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Abstract. Table detection within document images is a crucial task in document
processing, involving the identification and localization of tables. Recent strides in
deep learning have substantially improved the accuracy of this task, but it still heav-
ily relies on large labeled datasets for effective training. Several semi-supervised ap-
proaches have emerged to overcome this challenge, often employing CNN-based de-
tectors with anchor proposals and post-processing techniques like non-maximal sup-
pression (NMS). However, recent advancements in the field have shifted the focus
towards transformer-based techniques, eliminating the need for NMS and empha-
sizing object queries and attention mechanisms. Previous research has focused on
two key areas to improve transformer-based detectors: refining the quality of object
queries and optimizing attention mechanisms. However, increasing object queries
can introduce redundancy, while adjustments to the attention mechanism can in-
crease complexity. To address these challenges, we introduce a semi-supervised ap-
proach employing SAM-DETR, a novel approach for precise alignment between ob-
ject queries and target features. Our approach demonstrates remarkable reductions
in false positives and substantial enhancements in table detection performance, par-
ticularly in complex documents characterized by diverse table structures. This work
provides more efficient and accurate table detection in semi-supervised settings.

Keywords: Semi-Supervised Learning · Detection Transformer · SAM-DETR · Ta-
ble Analysis · Table Detection.

1 Introduction

Document analysis has been the fundamental task in various workflow pipelines[1,2], with
document summarization as its core task. The essential task in document analysis is iden-
tifying graphical objects like tables, figures, and text paragraphs. Previously, this task
was carried out manually by analyzing the documents, understanding their contents, and
summarizing them. However, the number of documents that need to be analyzed has dras-
tically increased, and manual inspection is impossible. The growing number of documents
led businesses to use more efficient and reliable automated methods. Optical character
recognition(OCR) [3,4] and rule-based table detection approaches[5,6,7] are classical ap-
proaches for visual summarization. These methods perform well for documents with highly
structured layouts because they are rule-based[5,6,7]. However, they struggle to adapt to
varying and newer table designs, such as borderless tables. These limitations has shifted the
research focus to developing techniques using deep learning [8,9,10,11]. These methods show
significant improvements over traditional approaches [12], precisely detecting tables in doc-
uments irrespective of their structure. This advancement provides a notable improvement
in document analysis and visual summarization.

Deep learning methods [13,14,15,16,17,18] eliminate handcrafted rules and excel at gen-
eralizing problems. However, their reliance on large amounts of labeled data for training
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counteracts the aim of reducing manual work. Generating these labels is time-consuming
and prone to errors [19]. Although these supervised deep learning approaches achieve state-
of-the-art results on public benchmarks, their usage in industries is limited without similarly
large annotated datasets in specific domains. Semi-supervised learning methods [20] have
emerged as a solution to insufficient labeled data for deep learning applications. Recent ad-
vancements [21,22,23] utilize two detectors: one generates pseudo-labels for unlabeled data,
and the other refines predictions using these pseudo-labels and a smaller set of labeled data.
These detectors update each other throughout training [24,25,26,27]. However, it’s impor-
tant to note that the initial pseudo-label generator is often not robust, potentially leading
to inaccurate labels and affecting overall performance.

Additionally, there are two major drawbacks in the earlier CNN-based semi-supervised
methods[28,21,22]: First, they rely on anchor points for region proposals that require manual
tuning. Second, they use post-processing techniques like Non-Maximal Suppression(NMS)
to limit the number of overlapping predictions. The emergence of transformer-based meth-
ods [29,30,31,32] make the network end-to-end without NMS and anchor-free. This is possi-
ble due to their dependence on the attention mechanism and object queries. Consequently,
there has been research mainly to improve the quality of object queries and improve the at-
tention mechanism[33]. For example, Deformable DETR [30], AdaMixer [31] and REGO [34]
focus on advancing the attention mechanism. Meanwhile, models like DN DETR [35], DAB
DETR [36], and DINO DETR [29] are dedicated to improving the quality of object queries,
and H-DETR [37], Co-DETR [32], and FANet [38] aim to increase the quantity of object
queries. However, this increase leads to redundant predictions, adversely affecting perfor-
mance. To counter this, a dual-stage object query approach has been proposed, combining
one-to-one and one-to-many matching strategies. Despite its effectiveness, this method still
impacts performance [37]. Addressing these challenges, we employ SAM-DETR [39], a novel
model designed to optimize the matching process between object queries and corresponding
target features in a semi-supervised setting. This approach effectively reduces false positives
and improves table detection performance in complex documents.

