |θNN |

8 8 131
16 8 227
16 16 387
32 16 707
32 32 1,238
64 32 2,435
64 64 4,611
128 64 8,963
128 128 17,411
258 128 34,307

TABLE 2. The configurations used for both quantum encoding strategies
while training the three static environments. The number of layers L as
well as the number of trainable parameters |θPQC |, which include the
variational, input, and output scaling parameters, are outlined.

PQC-1 PQC-3 Parameters

L L static |θPQC |

12 8 156
15 10 192
18 12 228
21 14 264
24 16 300
27 18 336
30 20 372
33 22 408
36 24 444
39 26 480

Based on these three architectures, two quantum and one
classical, we performed experiments with different sizes of
each architecture for the static environment. For the classical
neural network, we evaluated a total of ten configurations for
the number of units u1 and u2 in the first and second hidden
layers. The configurations and their number of trainable pa-
rameters |θNN | are outlined in Table 1.

Likewise, we included ten configurations for each quantum
encoding strategy with an increasing number of layers L. As
the different types of encoding lead to a different amount of
trainable parameters for each layer, we arranged the number
of layers to have an equal number of parameters between
both. The number of layers L for both strategies, as well as the
number of trainable parameters, including variational, input,
and output scaling parameters are summarized in Table 2.

With regard to the parameter scaling, we emphasize that
the number of trainable parameters roughly doubles with each
increase of the configuration size for the classical baseline,
whereas the scaling for the quantum circuits is only linear.
Thus, the largest neural network we employed has about
two orders of magnitude (34,307) more parameters than the
largest quantum circuits (480). With the dynamic environ-
ment, we only perform experiments with a single configu-
ration for each architecture, due to the considerable com-

putational effort involved in simulating very large quantum
circuits. The neural network used as baseline has 256 and
128 hidden units (36,611 trainable parameters), the PQC-1
circuit has 24 layers, and the PQC-3 circuit 16 layers (bot
1,191 trainable parameters).
We set a learning rate for the stochastic gradient descent of

10−3 for the classical baseline as well as for the variational
parameters in both quantum circuit architectures. The input
and output scaling parameters were trained with a learning
rate of 10−2 for both PQC-1 and PQC-3 as encoding.
For the hyper-parameters specific to the DDQN algorithm,

we use the same values for all experiments. The replay buffer
was set to a capacity of 20,000 experience samples and is
initially filled with 5,000 samples from executing a fully
random policy in the environment, before each training starts.
The agent is trained after each step it executes in the environ-
ment with a mini-batch of 64 samples from the replay buffer.
Exploration is handled with an ϵ-greedy policy as introduced
in Sec. III, starting at ϵ = 1.0 and setting ϵ← 0.99ϵ every 250
training steps. Total training time is limited to 50,000 steps
in all environments, except for the dynamic environment, in
which we train 100,000 steps. We evaluate the current per-
formance of the learned policy after every 100 training steps
by performing 10 consecutive runs within the environment.
Once the average total reward over those 10 runs surpasses the
solution criterion for any of the static environment outlined
above, the training is stopped early, whereas we do not stop
the training early in the dynamic environment.
To gather sufficient data on the robustness and repro-

ducibility of the learning procedure, we repeat the training
for each combination of static environment, architecture, and
configuration 20 times, each time with a different random
seed. We do not set the random seeds to specific values but
have them provided by the operating system’s randomness
source instead. We consider a configuration successful if at
least 15 of 20 training runs solve the environment. In the
dynamic environment, we repeat each training 10 times and
record the evaluation performance to evaluate the robustness
of the presented methods in a considerably larger and more
challenging environment and large quantum circuits.
All hyper-parameters were determined empirically before

the actual experiments. Our main goal was to find a set of
parameters that would enable reliable and robust training un-
der mostly identical premises for all three architectures, their
respective configurations, and for all three environments, as
our main interest is not in absolute performance but in com-
parison of architectures and scaling behavior. An overview of
all hyper-parameters can be found in Table 6 in App. B.

C. HARDWARE, SOFTWARE AND COMPUTATIONAL
RESOURCES
All experiments were conducted on a workstation equipped
with an AMD Ryzen Threadripper Pro 3975WX 32 core/64
thread CPU, 128 GB of RAM, and an NVIDIA RTX A6000
GPU. On the software side, we used TensorFlow [68] as
framework for all general and classical machine learning
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tasks, TensorFlow Quantum [69] for quantum machine learn-
ing specific tasks, as well as TensorFlow Agents [70] for
all components related to Deep Reinforcement Learning and
a stable DDQN implementation. TensorFlow Quantum inte-
grates the Cirq [71] quantum computing framework for build-
ing and running quantum circuits, as well as the Qsim [72]
quantum circuit simulator.

