
Towards End-to-End Semi-Supervised Table Detection with Deformable
Transformer

Tahira Shehzadi*1,2,4[0000−0002−7052−979X], Khurram Azeem Hashmi1,2,4[0000−0003−0456−6493], Didier Stricker1,2,4,
Marcus Liwicki3, and Muhammad Zeshan Afzal1,2,4[0000−0002−0536−6867]

1 Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
2 Mindgarage, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany

3 Department of Computer Science, Luleå University of Technology, 971 87 Luleå, Sweden
4 German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany

{tahira.shehzadi@dfki.de}

Abstract. Table detection is the task of classifying and localizing table objects within document images. With
the recent development in deep learning methods, we observe remarkable success in table detection. However, a
significant amount of labeled data is required to train these models effectively. Many semi-supervised approaches
are introduced to mitigate the need for a substantial amount of label data. These approaches use CNN-based
detectors that rely on anchor proposals and post-processing stages such as NMS. To tackle these limitations, this
paper presents a novel end-to-end semi-supervised table detection method that employs the deformable transformer
for detecting table objects. We evaluate our semi-supervised method on PubLayNet, DocBank, ICADR-19 and
TableBank datasets, and it achieves superior performance compared to previous methods. It outperforms the fully
supervised method (Deformable transformer) by +3.4 points on 10% labels of TableBank-both dataset and the
previous CNN-based semi-supervised approach (Soft Teacher) by +1.8 points on 10% labels of PubLayNet dataset.
We hope this work opens new possibilities towards semi-supervised and unsupervised table detection methods.

Keywords: Semi-Supervised Learning · Deformable Transformer · Table Analysis · Table Detection.

1 Introduction

A visual summary is the main aspect of different applications in document analysis, such as recognizing graphical
components in the visualization pipeline and summarizing the content of a document. As a result, localizing and
detecting graphical items such as tables will be an important action in the analysis and summary of the document.
Due to the increase in the number of documents, manually retrieving the table data is no longer practical. Automated
processes offer efficient, reliable, and successful solutions for manual tasks. Previously, optical character recognition
[1,2] and rule-based [3,4,5] table detection approaches were used to identify and locate them. Then, some automated
methods [6,7,8] have been suggested to detect tables. However, these approaches are often rule-based because the
documents have a set structure or dimension [9]. Moreover, they cannot generalize to a new table structure, such as
borderless tables. Later on, deep learning methods were used by researchers to identify them [10,11,12,13], and shows
that machine-learning approaches are more effective than traditional methods [14].

Deep learning approaches [15,16,17,18,19,20] do not rely on rules and can accurately generalize the problem. How-
ever, deep learning models take a considerable quantity of labeled data for training. These supervised methods achieve
impressive results on public benchmarks, and their performance cannot be translated into industrial applications unless
similar large-scale annotated datasets exist in that domain. It is potentially error-prone and time-consuming to gener-
ate this data manually or via other pre-processing approaches. Therefore, it is important to develop a semi-supervised
approach due to concerns about the availability of labeled training data, which shifts the problem from a supervised
to a semi-supervised setting. Recently, semi-supervised learning-based methods are introduced in computer vision con-
taining two detectors. The first detector provides pseudo labels for unlabeled data. The second detector trains using
pseudo labels generated by the first detector and a small percentage of label data and provides final predictions. Both
detectors update each other during training. This approach has been described in several works, including [21,22,23,24].
In most cases, the first detector is not strong enough, which can negatively impact the pseudo-labeling process. More-
over, previous semi-supervised approaches used CNN-based networks [11] that depend on anchors to generate region
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proposals and post-processing stages such as Non-Maximal suppression (NMS) to reduce the number of overlapping
predictions.

To address these limitations, this paper proposes a semi-supervised table detection approach that employs the
deformable transformer [25]. It generates pseudo-labels for unlabeled data and then trains the detector using them and
a small quantity of label data in each iteration. This approach aims to improve the pseudo-label generation procedure by
iteratively refining the pseudo-labels and the detector. It involves training in two modules. The teacher module contains
a pseudo-labeling framework. The student module is the final detection network that uses pseudo-labels and a small
quantity of label data. The teacher module is simply an Exponential Moving-Average (EMA) of the student module,
which ensures that the pseudo-label generation and detection modules are constantly updating each other. Unlike
other pseudo-labeling methods, we propose the idea of employing the deformable transformer that allows completing
the pseudo-labeling process without needing object proposals and post-processing steps as Non-maximal suppression
(NMS). Another benefit is having a dynamic effective receptive field to adapt fot tables of different sizes and scales
in the input image. This allows the network to effectively detect tables of varying sizes and orientations, making it
more robust and versatile. Additionally, this framework has a reinforcing effect, providing that the Teacher model
consistently monitors the Student model. In this paper, we show through empirical evidence that this semi-supervised
table detection approach that uses a deformable transformer can produce results comparable to CNN-based approaches
without needing object proposals and post-processing steps such as Non-maximal suppression (NMS).
In summary, the main contributions of the paper are as follows:

• We present an end-to-end semi-supervised table detection method that employs the deformable transformer and
allows completing the pseudo-labeling process without needing object proposals and post-processing steps such as
Non-maximal suppression (NMS).