In this paper, we introduce a novel semi-supervised approach for table detection, em-
ploying SAM-DETR [39] detector. Our main objective is to solve the non-robustness of
the pseudo-label generation process. The training procedure consists of two modules: the
teacher and the student. The teacher module consists of a pseudo-labeling framework, and
the student uses these pseudo-labels along with a smaller set of labeled data to produce
the final predictions. The pseudo-labeling process is optimized by iteratively refining the
labels and the detector. The teacher module is updated by an Exponential Moving Average
(EMA) from the student to improve the pseudo-label generation and detection modules.
Our approach differs from conventional pseudo-labeling methods by incorporating a SAM-
DETR detector without object proposal generation and post-processing steps like NMS. We
enhance the ability to accurately match object queries with corresponding target features in
complex documents, particularly excelling in the detection and handling of tables in semi-
supervised settings. The intrinsic flexibility of this method enables consistent and reliable
performance in various scenarios, including diverse table sizes and scales, within a semi-
supervised learning context. Furthermore, this framework creates a reinforcing loop where
the Teacher model consistently guides and improves the Student model. Our evaluation
results demonstrate that our semi-supervised table detection approach achieves superior
results compared to both CNN-based and other transformer-based semi-supervised meth-
ods without needing object proposals and post-processing steps such as NMS.

We summarize the primary contributions of this paper as follows:

• We introduce a novel semi-supervised approach for table detection. This approach elim-
inates the need for object proposals and post-processing techniques like Non-maximal
Suppression (NMS).
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• To the best of our knowledge, this is the first network that optimizes the matching
process between object queries and corresponding target features in a semi-supervised
setting.

• We conduct comprehensive evaluations on four diverse datasets: PubLayNet, ICDAR-
19, TableBank, and Pubtables. Our approach achieves results comparable to CNN-based
and transformer-based semi-supervised methods without requiring object proposal pro-
cesses and Non-maximal Suppression (NMS) in post-processing.

2 Related Work

Analyzing document images involves the integral table detection task. This segment sum-
marizes techniques for detecting tables, especially those involving complex structures. Initial
methods relied on rules or metadata [40,41,42,43]. Meanwhile, more recent advances employ
statistical and deep learning techniques [13,44,45,46], improving system adaptability and
generalizability.