All quantum circuit simulations in Qsim were executed un-
der idealized noise-free conditions. We compute the expected
value of observables directly from the system’s state vector. If
experiments were to be conducted in a shot-based simulation,
a large enough number of circuit receptions would need to
be chosen to estimate the expected values of observables
with sufficient accuracy. Similarly, if experiments were to be
reproduced on quantum hardware or with simulated hardware
noise, appropriate measures for error mitigation would have
to be taken into account, which is outside of the scope of this
work.

All simulated robotic environments were built using the
PyBullet [67] python bindings to the Bullet real-time physics
SDK. For the baseline experiments described in App. A, we
furthermore used the OpenAI Gym [19] suite.

We released our robotic environments as well as the en-
tire experimental setup under an Open Source license for
interested researchers to reproduce, verify, or build upon our
work. Both can be found together with installation and usage
instructions under the following addresses:

• Environments: https://github.com/dfki-ric-quantum/qdrl-
turtlebot-env

• Experiments: https://github.com/dfki-ric-quantum/qdrl-
turtlebot-eval

Concerning the computational resources and wall-clock
time needed to conduct our experiments, we observe the
following: For the classical baseline, training a single neural
network within the range of configurations and across all en-
vironments requires 1.5 GB of RAM and 600 MB of VRAM,
assuming TensorFlow uses GPU acceleration. Training the
network for 1.000 steps takes on average 25 seconds wall-
clock time with our hardware setup, which is relatively stable
overall environments and network sizes.

For the three static environments, the number of qubits of a
quantum circuit, which is the same in both our encodings and
across all configurations, primarily determines the memory
requirements for its simulation. Simulating the training of
each quantum circuit requires about 2.2 GB of system mem-
ory and 500 MB of VRAM. The quantum circuit simulator
imposes a substantial computational overhead, resulting in
much longer execution in terms of wall-clock time and a
nearly linear growth with respect to the number of layers.
The average wall-clock time for 1.000 training steps in the
5×5 environment with the PQC-1 and PQC-3 encoding are
summarized in Table 3. Learning the dynamic environment
with either encoding on 12 qubits for the number of layers
we use, requires considerably more computational resources.
A single run requires about 18 GB of system memory and 1.2
GB of VRAM. Training for 1.000 steps takes on average one

TABLE 3. Average wall-clock time for 1.000 training steps with the PQC-1
and PQC-3encoding in the 5×5 environment. The time necessary to train
the model grows nearly linear in the number of layers.

PQC-1 PQC-3

L Wall-clock time (s) L Wall-clock time (s)

12 393 8 361
15 467 10 442
18 544 12 520
21 629 14 605
24 722 16 661
27 815 18 743
30 878 20 811
33 967 22 892
36 1033 24 954
39 1088 26 994

hour, hence the training the full 100.000 steps is finished in
about four days.

V. RESULTS
A. OPENAI GYM ENVIRONMENTS
As we work with custom environments, we first compared
their complexity to established OpenAI Gym environments,
namely FrozenLake and Cartpole-v1. The results for
both environments with classical neural networks and PQCs
are described in Appendix A. With these comparative experi-
ments, we can demonstrate that our navigation environments
are indeed substantially more difficult to solve for the DDQN
algorithm.

B. STATIC ENVIRONMENTS
Performing experiments with the 10 classical neural network
configurations and 10 configurations for both PQC input en-
coding variants provides insight into the scaling behavior and
robustness across multiple training runs for each architecture
in the given robotic reinforcement learning task. The com-
plete statistics for all experiments in the static environments
are outlined in Tables 7 to 9 in Appendix C and visualized in
Fig. 9.
The first noteworthy result is that all three architectures,

the classical neural network as well as both types of quantum
circuits are capable of learning an optimal action-value func-
tion in all three environments in 20 out of 20 training runs
with a sufficiently large configuration (see column Solved in
the Tables 7 to 9). More precisely, for the 3 × 3 and 4 × 4
environments, all configurations of the architectures solve the
environments, whereas in the 5× 5, the three smallest neural
networks, the two smallest PQC-1, and the smallest PQC-
3 configurations were unable to solve the environment in at
least 15 out of 20 runs. Also, we find that an increase of the
model size in terms of the number of trainable parameters
leads to a decreased median and mean in required training
steps. This trend converges after the model size reaches a
sufficient size. In our case, the two biggest configurations
of all three architectures are similar in terms of median and
mean of training steps. In addition, in most cases, the range
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FIGURE 9. Statistics on training time for all three static environments, architectures, and configurations. The results per environment are shown from the
top to bottom row, whereas the classical baseline neural network architecture (NN), as well as both types of quantum circuits (PQC-1 and PQC-3) are
arranged from left to right. For each combination of environment and architecture all related configurations, that is number of units (u1, u2) for the
classical baseline and number of layers L for both quantum encoding strategies, are reported. Each box shows the median training steps over 20 runs for
each configuration with different random seeds as well as the lower and upper quartile, range and flier points.

and standard deviation decreases as the model size increases,
resulting in our largest models being the best-performing and
most stable configurations.