• We formulate the problem of table detection as an object detection problem and leverage the potential of deformable
detection transformer for this task. To the best of our knowledge, this work is the first that exploits the transformer-
based method in a semi-supervised setting.

• We perform an exhaustive evaluation on four different datasets, PubLayNet, DocBank, ICDAR-19 and TableBank,
and produce results comparable to CNN-based semi-supervised approaches without needing object proposals pro-
cess and post-processing steps such as NMS.

2 Related Work

Table detection is an essential task for document image analysis. Many researchers have proposed different approaches
for detecting tables containing arbitrary structures in document images. Previously, most presented approaches used
custom rules or relied on extra meta-data input to deal with table detection tasks [26,27,28,29]. Recently, researchers
employed statistical methods [30] and deep learning approaches to make the table detection systems more generalizable
[15,31,32,33]. This section gives a detailed summary of these techniques and an overview of the CNN-based semi-
supervised object detection methods.

2.1 Rule-based Approaches

To the best of our knowledge, Itonori et al. [26] presented a table detection approach for the first time on document
images. This method represents the table as a text block that uses specified rules. Later, [28] introduced a table
detection approach that works on horizontal and vertical lines. Pyreddy et al. [34] proposed a procedure that extracts
tabular regions from the text using custom heuristics. Pivk et al. [35] presented a system that transforms HTML
format table documents into logical forms. It introduces an appropriate tabular layout employed for extracting tables.
Hu et al. [36] presented a table detection approach that relies on white regions and vertically connected elements
in document images. Readers can find a complete overview of these rule-based methods in [3,4,5,37,38]. Though rule-
based approaches perform fine on document images with matching table formats, these methods can not provide generic
solutions. Therefore, systems with more generalizable abilities are needed to solve table detection tasks on document
data.
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2.2 Learning-based Approaches

Cesarini et al. [39] presented a supervised learning system for detecting table objects in document images. It converts
a document image into an MXY tree model and labels the blocks as tables confined in horizontal and vertical lines.
Hidden Markov Models [40,41] and the SVM classifier with traditional heuristics [42] are applied to document im-
ages for table detection. Though these machine learning approaches performed better than ruled-based approaches on
documents, these methods need additional information, such as ruling lines. Deep Learning-based approaches outper-
formed traditional approaches in accuracy and efficiency. These methods are categorised into object detection, semantic
segmentation, and bottom-up approaches.
Semantic segmentation-based Approaches. These approaches [43,44,45,46] consider table detection a segmen-
tation task and apply available semantic segmentation networks to generate segmentation masks on the pixel level
and then combine table regions to provide final table detection. These methods performed better than traditional ap-
proaches on several benchmark datasets [47,48,49,50,51,52,53]. Yang et al. [43] presented a fully convolutional network
(FCN) [54] for page object segmentation, which combines linguistic and visual features to enhance segmentation results
for table and other page object detection. He et al. [44] presented a multi-scale FCN that provides segmentation masks
table/text areas and their related contours and then refined to get final table blocks.
Bottom-up Approaches These approaches consider table detection as a graph-labeling task and define graph nodes
as page objects and graph edges connection between page objects. Li et al. [55] extracted line areas using the classic
layout analysis approach, then used two CNN-CRF networks to categorise them into four categories: text, figure,
formula and table and then provided a prediction of the corresponding cluster for pair of line areas. Holecek et al. [56]
and Riba et al. [57] considered text areas as nodes, formed a graph to determine the design per document and then
employed graph-neural networks for node-edge classification. These approaches rely on specific assumptions, such as
text line boxes as an extra input.
Object Detection-based Approaches. Detecting tables from document images can be represented as an object
detection task, with table objects treated as natural objects. Hao et al. [58] and Yi et al. [59] applied R-CNN for detecting
tables, but the performance of these approaches still relies on heuristic rules as in previous methods. Later, more efficient
single-stage object detectors like RetinaNet [60] and YOLO [61] and two-stage object detectors like Fast R-CNN [10],
Faster R-CNN [11], Mask R-CNN [62], and Cascade Mask R-CNN [63] were applied for other document objects such
as figures and formulas detection in document images [64,65,66,67,68,69,70,15,16,17]. Furthermore, [65,69,71] applied
different image transformation approaches, such as coloration and dilation, to improve the results further. Siddiqui et al.
[72] combined deformable-convolution and RoI-Pooling [73] into Faster R-CNN to provide a more efficient network for
geometrical modifications. Agarwal et al. [70] used a composite network [74] as a backbone with deformable convolution
to increase the performance of two-stage Cascade R-CNN. These CNN-based object detectors have a few heuristic
stages, like proposals generating step and post-processing steps such as non-maximal suppression (NMS). Our semi-
supervised approach considers detection a set prediction task, eliminating the anchor generation and post-processing
stages such as NMS and providing a simpler and more efficient detection pipeline.