2.1 Table Detection Approaches

Rule-based Approaches Itonori et al. [40] laid the groundwork for table detection.
The central focus was identifying tables as distinct text blocks using predefined rules.
Building upon this, methods like [42] improved the approach by integrating various tech-
niques, including table detection based on layout [47] or extracting tables from HTML-
formatted documents [48]. Although effective for specific document types, these rule-based
methods[5,6,7,49,50] lacked the flexibility to be universally applicable.
Learning-based Approaches Cesarini et al. [51] deviates from rule-based approaches by
pioneering a supervised learning system for identifying table objects in document images.
Their approach transforms a document image into an MXY tree model by classifying the
blocks surrounded by vertical and horizontal lines as table objects. They further employed
Hidden Markov Models [52,53] and an SVM classifier, along with conventional heuristics
[54] for table detection. These techniques still needed additional data like ruling lines. In
contrast, Deep Learning-based methods, further categorized as object detection, seman-
tic segmentation, and bottom-up approaches, have demonstrated superior accuracy and
efficiency over traditional techniques.
Approaches Based on Semantic Segmentation. Approaching table detection as a seg-
mentation problem, methods like [55,56,57,58] generate pixel-level segmentation masks and
then aggregate the masks to achieve final table detection. These methods utilize existing
semantic segmentation networks and outperform traditional methods on various benchmark
datasets [59,60,61,62,63,64,65]. Yang et al.’s [55] approach introduced a fully convolutional
network (FCN) [66]. They used additional linguistic and visual features to enhance the seg-
mentation results of page objects. He et al. [56] developed a multi-scale FCN that generates
segmentation masks and their contours for table/text areas. They isolate the final table
blocks after further refining the masks.
Bottom-Up Methods. These methods treat table detection as a graph-labeling task with
graph nodes as page elements and edges as connections between them. Li et al. [67] used
a conventional layout analysis to identify line areas. They then utilized two CNN-CRF
networks to categorize these lines into four classes: text, figure, formula, and table. Later,
they predicted a cluster for each pair of line areas. Holecek et al. [68] and Riba et al. [69]
constructed a graph to establish the document layout and viewed text areas as nodes. They
then used graph-neural networks for classifying nodes and edges. These methods require
certain assumptions, like the necessity of text line boxes as additional input.
Object Detection-Focused Techniques Table detection in document images [70,71]
is considered an object detection challenge, treating tables as natural objects. Hao et
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al. [72] and Yi et al. [73] utilized R-CNN for table detection, but their performance still
depended on heuristic rules, similar to earlier methods. Subsequently, more advanced single-
stage object detectors like RetinaNet [74] and YOLO [75], as well as two-stage detec-
tors like Fast R-CNN [8], Faster R-CNN [9], Mask R-CNN [76], and Cascade Mask R-
CNN [77], were employed for detecting various document elements, including figures and
formulas [78,79,80,81,82,83,13,84]. Additional enhancement techniques, such as image trans-
formations involving coloration and dilation, were applied by [79,82,85]. Siddiqui et al. [86]
integrate deformable convolution and RoI-Pooling [87] into Faster R-CNN for improved
handling of geometrical changes. Agarwal et al. [83] combined a composite network [88]
with deformable convolution to enhance the efficiency of the two-stage Cascade R-CNN.
These CNN-based object detectors include heuristic stages like proposal generation and
post-processing steps like non-maximal suppression (NMS). Our semi-supervised model
treats detection as a set prediction task, eliminating the need for anchor generation and
post-processing stages like NMS, resulting in a more streamlined and efficient detection
process.

2.2 Semi-Supervised Learning in Object Detection

Semi-supervised object detection can be classified into consistency-based methods [89,90]
and pseudo-label generation methods [21,22,23,91,92,93,94,95]. Our work focuses on the lat-
ter. Earlier works [21,22] employ diverse data augmentation techniques to generate pseudo-
labels for unlabeled data. Meanwhile, [23] introduces SelectiveNet for pseudo-label gener-
ation by superimposing a bounding box from an unlabeled image onto a labeled image to
ensure localization consistency within the labeled dataset. However, this approach involves
a complex detection process due to image alteration. STAC [94] proposes to use strong aug-
mentation for pseudo-label creation and weak augmentation for model training. Our method
introduces a seamless end-to-end semi-supervised approach for table detection. Similar to
other pseudo-label techniques [21,22,23,94,95], it incorporates a multi-level training strat-
egy without the need for anchor generation and post-processing steps like Non-Maximal
Suppression (NMS).

3 Methodology

First, the paper reviews SAM-DETR, a recent approach for detecting objects using trans-
formers, in Section 3.1. Then, Section 3.2 describes our semi-supervised approach for learn-
ing with limited supervision and the generation of pseudo-labels for training.

3.1 Revisiting SAM-DETR

DEtection TRansformer (DETR) [96] introduces an encoder-decoder network for object
detection. The encoder network extracts features from the image to focus on key details.
The decoder then processes these features with object queries, using self-attention and cross-
attention mechanisms to identify and locate objects. However, DETR’s initial non-selective
approach in processing images and object queries can lead to slower detection, especially
in semi-supervised learning with limited data. By refining the attention mechanism and
enhancing the quality and quantity of object queries, researchers aim to boost DETR’s
efficiency, accuracy, and training speed [33]. SAM-DETR, as shown in Fig. 1 stands out
for its innovative addition of a semantics aligner module and learnable reference boxes
within the Transformer decoder part of DETR. Overall, SAM-DETR’s enhancements to
the original DETR model focus on making the object detection process more efficient in
terms of accuracy and speed.
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Fig. 1: Overview of SAM-DETR [39]. (a) the architecture of a single decoder layer in SAM-
DETR, showing the role of learnable reference boxes in generating position embeddings for
each object query. (b) the pipeline of the Semantics Aligner. The process includes the use
of reference boxes for feature extraction via RoIAlign, the prediction of salient points in the
targeted region, and the generation of new, semantically aligned query embeddings, which
are further refined by incorporating attributes from previous queries. Image from [39].