In the following, we focus on the two best PQC-1 and PQC-
3 configurations and compare them with four different neural
network configurations. From our data, we select the classical
neural networks such that they have a similar number of pa-
rameters or one or two orders of magnitude more parameters
than the PQC configurations. Table 4 summarizes the mean
and standard deviation of the required training steps for these
configurations. From this, we observe the following general
trends with regard to the number of trainable parameters:

• With about the same order of magnitude of parameters,
the quantum circuits perform better and converge to an
optimal solution faster. This is especially true for the
PQC-3 architecture.

• With about one order of magnitude more parameters for
the classical neural network, its performance is about
equal compared to the parameterized quantum circuits.

• A further increase in the number of parameters up to two
orders of magnitude more for the neural network puts it
slightly ahead of both quantum circuit architectures in

all observed metrics.

Furthermore, we can compare the results of the two best
PQC-1 and PQC-3 configurations in Table 4. For all environ-
ments, the best PQC-3 architecture yields faster convergence
to an optimal policy compared to the best PQC-1 encoding
scheme.
This advantage is relatively stable across all three static

environments, suggesting that for the navigation setup con-
sidered in this work, a larger number of encoding gates is
beneficial. A larger variety of environments with regards
to complexity and type of task to learn would need to be
evaluated to make more definitive statements on this.
The evaluation performance for the best configuration for

each architecture in all three environments is shown in Fig. 10.
During training, we observed the agent’s performance with
the trained policy every 100 steps for 10 consecutive runs
and evaluated its mean reward. In all three environments, the
classical baseline converges to an optimal policy faster, albeit
with two orders of magnitude more trainable parameters.
In the 3 × 3 environment, the PQC-3 architecture reaches
a solution notably faster than the PQC-1 architecture. With
increasing environment complexity, both types of quantum
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FIGURE 11. Evaluation performance for the three tested configurations in the dynamic environment with regards to the evaluation rewards (left) and
number of solved evaluation runs (right). Both metrics are recorded every 100 training steps for 10 consecutive evaluation runs and 10 receptions of the
experiment with different random seeds. The outlines mark the 95% confidence interval. Negative rewards are scaled by a factor of 0.1 to improve
readability. For both metrics we find, that while there is learning progress for both quantum circuit architectures, the classical baseline provides better
and more robust results, albeit with about 30 times the number of trainable parameters.

circuits perform increasingly similarly, whereas the classical
neural network remains ahead of both. This finding empha-
sizes the trends discussed above.

C. DYNAMIC ENVIRONMENT
In the large, dynamic navigation environment, our main inter-
est is the robustness of the presented method in a substantially
more demanding task and employing considerably larger
quantum circuits. To this end, we trained a classical baseline
and two large quantum circuits with the two encoding strate-
gies for 100,000 iterations on the environment. We evaluated
the performance in 10 consecutive runs every 100 training
steps. Fig. 11 shows the training progress regarding the mean
evaluation reward and number of solved evaluation runs, with
averages taken over 10 repetitions of the experiment with
different random seeds.

The classical baseline neural network performs consider-
ably better in this task than both employed quantum circuits,
learns policies that achieve higher mean rewards, solves more
evaluation runs on average and is more robust in the dynamic

setting. Both quantum architectures perform about the same
concerning to both metrics. The fact that the difference be-
tween the classical model and quantum circuits regarding the
mean reward is larger than for the number of solved evaluation
runs is explained by the observation that the environment
allows for much larger negative rewards on failed runs than
positive rewards on the successful ones. Hence, the negative
rewards will dominate the result if several runs fail.

Table 5 summarizes the best results achieved by all three
architectures. The classical baseline reaches its best average
performance after 81,500 training steps, whereas both quan-
tum circuits require more than 94,000 steps. Additionally,
the mean evaluation reward of 10.27 for the classical neural
network is considerably larger than 5.50 and 3.87 for the
PQC-1 and PQC-3 architecture.