2.3 Semi-supervised Object Detection

Semi-supervised learning approaches in object detection are divided into two types: consistency-based approaches
[75,76] and pseudo-label generation-based approaches [77,78,79,80,81,82,83]. Our method falls into the pseudo-label
type. Previous work [77,78] combined prediction results from varied data augmentation techniques to produce pseudo-
labels for unlabeled data, while [79] trained a SelectiveNet to generate the pseudo-labels. In [79], a box from unlabeled
data was placed onto labeled data and evaluated localization consistency on the labeled images. However, this method
requires a very complex detection procedure due to the modification of the image. STAC [82] presented to perform
strong augmentation on the data for pseudo-label generation and weak augmentation for model training. We propose an
end-to-end semi-supervised table detection method that employs the deformable transformer. Similar to other pseudo-
label generation approaches [77,78,79,82,83], it follows a multi-level training mechanism. It effectively avoids the need
for anchors generation stage and post-processing steps such as Non-Maximal suppression (NMS).
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3 Methodology

First, we revisit Deformable DETR, a modern transformer-based object detector, in Section 3.1. Later, we explain the
proposed semi-supervised learning mechanism and its pseudo-label generation module in Sections 3.2.

3.1 Revisiting Deformable DETR

Deformable DETR [25] contains a Transformer encoder-decoder network that considers object detection as a set-
predictions task. It uses Hungarian loss and avoids overlapped predictions for ground-truth bounding boxes through
bipartite matching. It eliminates the need for hand-crafted elements such as anchors and post-processing stages such
as Non-maximal suppression (NMS) used in CNN-based object detectors. Deformable DETR is an extension of the
DETR [84] architecture that addresses some of the limitations of DETR, such as slow training convergence and poor
performance on small objects. Deformable DETR introduces deformable convolutions into the architecture, which allows
for more flexible modeling of object shapes and better handling of objects of varying scales. This can lead to improved
performance, particularly on small objects, and faster convergence during training. Here, we provide an overview of
the encoder-decoder network, Multi-scale Feature processing and attention mechanism of deformable DETR. Figure 1
shows all modules of the deformable transformer, including multi-scale features and encoder-decoder network.

Fig. 1: Illustration of the deformable transformer employed in semi-supervised table detection method. We split the
input image into small equal-sized patches, add position embeddings, and feed the resulting patches along with input
multi-scale features to the transformer encoder. In the decoder, We use object queries as reference points and provide
bounding boxes predictions and class labels as the final output.

Transformer Encoder. The CNN backbone (ResNet-50) extracts the input feature maps fm ∈ Rhi×wi×ci . The spatial
dimensional feature maps are converted into one-dimensional zm ∈ Rhi×wi×d1 feature maps as the transformer encoder
network takes input as a sequence. This one-dimensional vector is fed as input along with positional embeddings [85,86]
to the transformer encoder network, which further transforms them into features for object queries. Every layer of the
encoder module contains an attention network and a feed-forward network (FFN) where query and key values are the
pixels of feature maps. Readers can refer to [87] for a detailed explanation of transformer.
Transformer Decoder. The decoder network takes the output of the encoder features and N number of object
queries as input. It contains two attention types self-attention and cross-attention. The self-attention module finds
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the connection between object queries. Here both key and query matrics contain object queries. The cross-attention
module extracts feature using object queries from the input feature map. Here key matrix contains the feature maps
provided by the encoder module, and the query matrix is the object queries fed as input to the decoder. After the
attention modules, feed-forward networks (FFN) and linear projection layers are added as the prediction head. The
linear projection layer predicts class labels, while FFN provides final bounding-box coordinate values.
Deformable Attention Module. The attention module in the DETR network considers all spatial locations of the
input feature map, which makes the training convergence slower. However, a deformable DETR can solve this issue
using the deformable convolution-based [73,88] attention network and multiscale input features [89,90]. It considers
only a few sample pixels near a reference pixel, whatever the size of input features, as illustrated in Figure 2. The query
matrix takes only a small set of keys, which resolves the slow training convergence issue of DETR. Readers can refer
to [25] for a detailed explanation of Deformable DETR.

Fig. 2: Deformable Attention network. It considers only a few sample pixels near a reference pixel, whatever the size of
input features. The query matrix takes only a small set of keys, which resolves the slow training convergence issue of
DETR. (image from [25]).

3.2 Semi-Supervised Deformable DETR

In this subsection, we describe the learning mechanism of our proposed semi-supervised approach that employs the
Deformable transformer and then explain the pseudo-labeling strategy. Semi-supervised Deformable-DETR is a unified
learning approach that uses fully labeled and unlabeled data for object detection. It contains two modules a student
module and a teacher module. The training data has two data types label data and unlabeled data. The student
module takes both labeled and unlabeled images as input where strong augmentation is applied on unlabeled data
while both (strong and weak augmentation) is applied on label data. The student module is trained using detection
losses of labeled and unlabeled data through pseudo-boxes. The unlabeled data contains two groups of pseudo boxes
for providing class labels and their bounding boxes. The teacher module only takes unlabeled images as input after
applying weak augmentation. Figure 3 presents a summary of proposed pipeline. The teacher module feeds prediction
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results to the pseudo-labeling framework to get pseudo-labels. Then, the student module uses these pseudo-labels for
supervised training. Here, weak augmentation on unlabeled data is used for the teacher module to generate more
precise pseudo-labels. Strong augmentation on unlabeled data is used for the student module to have more challenging
learning. The student module also takes a small percentage of labeled images with strong and weak augmentation as
input. The student module sm is optimized with the total loss as follows:

Lsm =
∑
n

L(xl,saj , yl,saj ) + L(xl,wa

j , yl,wa

j ) +
∑
n

L(xu,saj , ytmj ) (1)

Where sa represents strong augmentation, wa represents weak augmentation. xl,saj is the strong augmented input image
and its corresponding label is yl,saj . The term xl,wa

j is the weak augmented input image and its corresponding label is
yl,wa

j . For the labeled images, strong and weak augmentations are also applied for learning, and are fed to the student
module. The term xu,saj represents unlabeled strong augmented image fed to student module and the term ytmj is the
pseudo-label from teacher module. Here, L is the weighted sum of classification (class labels) and regression (bounding
box) loss as follows:

L = α1Lreg + α2Lcls (2)

Where α1 and α2 are the weight values, the teacher-student modules are initialized randomly at the start of training.
During training, the student module continuously updates the teacher module with an Exponential Moving-Average
(EMA) [91] strategy. Pseudo-label generation for image classification tasks is easy, considering probability distribution
as Pseudo-labels. In contrast, object detection tasks are more complicated as an image may include numerous ob-
jects, and annotation contains object location and class label. The CNN-based object detectors use anchors as object
proposals and remove redundant boxes by post-processing steps such as non-maximal suppression (NMS). In con-
trast, transformers use attention mechanisms and object queries. Figure 4 shows sample points and attention weights
from multi-scale deformable attention feature maps for both student and teacher networks. Its training complexity is
O(Nqc

2
i +min(hiwic

2
i , Nqkc

2
i ) + 5Nqkci +3Nqcipsk). This takes into account the computation of the sampling coordi-

nate offsets and attention weights, as well as the bilinear interpolation and weighted sum in the attention mechanism.
Nq is the number of query elements, ci is the channel dimension, k is the kernel size, ps is the number of sampling
points, and hiwi is the height and width of the feature map. In our experiments, ps = 8, k ≤ 4 and ci = 256 by default,
thus 5k + 3psk < ci and the complexity is of O(2Nqc

2
i +min(hiwic

2
i , Nqkc

2
i )). When used in the DETR encoder with

Nq = hiwi, the complexity of the deformable attention module is O(hiwic
2
i ), which scales linearly with the spatial size.

When used in the DETR decoder with Nq = N (the number of object queries), the complexity becomes O(Nkc2i ),
which is independent of the spatial size as attention is focused on the object queries.
Training The semi-supervised network is trained in two steps: a) train the student module independently on labeled
data and generate pseudo-labels by teacher module; b) combine training of both modules to provide final prediction
results.
Pseudo-Labeling FrameworkWe used a simple framework to provide pseudo-labels for unlabeled data at the output
of the teacher module, as applied in SSOD [92]. Usually, object detectors give confidence score vector sk ∈ [0, 1]Ci for
every provided bounding box bk. A simple approach to provide pseudo-labels is to just thresholding these scores. In
a simple pseudo-labeling filter, pseudo-labels can be formed by providing a threshold to the confidence value sckk of
the ground-truth class ck. If the prediction value is not greater than the confidence value for a ground-truth class, the
highest prediction value is considered the pseudo-label. Inspired by DETR [84], we develop the pseudo-label assignment
task as a bipartite matching task between the teacher module predictions and the generated semi-labels. Specifically,
the permutation of K elements is as follows:

σ̂ = arg min
σ∈N

Ni∑
k

Lmatch(yk, ŷ(k)), (3)

Where Lmatch(yk, ŷ(k)) is the match-cost between teacher labels and ground-truth semi-labels as follows:

Lmatch(yk, ŷ(k)) = −1{ck 6=φ}p̂σ(k)(ck) + 1{ck 6=φ}Lbbox(bk, b̂σ̂(k)) (4)

The Pseudo-Labeling framework is applied to the predictions of teacher module ŷ(k) where ŷ(k) = {ŷclass, ŷbbox} is
the prediction, with ŷclass and ŷbbox represent the class and box values, respectively. Here, ŷcls = [v1, ..., vN ]T ∈ RN×Ci

and ŷbox = [b̂1, ..., b̂N ]T ∈ RN×4, where vN is the output vector (before the softmax) , b̂N the related bounding-box
prediction, and N is the object queries provided as input to the transformer decoder. yk represents pseudo-labels
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Fig. 3: Our proposed semi-supervised approach that employs Deformable transformer [25]. (1) The training data has
two data types label data and unlabeled data. (2) It contains two modules a student module and a teacher module.
(3) The teacher module only takes unlabeled images as input after applying weak augmentation. (4) After applying
strong augmentation on unlabeled data type, the student module takes both labeled and unlabeled images as input. (5)
During training, the student module continuously updates the teacher module with an Exponential Moving-Average
(EMA) [91] strategy.