Semantics Aligner. Semantic-Aligned Matching focuses on improving the interaction
between object queries and encoded image features. Generally, the cross-attention module
uses a dot-product method, which is effective in identifying similarities between two vectors.
This method typically guides object queries to focus on regions of the image that are more
similar. However, the original DETR model does not ensure that object queries and encoded
image features are in the same embedding space, leading to less effective matching and
requiring extensive training time. To address this, the Semantic-Aligned Matching approach
introduces a mechanism to align object queries with encoded image features semantically.
This alignment ensures that both are in the same embedding space, making the dot-product
a more meaningful measure of similarity. As a result, object queries are more likely to focus
on semantically similar regions, enhancing the efficiency and effectiveness of the object
detection process.
Multi-Head Attention and Salient Points. In DETR, multi-head attention is crucial
for focusing on different image parts, enhancing scene understanding. SAM-DETR builds
on this by identifying key points on objects, using ConvNet and MLP to predict these points
for better alignment and detection. Features from these points are integrated with multi-
head attention, allowing each head to concentrate on specific, significant object features,
improving accuracy and localization.
Reweighted Queries. The Semantics Aligner in DETR aligns object queries with encoded
image features but initially misses crucial information from previous embeddings. To address
this, it uses a linear projection and sigmoid function to create reweighting coefficients,
applied to both new and positional query embeddings. This ensures important features are
emphasized and previous data is utilized, significantly enhancing detection.

3.2 Semi-Supervised SAM-DETR

We propose a semi-supervised learning approach that improves object detection through
semantic alignment and utilizes limited labeled data for training, as shown in Fig. 2. The
model leverages fully labeled and unlabeled data for object detection tasks in the semi-
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Fig. 2: Illustration of our Semi-Supervised Table Detection Framework. This dual-
component system involves a Student module that learns from a mix of labeled data and
strongly augmented unlabeled images, and a Teacher module that refines its understand-
ing using weakly augmented unlabeled images. The Student module updates the Teacher
module using Exponential Moving-Average (EMA) during training. Within this setup, the
Semantics Aligner (SA) is key in the decoder of the student-teacher framework, fine-tuning
the relationship between object queries and the image features that have been encoded,
ensuring a more effective and accurate detection of tables in various documents.

supervised setting. It consists of two key modules: the student and teacher modules. The
student module processes both labeled and unlabeled images. Strong augmentation is ap-
plied to unlabeled data, while strong and weak augmentations are applied to labeled data.
The teacher module operates on unlabeled images with weak augmentations. It plays a
crucial role in generating pseudo-labels for unlabeled data. These pseudo-labels are then
employed for supervised training by the student module. Weak augmentation is applied
to the unlabeled data for the teacher module to produce more accurate pseudo-labels. In
contrast, the student module, designed for more challenging learning, utilizes strong aug-
mentation for unlabeled data. At the start of training, the teacher and student models are
randomly initialized. As training progresses, the teacher model is continuously updated by
the student model using an exponential moving average (EMA) strategy. For the student
module, the student’s queries Qs and features Fs are fed into the decoder. Similarly, in the
teacher module, the teacher’s queries Qt and features Ft go through a similar process with
the teacher’s decoder as follows:

ôs = Decoders (Qs, Fs) (1)

ôt = Decodert (Qt, Ft) (2)

In the decoder, the Semantics Aligner processes the encoded image features for students
Fs and teachers Ft, both initially in 1D sequences of dimensions HW × d. The Aligner
converts these features into 2D maps with dimensions H×W ×d, using the reference boxes
of object queries, denoted as Rbox

s for the student and Rbox
t for the teacher. After this

transformation, the aligner employs RoIAlign to extract region-level features, represented
as FR

s for the student and FR
t for the teacher, from the encoded image features. The final

step involves generating new object queries, Qnew and their position embeddingsQnew pos,
through resampling based on FR

s and FR
t as follows.

FR
s = RoIAlign(Fs, R

box
s ), FR

t = RoIAlign(Ft, R
box
t ) (3)
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Qnew
s , Qnew

s,pos = Resample(FR
s , Rbox

s , Qs), (4)

Qnew
t , Qnew

t,pos = Resample(FR
t , Rbox

t , Qt) (5)

Next, we extract features via a ConvNet and MLP to identify salient points within these
regions. These points are then used to create new object query embeddings Qnew

s and Qnew
t ,

ensuring they stay within reference boxes for accuracy. Finally, position embeddings Qnew
s,pos

and Qnew
t,pos derived from these points are concatenated, feeding into a multi-head cross-

attention module for further processing.