After this training duration, the robot can successfully
navigate to the goal on average in 8.5 out of 10 evaluation
runs over 10 repeated experiments. Solving 6.7 and 6.3 eval-
uation runs on average for the quantum architectures shows
noteworthy training progress for both, but with considerably
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TABLE 4. Mean number of training steps and standard deviation in all three environments for the two largest configurations for both quantum circuit
architectures in comparison to two classical baseline models with about the same order of magnitude of trainable parameters as well as two larger neural
networks. We find, that with about the same order of magnitude of parameters, the two quantum architectures converge to an optimal solution in fewer
training steps. With an order of magnitude more parameters, the classical neural network performs comparable or better and achieves better performance
compared to both quantum architectures with further increasing number of trainable parameters.

No. of training steps

Environment: 3 × 3 4 × 4 5 × 5

Arch. Config. |θ| Mean Std. Mean Std. Mean Std.

NN

(16;8) 227 21,075 5,050 35,910 7,672 49,515 1,684
(16;16) 387 16,405 3,129 24,565 13,736 46,570 5,237
(64;32) 2,435 10,635 2,290 15,055 4,315 32,135 8,049
(256;128) 34,307 7,495 1,359 11,480 3,899 22,220 4,122

PQC-1 36 444 9,150 3,746 17,705 4,678 29,260 6,614
39 480 10,060 2,905 16,880 7,288 25,110 5,309

PQC-3 24 444 6,850 3,146 14,665 6,068 25,757 7,334
26 480 9,515 3,347 15,875 5,164 23,635 7,535

TABLE 5. Statistics over the training in the dynamic navigation
environment. For all three configurations the number of training steps to
the best performing evaluation runs, the mean evaluation reward, the
mean number of solved evaluation runs as well as their respective
standard deviations are reported. Statistics are taken over 10 consecutive
evaluation runs executed every 100 steps and 10 repetitions of the
experiment with different random seeds.

Reward Solved

Arch. Config. Steps Mean Std. Mean Std.

NN (256;128) 81,500 10.27 1.37 8.50 0.92
PQC-1 24 94,200 5.50 3.12 6.70 1.79
PQC-3 16 94,500 3.87 3.53 6.30 1.27

worse performance. We furthermore observe larger standard
variations on both metrics for the quantum models compared
to the classical baseline, suggesting less robust and less reli-
able training results.

VI. DISCUSSION
In this work, we investigated the potential and scaling of
hybrid quantum deep reinforcement learning as a method
to learn autonomous robotic behaviors. We systematically
evaluated two different quantum circuit architectures in three
simulated static environments of increasing difficulty and
with increasing circuit sizes. These results were compared to
a classical neural network baseline. Additionally we tested
the robustness of the presented method in a considerably
more demanding learning task, using a dynamic navigation
environment.

Both quantum architectures as well as the classical baseline
yielded sufficient action-value functions for the simulated
robot in all three static environments. Not considering the
number of trainable parameters, the classical baseline models
outperformed the quantum circuits in terms of training speed
and stability. A noteworthy result, which is in line with pre-
vious findings from the quantum deep reinforcement learn-
ing research is that both best-performing quantum circuits
were capable of solving the environments within a similar

number of training steps as classical neural networks with
about one order of magnitudemore trainable parameters. This
observation is consistent across all three environments. The
best-performing quantum models have 444 and 480 trainable
parameters, the classical baseline was sufficient to solve the
3 × 3 and 4 × 4 with a similar amount of parameters, albeit
with substantially more training steps. At this model size,
the neural network was unable to fit an optimal action-value
function for the 5× 5 environment in most of the 20 training
runs within the 50, 000 training step threshold we set, whereas
both quantum architectures still succeeded with only 300
parameters.

Comparing both quantum circuit architectures, we find
that the PQC-3 embedding performs better than the PQC-1
embedding in all three environments, suggesting that in this
context, having more encoding gates for the same data is ben-
eficial, although the difference becomes less pronounced with
increasing environment difficulty. Moreover, our experiments
show that with increasing environment size, quantum circuits
with more layers are needed to solve the tasks consistently,
especially for the 5×5 environment. This finding is consistent
with the results from [66], as adding more layers increases
the expressiveness of the circuit, which makes it possible to
approximate more complex action-value functions.

Testing the same learning methods in a more demanding,
dynamic navigation environment, we find that both quantum
circuit architectures get outperformed by the classical neural
network regarding reward, solved evaluations, training dura-
tion and robustness. Given the limited scope of this experi-
mental setup, it remains open, if this result can be improved
by changes on the training procedure, circuit architecture, en-
coding strategies or by increasing the circuit size.We consider
these questions to be out of scope for this work, but plan to
address them in future.