Fig. 4: Visualization of the sample points and attention weights from multi-scale deformable attention feature maps.
Each sample point is denoted as a circle whose color represents its relative attention weight value. The reference points
are the object queries taken as input in the encoder, represented by the green plus sign. In the decoder, the final
bounding boxes are represented as green rectangles, and the class label and its confidence value are shown on the upper
side in black text.
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generated from confidence-score. The optimal selection is allowed with the Hungarian match mechanism [84,93], giving
pseudo-labels {(bk, ck)}. This approach to select matching between the teacher module’s prediction and semi-labels
generated by providing threshold works in the same way as the heuristic selection rules used for matching proposals
[11] or anchors [89] with ground-truth objects in CNN-based object detectors. The main difference is that it determines
one-to-one matching without duplicates. The second stage calculates the loss function, the Hungarian loss for all pair
matching in the last stage. We define the loss similar to the previous object detector’s losses as a linear combination
of a negative log-likelihood for class label and a bounding box as follows:

LH(y, ŷ) =

N∑
i=1

[−logp̂σ̂(k)(ck) + 1{ck 6=φ}Lbox(bk, b̂σ̂(k))] (5)

Here, bk ∈ R4 is the pseudo-bounding box, and ck is the pseudo-class label. σ̂ is the matching determined in the
previous stage. In training, we reduce the weight of log probability by ten times when ck for class imbalance. This
mechanism is similar to the Faster R-CNN training strategy to balance proposals by sub-sampling [11].

4 Experimental Setup

4.1 Datasets

TableBank: TableBank [52] is the second-largest dataset in the document analysis domain for the table recognition
problem. The dataset has 417,000 document images annotated through the arXiv database crawling procedure. The
dataset features tables from three categories of document images: LaTeX images (253,817), Word images (163,417),
and a combination of both (417,234). It also includes a dataset for recognizing the structures of the table. In our
experiment, We only used the dataset for table detection from TableBank.
PubLayNet: PubLayNet [48] is a large public dataset with 335,703 images in the training set, 11,240 in the validation
set, and 11,405 in the test set. It includes annotations such as polygonal segmentation and bounding boxes of figures,
lists titles, tables, and text of images from research papers and articles. The dataset was evaluated using the coco
analytic technique [94]. In our experiment, we only used 102,514 of the 86,460 table annotations.
DocBank: DocBank [95] is a large dataset of over 5,000 annotated document images from various sources designed to
train and evaluate tasks such as text classification, entity recognition, and relation extraction. It includes annotations
of title, author name, affiliation, abstract, body text, etc.
ICDAR-19: The competition for Table Detection and Recognition (cTDaR) [47] is organized at ICDAR in 2019. For
the table detection task (TRACK A), two new datasets (modern and historical) are introduced in the competition.
For direct comparison against the prior state-of-the-art [69], we provide results on the modern datasets with an IoU
threshold ranging from 0.5–0.9.

4.2 Evaluation Criteria

We use some evaluation metrics to analyze the performance of our semi-supervised table detection approach that
employs the deformable transformer. This section defines the employed evaluation metrics as precision, Recall, and
F1-score. The Precision [96] is the fraction of actual instances as True Positives among the predicted instances as False
Positives and True Positives). The Recall [96] is the fraction of actual instances as True Positives that were retrieved
(True Positives + False Negatives). The F1-score [96] is the harmonic mean of Precision and Recall. We compute the
intersection over union(IoU) by performing the intersection divided by the union for the region of the ground-truth
box Ag and the formed bounding box Ap.

IoU =
area(Ag ∩Ap)
area(Ag ∪Ap)

(6)

IoU estimates that either a detected table object is a false positive or a true positive. We find the average precision(AP)
by a precision-recall (PR) curve following the context of MS COCO [94] evaluation. It is the area under the PR curve,
calculated using the following equation:

AP =

N∑
k=1

(Rek+1 −Rek)Pintr(Rek+1) (7)
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Where Re1, Re2, . . . , Rek represent the recall parameter. The mean average precision (mAP) is often used to evaluate
the performance of detection methods. It is calculated by taking the mean of average precision for all classes in a
dataset. The mAP can be affected by changes in the performance of individual classes due to class mapping, which
is a limitation of this metric. We set the intersection over union (IoU) threshold values at 0.5 and 0.95. The mAP is
calculated as follows:

mAP =
1

S

S∑
s=1

APs (8)

Where S represents total classes.

4.3 Implementation Details

We use the Deformable DETR [25] with a ResNet-50 [97] backbone pre-trained on the ImageNet [98] dataset as our
detection framework for evaluating the usefulness of the semi-supervised approach. We perform training on PubLayNet,
ICDAR-19, DocBank and all three splits of the TableBank dataset. We use 10%, 30% and 50% of labeled data and
the rest as unlabeled data. The threshold value for pseudo-labeling is set at 0.7. We set the training epochs to 150 for
all experiments with the learning rate reduced by a factor of 0.1 at the 120th epoch. We follow [92,25] to apply strong
augmentation as horizontal flip, resize, remove patches, crop, grayscale and Gaussian blur. We use horizontal flipping
to apply weak augmentation. The value N for the number of queries to the input of the decoder of Deformable DETR
is set to 30 as it gives the best results. Unless otherwise specified, we evaluated the results using the mAP (AP50:95)
metrics. All models are trained with a batch size of 16, using the same hyperparameters as Deformable DETR [25].
The weight α1 is 2 and α2 is 5 to balance the classification loss (Lcls) and regression loss (Lbox). To make the training
faster, we set the height and width of the input image to 600 pixels. We employ the standard size of 800 pixels for
comparison with other approaches.