Rsp
s = MLP (ConvNet(FR

s )) (6)

Qnew
s = Concat

({
FR
s [. . . , x, y, . . .] for x, y ∈ Rsp

s

})
(7)

Qnew
s,pos = Concat(Sin(Rbox

s , Rsp
s )) (8)

Rsp
t = MLP (ConvNet(FR

t )) (9)

Qnew
t = Concat

({
FR
t [. . . , x, y, . . .] for x, y ∈ Rsp

t

})
(10)

Qnew
t,pos = Concat(Sin(Rbox

t , Rsp
t )) (11)

The semantics aligner generates new object queries aligned with image features and incorpo-
rates previous query embeddings by generating reweighting coefficients. These coefficients,
created through linear projection and sigmoid functions, are applied to new and old query
embeddings to emphasize key features. This approach ensures that the valuable information
from previous queries is effectively utilized.

Qnew
s = Qnew

s ⊗ σ(QsW
RWs1
s ), Qnew

t = Qnew
t ⊗ σ(QtW

RWt1
t ) (12)

Qnew
s,pos = Qnew

s,pos ⊗ σ(QsWs
RWs2), Qnew

t,pos = Qnew
t,pos ⊗ σ(QtWt

RWt2) (13)

Here, WRWt1 and WRWt2 are used to denote linear projection functions. The symbol σ(·)
refers to the sigmoid function, while ⊗ represents the operation of element-wise multiplica-
tion. The subscripts t and s refer to the teacher and student module, respectively. Combining
the semantic alignment capabilities with the semi-supervised approach allows the model to
effectively utilize labeled and unlabeled data, leading to improved object detection perfor-
mance. This approach is particularly useful when labeled data is limited, as it maximizes
the information extracted from available resources.

4 Pseudo-Label Filtering Framework

In our semi-supervised learning framework, we employ the Top-K pseudo-label filtering
technique to augment the training process of our machine learning models, especially when
the labeled data is limited. This approach is instrumental in making the most of the unla-
beled data. Here, the key strategy is pseudo-labeling, where our model generates labels for
the unlabeled data based on its current level of understanding. However, diverging from the
traditional method of relying on the single most confident prediction, our top-k approach
considers each data point’s top ’k’ predictions. For instance, if ’k’ is set at 3, the model
evaluates and includes the three highest probable labels for each piece of unlabeled data
in the training process. The benefits of our top-k strategy are significant. Firstly, it broad-
ens the model’s exposure to more challenging ’hard samples’ data points that are typically
difficult to classify and might be overlooked by standard top-1 pseudo-labeling methods.
Including a wider range of examples substantially improves the model’s learning. Secondly,
our approach is effective in cases involving objects or data points with similar features. By
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acknowledging and incorporating ambiguity through multiple potential labels, the model
is better equipped to handle complex classification scenarios where clear-cut distinctions
between categories are not always evident. Implementing the top-k pseudo-label filtering
in our semi-supervised learning setting is a pivotal step towards enhancing the model’s
accuracy and robustness, ensuring a more comprehensive and enhanced learning process.
The teacher model generates pseudo boxes for unlabeled images, and the student model is
trained on labeled images with ground-truth annotations and unlabeled images with pseudo
boxes treated as ground-truth. Therefore, the overall loss is defined as the weighted sum of
supervised and unsupervised losses:

L = Ls + αLu, (14)

Where Ls represents the supervised loss for labeled images, Lu represents the unsu-
pervised loss for unlabeled images, and α with value 0.25 controls the contribution of the
unsupervised loss. Both losses are normalized by the respective number of images in the
training data batch:

Ls =
1

Nl

Nl∑
i=1

(Lcls(I
l
i) + Lreg(I

l
i)), (15)

Lu =
1

Nu

Nu∑
i=1

(Lcls(I
u
i ) + Lreg(I

u
i )), (16)

Where I li indicates the i-th labeled image, Iui indicates the i-th unlabeled image, Lcls is
the classification loss, Lreg is the box regression loss, Nl is the number of labeled images,
and Nu is the number of unlabeled images. Overall, our semi-supervised learning setting
enhances the model’s accuracy and robustness, ensuring a more comprehensive learning
process.