Additionally, our results demonstrate that PQCs of this size
are trainable in a quantum circuit simulator for a practical
problem class, which does not necessarily follow from previ-
ous considerations on the expressiveness of PQCs [65], [66].
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Beyond these results, we can confirm, similar to e. g., [73],
that training PQCs is fairly unstable regarding changes in the
hyperparameters compared to classical neural networks.

Considering the best-performing PQCs architectures in this
work, we have to emphasize that this configuration is not to
be considered efficient or even viable for current quantum
hardware. The largest employed circuit using the PQC-3
architecture has almost 200 gates per qubit, not considering
additional gates that could be introduced by transpiling it to
a native gate set of any quantum hardware platform. Circuits
with long execution times and more gates are more prone to
noise on current quantum hardware. Hence, we would not
expect meaningful results without substantial error mitigation
efforts. Training the circuits directly on quantum hardware
was also not a realistic option, given the total number of
experiments we conducted and the limited availability and
access to quantum computing hardware. Consequently, we
limited our study to an idealized environment in a noise-free
quantum circuit simulator.

VII. OUTLOOK
Understanding the characteristics of PQCs is an ongoing
research topic. For PQCs to offer advantages over classical
solutions, there are still some open questions that have to
be addressed. Concerning expressiveness, the authors of [66]
showed that PQCs with the data-reupload technique can rep-
resent real-valued truncated Fourier series. While this could
be considered a weak restriction on the expressiveness, it re-
mains unclear if they are rich enough to approximate deep RL
algorithm outputs for more complex behaviors. In [74], the
authors leverage that PQCs represent truncated Fourier series
by showing that classical models can be obtained efficiently
from trained PQCs. They also report no advantage in the
performance nor trainability of PQCs over classical models
for the problems they consider. The trainability of PQCs is
analyzed in more detail by Bittel et al. [75], who rigorously
prove that classical training is NP-hard, and by the authors
of [76], who found many sub-optimal local minima in the
gradient landscape. Moreover, barren plateaus [77] are one
additional hurdle for trainability. These works and our results
indicate that PQCs mark the beginning of quantum machine
learning in general and quantum deep reinforcement learning
specifically. These methods have to be developed further
substantially to yield potential improvements over classical
learning techniques.

Our results provide additional insight into the scaling be-
havior and applicability of hybrid quantum deep reinforce-
ment learning based on PQCs, especially with regard to more
demanding problems than previously considered. Our exper-
imental setting is focused on three static environments and
two different quantum circuit architectures. Furthermore, we
studied the robustness of these methods in a more demanding,
dynamic navigation task, although with limited scope. Hence
more empirical research is needed to substantiate our findings
further, and produce more conclusive results.

The second area is the applicability of quantum machine

learning and quantum deep reinforcement learning in real-
world applications, especially in the field of robotics. While
we have demonstrated quantum deep reinforcement learn-
ing in a limited robotic scenario, actual advantages of the
presented method over classical deep reinforcement learning
have yet to be shown. While previous works demonstrated
a quantum advantage for a certain class of problems [42]
intractable for classical learning methods, it remains an open
question if this advantage can be translated to problems from
e. g., robotic domains.

Another crucial topic linked to real-world applications,
is the encoding scheme of classical data into the quantum
circuit. With the proposed methods, the required number of
qubits and the operations per qubit scale linearly in the best
case with the dimensionality of the state space. It will be
interesting to see how different encoding techniques like e. g.,
amplitude encoding [78] would impact the learning behavior.
Also, we limited our experiments to state spaces of small
dimensionality to account for the computational demands of
simulating quantum circuits on a classical computer. While
this imposed no detriments on our learning scenarios, having
high dimensional sensory data, e. g., high-resolution image
data, is common in more complex robotic tasks. How to
encode classical data with hundreds, thousands, or more di-
mensions efficiently onto quantum devices with their current
limitations is an open question. Investigating classical pre-
processing, compression, and dimensionality reduction tech-
niques in this context could potentially enable quantum deep
reinforcement learning for such scenarios. Tensor networks,
as indicated by Chen et al. [79], are one further promising
candidate for encoding more complex robotic data.

Additionally, the scope of our work is limited with regards
to actual quantum hardware and its properties. We performed
all our experiments with a quantum circuit simulator which,
enabled us to employ circuits with a depth beyond what
current hardware provides and also removed the necessity to
deal with the noise that typically comes with the execution
of algorithms on current quantum hardware. The execution
of even simpler machine learning tasks on actual quantum
hardware would be further limited by their sparse availability,
complexity, and high usage cost. To circumvent these issues,
research into techniques to combine quantum simulators and
quantum hardware in an efficient training setup could be a
practical route forward.