5 Results and Discussion

5.1 TableBank

In this subsection, we provide the experimental results on all splits of the TableBank dataset on different percentages
of label data. We also compare the transformer-based semi-supervised approach with previous deep learning-based
supervised and semi-supervised approaches. Furthermore, we give results on 10% TableBank-both data split for all
IoU threshold values. Table 1 provides the results of semi-supervised approach that employs deformable transformer
for TableBank-latex, TableBank-word, and TableBank-both data splits on 10%, 30% and 50% label data and the rest
as unlabeled data. It shows that the TableBank-both data split has the highest AP50 value of 95.8%, TableBank-word
has 93.5%, and TableBank-both has 92.5% at 10% label data.

The qualitative analysis of semi-supervised learning for the TableBank-both data split is shown in Figure 5. Part
(b) of Figure 5 has a matrix with a similar structure as rows and columns, and the network detects the matrix as a
table giving false positive detection results. Here, incorrect detection results indicate where the network fails to provide
correct detection of table regions. Table 2 gives the results of this semi-supervised approach on different IoU threshold
values for all splits of the TableBank dataset on 10% label data and the rest as unlabeled data. A visual comparison
of Precision, Recall and F1-Score of semi-supervised network that employs deformable transformer with ResNet-50
backbone on different IoU threshold values on 10% labeled dataset of TableBank-both data split is shown in Figure 6.
Comparisons with Previous supervised and semi-supervised approaches Table 3 compares the deep learning-
based supervised and semi-supervised networks on the ResNet-50 backbone. We also compare supervised deformable-
DETR trained on 10%, 30% and 50% TableBank-both data split label data with our semi-supervised approach that
employs deformable transformer. It shows that our attention mechanism-based semi-supervised approach provides com-
parable results without using proposal generation process and post-processing steps such as Non-maximal suppression
(NMS).
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Table 1: Performance of the semi-supervised approach that employs deformable transformer for TableBank-latex,
TableBank-word, and TableBank-both data splits on different percentages of label data. Here, mAP represents mean
AP at the IoU threshold range of (50:95), AP50 indicates AP at the IoU threshold of 0.5, and AP75 denotes AP at the
IoU threshold of 0.75. ARL indicates average recall for large objects.
Dataset Label-percent mAP AP50 AP75 ARL

TableBank-word
10% 80.5 92.5 87.7 87.1
30% 88.3 95.7 93.1 92.1
50% 91.5 96.7 95.2 94.5

TableBank-latex
10% 63.7 93.5 71.6 74.3
30% 82.8 96.4 93.4 89.0
50% 85.3 96.2 94.4 91.4

TableBank-both
10% 84.2 95.8 93.1 90.1
30% 86.8 97.0 94.1 91.5
50% 91.8 96.9 95.6 95.3

Fig. 5: Semi-supervised table detection results that employs deformable transformer on TableBank-both data split.
Green color represents true positives, blue denotes false negatives and red shows false positives. Here, (a) indicates
true positive detection results, (b) shows true positive and false positive detection results, and (c) gives false negative
detection results.

Table 2: The performance comparison of semi-supervised network that employs deformable transformer with ResNet-50
backbone on different IoU threshold values on 10% labeled dataset of TableBank-both data split.

Method IoU Precision Recall F1-score

0.5 95.8 90.5 93.1
Semi-Supervised 0.6 94.6 90.5 92.5

Deformable-DETR+ResNet-50 0.7 93.3 90.3 91.8
10% labels 0.8 91.8 89.8 90.8

0.9 89.1 87.2 88.1
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Table 3: Performance comparison of previous supervised and semi-supervised approaches. Supervised Deformable-
DETR and Faster R-CNN network trained on just 10%, 30% and 50% data of TableBank-both dataset while semi-
supervised networks used 10%, 30% and 50% TableBank-both dataset as labeled and rest as unlabeled data using
ResNet-50 backbone. Here, all results are represented on mAP (0.5 : 0.95). The best threshold values are shown in
bold.

Method Approach Detector 10% 30% 50%

Ren et al. [11] supervised Faster R-CNN 80.1 80.6 83.3

Zhu et al. [25] supervised Deformable DETR 80.8 82.6 86.9

STAC [82] semi-supervised Faster R-CNN 82.4 83.8 87.1

Unbiased Teacher [92] semi-supervised Faster R-CNN 83.9 86.4 88.5

Humble Teacher [99] semi-supervised Faster R-CNN 83.4 86.2 87.9

Soft Teacher [100] semi-supervised Faster R-CNN 83.6 86.8 89.6

Our semi-supervised Deformable DETR 84.2 86.8 91.8

Fig. 6: A visual comparison of Precision, Recall and F1-Score of semi-supervised network that employs deformable
transformer with ResNet-50 backbone on different IoU threshold values on 10% labeled dataset of TableBank-both
data split and PubLayNet table class dataset. Here, blue indicates precision results on different IoU threshold values,
red shows recall results on different IoU threshold values, and green represents F1-score results on different IoU threshold
values.
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5.2 PubLayNet

In this subsection, we discuss the experimental results on PubLayNet table class dataset on different percentages of label
data. We also compare the transformer-based semi-supervised approach with previous deep learning-based supervised
and semi-supervised approaches. Furthermore, we give results on 10% PubLayNet dataset for all IoU threshold values.
Table 4 provides the results of the semi-supervised approach that employs deformable transformer for PubLayNet table
class on the different percentages of label data and rest as unlabeled data. Here, AP50 value is 98.5%, 98.8%, and 98.8%
for 10%, 30% and 50% label data, respectively.

Table 4: Performance results for PubLayNet table class
dataset. Here, mAP represents mean AP at the IoU thresh-
old range of (50:95 ), AP50 indicates AP at the IoU thresh-
old of 0.5 and AP75 denotes AP at the IoU threshold of
0.75. ARL indicates average recall for large objects.
Dataset Label-percent mAP AP50 AP75 ARL

PubLayNet
10% 88.4 98.5 97.3 91.0
30% 90.3 98.8 97.5 93.2
50% 92.8 98.8 97.3 96.0

Table 5: The performance comparison of semi-supervised
network that employs deformable transformer with
ResNet-50 backbone on different IoU threshold values on
10% PubLayNet labeled Dataset.
Method IoU Precision Recall F1-score

0.5 98.5 91.0 94.6
Semi-Supervised 0.6 98.1 90.9 94.4
Deformable-DETR 0.7 97.4 90.8 94.0
10% labels 0.8 94.0 90.0 92.0

0.9 89.0 87.0 88.0

Furthermore, our semi-supervised network is trained on different IoU threshold values on 10% of labeled PubLayNet
Dataset. Table 5 gives the results of the semi-supervised approach on different IoU threshold values for PubLayNet
table class on 10% label data and the rest as unlabeled data. A visual comparison of Precision, Recall and F1-score of
the semi-supervised network that employs the deformable transformer network with ResNet-50 backbone on different
IoU threshold values on 10% labeled dataset of PubLayNet table class is shown in Figure 6. Here, blue indicates
precision results on different IoU threshold values on different IoU threshold values, red shows recall results, and green
represents F1-score results on different IoU threshold values.

Table 6: Performance comparison of previous supervised and semi-supervised approaches. Deformable-DETR and
Faster R-CNN trained on just 10%, 30% and 50% table data while semi-supervised networks used 10%, 30% and 50%
PubLayNet dataset as labeled and rest as unlabeled data. Here, all results are represented on AP50 at the IoU threshold
of 0.5. The best threshold values are shown in bold.

Method Approach Detector 10% 30% 50%

Ren et al. [11] supervised Faster R-CNN 93.6 95.6 95.9

Zhu et al. [25] supervised Deformable DETR 93.9 96.2 97.1

STAC [82] semi-supervised Faster R-CNN 95.8 96.9 97.8

Unbiased Teacher [92] semi-supervised Faster R-CNN 96.1 97.4 98.1

Humble Teacher [99] semi-supervised Faster R-CNN 96.7 97.9 98.0

Soft Teacher [100] semi-supervised Faster R-CNN 96.5 98.1 98.5

Our semi-supervised Deformable DETR 98.5 98.8 98.8

Comparisons with Previous supervised and semi-supervised approaches Table 6 compares the deep learning-
based supervised and semi-supervised networks on PubLayNet table class using ResNet-50 backbone. We also compare
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supervised deformable-DETR trained on 10%, 30% and 50% PubLayNet table class label data with our semi-supervised
approach that employs the deformable transformer. It shows that our semi-supervised approach provides comparable
results without using proposal and post-processing steps such as Non-maximal suppression (NMS).

5.3 DocBank:

In this subsection, we discuss the experimental results on DocBank dataset on different percentages of label data.
We compare the transformer-based semi-supervised approach with previous CNN-based semi-supervised approach in
Table 7.

Table 7: Performance comparison of previous semi-supervised approach and our Deformable-DETR based semi-
supervised approach on DocBank dataset. Here, all results are represented on mAP (0.5 : 0.95).

Method Approach Detector 10% 30% 50%

Soft Teacher [100] semi-supervised Faster R-CNN 72.3 74.4 81.5

Our semi-supervised Deformable DETR 82.5 84.9 87.1

Furthermore, we also compare our semi-supervised approach on different percentages of label data with previous
table detection and document analysis approaches for different datasets TableBank, PubLayNet, and DocBank in
Table 8. Although we cannot directly compare our semi-supervised approach with previous supervised document
analysis approaches. However, we can observe that even with 50% label data, we achieve comparable results with
previous supervise approaches.

Table 8: Performance comparison of previous supervised approaches for document analysis. Our semi-supervised net-
work uses 10%, 30% and 50% label data and rest as unlabeled data. Here, all results are represented onmAP (0.5 : 0.95).