We understand our work as a contribution toward
application-focused empirical research on quantum algo-
rithms in a robotic context. We see this as a viable route to
accelerate the development and understanding of quantum
algorithms, quantum machine learning, and the application
of quantum techniques in deep reinforcement learning. Look-
ing forward, we believe that quantum algorithms, together
with future hardware developments in the field of quantum
computing, will contribute to the advancement of autonomous
robotics.
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FIGURE 12. Evaluation results of the FrozenLake and CartPole environment. Each plot shows the mean evaluation performance over 20 consecutive runs
with the trained policy. The evaluation was performed every 25, resp. 100, training steps and training stopped, once the environment was solved with the
policy. Plots are padded with additional evaluation runs to have equal lengths for better comparability. The outline of each plot is the 95% confidence
interval.
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APPENDIX A
COMPARISON TO BASELINE ENVIRONMENTS
We use our learning setup to solve the benchmark OpenAI
gym [19] environments FrozenLake and CartPole-v1.
This way, we underline our argument that the navigation tasks
are indeed more complex and difficult to learn.

To learn the FrozenLake environment, we use binary
encoding for the state features, adapt the circuit to four qubits,
and adapt the parameters for epsilon decay and max steps per
episode. All other learning hyper-parameters are unchanged.
We also use the arctangent activation function and trainable
parameters on the input features as well as four trainable
output parameters. A full list of the hyper-parameters is given
in Table 6 in App. B. The left plot of Fig. 12 shows that 20
runs with a classical neuronal networks with (128, 64) hidden
units learn an optimal policy in fewer than 1,250 training
steps with a mean of 510 steps, a median of 513 steps, and
a standard deviation of 204 steps. The classical architecture
takes roughly 20 times as long to learn an optimal policy in
our simplest navigation task. Similar results hold for PQCs
with one input encoding and 15 layers (PQC-1-15). Here,
the training finishes on average in 593 steps, with a median
of 613 steps and a standard deviation of 205 steps. This
result is in alignment (slightly better) with [41]. We want to
emphasize that we did not fine-tune the hyper-parameters for
the FrozenLake environment but were still able to learn the
task much faster than for our 3× 3 navigation environment.

We obtained similar results for the Cartpole-v1 en-
vironment as depicted in the right plot of Fig. 12. For this
environment, we adapted the PQC to 4 qubits and used the
measurements σ(1)

z σ
(2)
z and σ(3)

z σ
(4)
z for the post-processing.

We adapted the epsilon decay parameters and other hyper-
parameters slightly, as shown in Table 6. Averaged over
20 runs, the classical network with (256, 128) hidden units
is able to solve CartPole-v1 with an average of 3,645
training steps (median: 2,350, standard deviation: 2,600) with
slightly adapted hyper-parameters. That is approximately
twice as fast as the same network architecture learns the
3 × 3 navigation environment. For the PQCs, the config-
uration with one input encoding and five layers needed
fewer than 10,000 training steps to learn the optimal pol-
icy, which is notably faster than reported in the literature
(e. g., [41] for Cartpole-v0). The PQC-1-5 ansatz solves
CartPole-v0 in a similar time (mean: 4065, median: 4050,
standard deviation: 1933) and thus solves it faster than larger
PQC-1 configurations solve the 3×3 navigation environment.
Hence, we conclude that our navigation tasks are

considerably more challenging than FrozenLake and
Cartpole-v1 for the (hybrid quantum) DDQN algorithm.

APPENDIX B
HYPER-PARAMETERS FOR EXPERIMENTS
The hyper-parameters used in all environments and learning
setups are outlined in Table 6.

APPENDIX C
RESULT DETAILS
Detailed statistics over all conducted experiments are re-
ported in Tables 7, 8 and 9.
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TABLE 6. Summary of all hyper-parameters used in the training of the four simulated robotic environments and the two OpenAI gym environments used
for reference and comparison in App. A.