Method Approach Labels TableBank PubLayNet DocBank

CDeC-Net [70] supervised 100% 96.5 97.8 -

CasTabDetectoRS [32] supervised 100% 95.3 - -

Faster R-CNN [48] supervised 100% - 90 86.3

VSR [101] supervised 100% - 95.69 87.6

Our semi-supervised 10% 84.2 88.4 82.5

Our semi-supervised 30% 86.8 90.3 84.9

Our semi-supervised 50% 91.8 92.8 87.1

5.4 ICDAR-19

We also evaluate our method for table detection on the Modern Track A portion of the table detection dataset from the
cTDaR competition at ICDAR 2019. We summarize the quantitative results of our approach at different percentages
of label data and compare it with previously supervised table detection approaches in Table 9. We evaluate results
at higher IoU thresholds of 0.8 and 0.9. For a direct comparison with previous table detection approaches, we also
evaluate our approach on 100% label data. Our approach achieved a precision of 92.6% and a recall of 91.3% on the
IoU threshold of 0.9 on 100% label data.
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Table 9: Performance comparison between the proposed semi-supervised approach and previous state-of-the-art results
on the dataset of ICDAR 19 Track A (Modern).

Method Approach IoU=0.8 IoU=0.9
Recall Precision F1-Score Recall Precision F1-Score

TableRadar [47] supervised 94.0 95.0 94.5 89.0 90.0 89.5

NLPR-PAL [47] supervised 93.0 93.0 93.0 86.0 86.0 86.0

Lenovo Ocean [47] supervised 86.0 88.0 87.0 81.0 82.0 81.5

CascadeTabNet [69] supervised - - 92.5 - - 90.1

CDeC-Net [70] supervised 93.4 95.3 94.4 90.4 92.2 91.3

HybridTabNet [33] supervised 93.3 92.0 92.8 90.5 89.5 90.2

Our semi-supervised (50%) 71.1 82.3 76.3 66.3 76.8 71.2

Our supervised (100%) 92.1 94.9 93.5 91.3 92.6 91.9

5.5 Ablation Study

In this section, we validate the key design elements. Unless otherwise stated, all the ablation studies are conducted
using a ResNet-50 backbone with 30% labeled images from the PubLayNet dataset.
Pseudo-Labeling confidence threshold In Section 3.2, the threshold value (referred to as the confidence threshold)
plays an important role in determining the balance between the accuracy and quantity of the generated pseudo-labels.
As this threshold value increases, fewer examples will pass the filter, but they will be of higher quality. Conversely,
a smaller threshold value will result in more examples passing but with a higher likelihood of false positives. The
impact of various threshold values, ranging from 0.5 to 0.9, is presented in Table 10. The optimal threshold value was
determined to be 0.7 based on the results.

Table 10: Performance comparison using different Pseudo-
labeling confidence threshold values. The best threshold
values are shown in bold.
Threshold AP AP50 AP75

0.5 86.9 91.6 90.1
0.6 89.5 98.1 95.7
0.7 90.3 98.8 97.5
0.8 89.4 97.2 95.3
0.9 87.9 96.3 94.5

Table 11: Performance comparison using different num-
bers of learnable queries to the decoder input. Here, best
performance results are shown in bold.
N AP AP50 AP75

3 61.4 69.7 62.6
30 90.3 98.8 97.5
50 89.4 90.3 85.4
100 88.4 89.7 83.9
300 78.5 94.7 90.2

Influence of Learnable queries Quantity In our analysis, we investigate the impact of varying the number of
queries fed as input in the decoder of deformable DETR. Figure 7 compares prediction results by varying the number
of object queries fed as input in the decoder of deformable DETR. The optimal performance is attained when the
number of queries N is set to 30; deviating from this value results in a decrease in performance. Table 11 presents and
analyzes the result for varying object query quantities. Choosing a small value for N could result in the model failing
to identify particular objects, negatively impacting its performance. On the other hand, selecting a large value for N
may cause the model to perform poorly due to overfitting, as it would incorrectly classify certain regions as objects.
Moreover, training complexity O(Nkc2i ) of this semi-supervised self-attention mechanism in the decoder of student-
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Fig. 7: Comparison of performance by variation of the number of object queries fed as input in the decoder of deformable
DETR. Here, (a) takes N=3 object queries as input, (b) contains N =30 object queries as input, and (c) has N =300
object queries as input. The optimal performance is achieved by selecting the number of queries N to 30; deviating
from this value results in a decrease in performance. Here, blue rectangles denote ground truth (GT), green rectangles
indicate object class, and red rectangles show background class.

teacher module depends on the number of object queries and is subsequently improved as complexity is reduced by
minimizing the number of object queries.

6 Conclusion

This paper introduces a semi-supervised approach that employs the deformable transformer for table detection in
document images. The proposed method mitigates the need of large-scale annotated data and simplifies the process
by integrating the pseudo-label generation framework into a streamlined mechanism. The simultaneous generation of
pseudo-labels leads to a dynamic process known as the "flywheel effect", where one model continually improves the
pseudo-boxes produced by the other model as the training progresses. The pseudo-class labels and pseudo-bounding
boxes are improved in this framework using two distinct modules named student and teacher. These modules update
each other by the EMA function to provide precise classification and bounding box predictions. The results indicate
that this approach surpasses the performance of supervised models when applied to labeling ratios of 10%, 30%, and
50% on TableBank all splits and the PubLayNet training data. Furthermore, when trained on the 10% labeled data of
PubLayNet, the model performed comparably to the current CNN-based semi-supervised baseline. In future, we aim
to investigate the impact of the proportion of annotated data on the ultimate performance and develop models that
function effectively with a minimal quantity of labeled data. Additionally, we intend to employ the transformer-based
semi-supervised learning mechanism for table structure recognition task.
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