Hyper-Parameter 3×3 4×4 5×5 dynamic FrozenLake Cartpole-v1

Max. training steps 50,000 50,000 50,000 100,000 2,000 10,000
Max. steps per episode 200 200 200 200 80 500

Initial random steps 5,000 5,000 5,000 5,000 5,000 5,000

Eval. runs 10 10 10 10 10 100
Eval. every t steps 100 100 100 100 25 100

Eval. threshold 10.5 11 10 -/- 0.95 475

ϵ starting value 1.0 1.0 1.0 1.0 1.0 1.0
ϵ minimum 0.1 0.1 0.1 0.1 0.1 0.05

ϵ decay 0.99 0.99 0.99 0.99 0.9 0.95
Decay every t steps 250 250 250 500 50 100

Replay buffer size 20,000 20,000 20,000 20,000 20,000 20,000
Batch size 64 64 64 64 64 64

Target update 100 100 100 100 100 10
γ 0.99 0.99 0.99 0.99 0.99 0.99

Input learning rate 0.01 0.01 0.01 0.01 0.01 0.001
Circuit learning rate 0.001 0.001 0.001 0.001 0.001 0.005
Output learning rate 0.01 0.01 0.01 0.01 0.01 0.1

Classical learning rate 0.001 0.001 0.001 0.001 0.001 0.01

18 VOLUME 11, 2023



TABLE 7. Statistics on the experiments executed in the small 3×3 environment for all three architectures and their configurations. The best statistical
values (mean, median, minimum, maximum, and standard deviation) in terms of number of training steps for each architecture are marked bold, the best
overall configuration for each architecture is marked with a green background.

NN No. of training steps

Units |θNN | Solved Mean Median Min Max Std.

(8;8) 131 17/20 29,390 26,800 18,200 50,000 9,558
(16;8) 227 20/20 21,075 20,500 13,700 33,200 4,921
(16;16) 387 20/20 16,405 16,800 10,500 21,900 3,049
(32;16) 707 20/20 14,620 14,650 8,900 20,000 2,853
(32;32) 1,283 20/20 12,625 12,400 8,700 17,000 2,143
(64;32) 2,435 20/20 10,635 10,250 7,000 14,100 2,231
(64;64) 4,611 19/20 12,790 10,100 6,700 50,000 10,200
(128;64) 8,963 20/20 11,535 9,700 6,800 47,600 8,414
(128;128) 17,411 20/20 8,885 8,650 5,800 11,900 1,746
(256;128) 34,307 20/20 7,495 7,550 5,200 9,800 1,324

PQC-1 No. of training steps

Layers |θPQC | Solved Mean Median Min Max Std.

12 156 20/20 24,670 25,200 13,400 31,800 4,034
15 192 20/20 18,620 18,800 9,000 24,000 3,402
18 228 20/20 19,345 19,250 14,900 24,000 2,308
21 264 20/20 15,905 16,900 5,700 22,600 4,600
24 300 20/20 15,350 14,750 10,000 20,700 3,136
27 336 20/20 11,365 11,800 4,200 17,000 3,692
30 372 20/20 10,245 11,100 4,100 15,800 3,383
33 408 20/20 10,220 10,450 1,700 20,200 4,427
36 444 20/20 9,150 9,350 2,000 16,500 3,746
39 480 20/20 10,060 10,050 4,800 13,900 2,905

PQC-3 No. of training steps

Layers |θPQC | Solved Mean Median Min Max Std.

8 156 20/20 20,270 20,000 14,300 26,300 3,608
10 192 20/20 14,930 16,750 3,900 22,900 5,231
12 228 20/20 16,530 15,850 7,100 25,000 4,155
14 264 20/20 10,995 11,750 2,600 22,100 5,188
16 300 20/20 9,300 8,750 1,200 20,600 4,175
18 336 20/20 10,385 9,450 2,600 19,300 4,553
20 372 20/20 10,390 10,400 1,800 18,000 4,164
22 408 20/20 9,490 8,400 2,300 20,300 5,181
24 444 20/20 6,850 6,650 1,700 12,800 3,146
26 480 20/20 9,515 8,800 4,400 15,300 3,347
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TABLE 8. Statistics on the experiments executed in the medium sized 4×4 environment for all three architectures and their configurations. The best
statistical values (mean, median, minimum, maximum, and standard deviation) in terms of number of training steps for each architecture are marked
bold, the best overall configuration for each architecture is marked with a green background.

NN No. of training steps

Units |θNN | Solved Mean Median Min Max Std.

(8;8) 131 16/20 37,315 37,050 19,600 50,000 9,329
(16;8) 227 17/20 35,910 34,650 23,700 50,000 7,477
(16;16) 387 17/20 24,565 23,350 900 50,000 13,387
(32;16) 707 17/20 28,060 25,100 7,200 50,000 11,359
(32;32) 1,283 16/20 24,315 19,800 7,200 50,000 13,548
(64;32) 2,435 20/20 15,055 16,550 6,300 28,300 5,543
(64;64) 4,611 20/20 14,740 15,050 6,900 22,200 4,205
(128;64) 8,963 19/20 18,370 15,000 5,400 50,000 11,092
(128;128) 17,411 20/20 12,270 11,900 5,700 20,000 3,930
(256;128) 34,307 20/20 11,480 12,000 4,400 18,900 3,800

PQC-1 No. of training steps

Layers |θPQC | Solved Mean Median Min Max Std.

12 156 18/20 41,395 42,400 28,700 50,000 5,260
15 192 20/20 29,905 31,700 9,300 46,100 9,254
18 228 20/20 27,055 30,950 2,400 39,500 11,105
21 264 20/20 24,815 26,750 4,000 36,000 8,303
24 300 20/20 27,795 27,250 22,200 36,000 3,913
27 336 20/20 22,355 24,400 11,800 31,700 6,131
30 372 20/20 20,560 21,600 4,800 30,700 6,542
33 408 20/20 20,135 20,750 4,400 29,900 5,640
36 444 20/20 17,705 18,800 7,000 26,000 4,678
39 480 20/20 16,880 18,600 3,400 29,300 7,288

PQC-3 No. of training steps

Layers |θPQC | Solved Mean Median Min Max Std.

8 156 20/20 30,155 32,900 8,100 41,300 9,654
10 192 20/20 25,990 28,700 8,800 39,900 8,469
12 228 20/20 21,525 23,800 3,500 31,900 8,074
14 264 20/20 19,695 20,750 2,700 29,900 7,103
16 300 20/20 20,170 21,950 4,300 28,300 5,984
18 336 20/20 19,015 20,950 4,400 26,700 5,891
20 372 20/20 18,795 19,700 6,000 24,500 4,346
22 408 20/20 17,065 17,150 5,500 26,600 5,652
24 444 20/20 14,665 15,350 2,000 25,000 6,068
26 480 20/20 15,875 15,050 7,200 25,200 5,164
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TABLE 9. Statistics on the experiments executed in the large 5×5 environment for all three architectures and their configurations. The best statistical
values (mean, median, minimum, maximum, and standard deviation) in terms of number of training steps for each architecture are marked bold, the best
overall configuration for each architecture is marked with a green background. Configurations for which fewer than 15 runs succeeded are considered
insufficient and are marked with a red background.

NN No. of training steps

Units |θNN | Solved Mean Median Min Max Std.

(8;8) 131 1/20 49,825 50,000 46,500 50,000 762
(16;8) 227 4/20 49,515 50,000 42,500 50,000 1,641
(16;16) 387 8/20 46,570 50,000 32,400 50,000 5,104
(32;16) 707 15/20 42,040 41,350 29,700 50,000 6,291
(32;32) 1,283 17/20 40,055 40,900 23,300 50,000 8,465
(64;32) 2,435 18/20 32,135 30,850 22,000 50,000 7,845
(64;64) 4,611 20/20 29,475 28,450 23,300 40,400 4,218
(128;64) 8,963 20/20 25,540 24,950 19,500 31,600 3,132
(128;128) 17,411 20/20 22,870 22,100 15,900 35,900 4,301
(256;128) 34,307 20/20 22,220 21,100 17,700 33,500 4,017

PQC-1 No. of training steps

Layers |θPQC | Solved Mean Median Min Max Std.

12 156 4/20 48,005 50,000 31,400 50,000 4,644
15 192 12/20 46,390 47,700 36,500 50,000 4,021
18 228 18/20 40,410 39,850 25,900 50,000 6,182
21 264 20/20 37,375 34,500 29,400 49,700 6,546
24 300 20/20 35,190 33,600 27,400 47,200 5,216
27 336 19/20 35,685 32,900 19,300 50,000 7,881
30 372 20/20 30,995 31,400 8,500 46,600 9,123
33 408 20/20 28,155 27,900 19,100 38,500 5,752
36 444 20/20 29,260 29,300 15,800 47,000 6,614
39 480 20/20 25,110 26,550 12,900 33,500 5,309

PQC-3 No. of training steps

Layers |θPQC | Solved Mean Median Min Max Std.

8 156 13/20 43,925 45,700 32,100 50,000 6,303
10 192 18/20 41,645 42,500 28,800 50,000 6,744
12 228 20/20 35,675 35,000 27,100 47,600 6,372
14 264 20/20 33,885 33,400 22,400 45,200 5,778
16 300 20/20 32,625 33,700 23,000 43,300 5,588
18 336 20/20 30,765 30,300 22,600 42,200 5,212
20 372 20/20 29,895 31,250 20,500 39,300 5,037
22 408 20/20 24,530 24,900 12,800 38,600 5,762
24 444 20/20 27,575 28,650 9,400 38,800 7,334
26 480 20/20 23,635 21,800 9,700 41,600 7,535
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