5 Experimental Setup

5.1 Datasets

TableBank: TableBank [64], a prominent dataset in the field of document analysis, ranks
as the second-largest collection for table recognition tasks. This dataset comprises 417,000
document images, annotated via a process of crawling the arXiv database. It categorizes
tables into three types: LaTeX images (253,817), Word images (163,417), and a combined
set (417,234). Furthermore, TableBank provides data for table structure recognition. In our
study, we utilizeonly the table detection component of the TableBank dataset.
PubLayNet: PubLayNet [60], a sizable dataset in the public domain, encompasses 335,703
images for training, 11,240 for validation, and 11,405 for testing. It features annotations
like polygonal segmentation and bounding boxes for figures, lists, titles, tables, and texts
in images sourced from research papers and articles. The dataset’s evaluation employed the
COCO analytics method [97]. We selectively used 102,514 images from the 86,460 table
annotations in PubLayNet for our experiments.
PubTables: PubTables-1M [65], specifically tailored for table detection in scientific doc-
uments, is an extensive dataset featuring nearly one million tables. It stands out for its
comprehensive annotations, including precise location information, crucial for accurately
detecting tables within diverse documents. Its large scale and meticulous annotations make
it a significant resource for developing and refining table detection algorithms.
ICDAR-19: The ICDAR 2019 competition for Table Detection and Recognition (cTDaR)
[59] introduced two novel datasets (modern and historical) for the table detection task
(TRACK A). To facilitate direct comparisons with previous methods [82], we provide results
at an Intersection over Union (IoU) threshold of 0.8 and 0.9.
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5.2 Evaluation Criteria

We assess the effectiveness of our semi-supervised table detection method through specific
evaluation metrics: Precision, Recall, and F1-score. Precision [98] is the ratio of correctly
predicted positive observations (True Positives) to the total predicted positive observations
(True Positives + False Positives). Recall [98] measures the proportion of actual positives
correctly identified (True Positives) out of the total actual positives (True Positives + False
Negatives). The F1-score [98] is the harmonic mean of Precision and Recall. Moreover, We
evaluate our approach using AP@50 and AP@75, which assess precision at 50% and 75%
IoU thresholds, reflecting moderate and high localization accuracy respectively, alongside
average recall, measuring our model’s capacity to detect all relevant instances

5.3 Implementation Details

We use the ResNet-50 backbone on 8 Nvidia RTXA6000 GPUs, initially trained on the
ImageNet dataset, to evaluate the effectiveness of our semi-supervised method. We train on
a diverse range of datasets, including PubLayNet, ICDAR-19, PubTables, and all subsets
of the TableBank dataset, taking randomly 10%, 30%, and 50% labeled data with the
remaining as unlabeled. We conduct pseudo-labeling with a 0.7 threshold and optimize
using AdamW. Our training spans 120 epochs, reducing the learning rate by 10% after the
110th epoch, and we typically set our batch size to 16. We adopt DETR’s data augmentation
strategy, which involves horizontal flipping, random cropping, and resizing. Additionally,
we apply strong augmentation techniques such as horizontal flips, resizing, patch removal,
cropping, conversion to grayscale, and Gaussian blur. For weak augmentation, we focus
mainly on horizontal flipping. Setting the number of queries (N) in the decoder to 30 gives
the best results. Our resizing approach ensures the image’s longest side is at most 1333 pixels
and the shortest side is at least 480 pixels. These strategic adjustments and augmentations
boost the model’s performance and efficiency.

Table 1: Performance of our semi-supervised
transformer-based approach on different splits
of TableBank dataset with varying percentage
label data.

Dataset Labels mAP AP50 AP75 ARL

TableBank-word
10% 92.9 95.3 93.9 97.4
30% 94.1 95.8 94.5 98.2
50% 94.3 95.8 94.8 98.3

TableBank-latex
10% 91.2 97.6 96.4 95.3
30% 93.7 97.3 96.3 97.7
50% 94.8 97.9 97.0 98.1

TableBank-both
10% 92.7 95.8 94.6 93.6
30% 93.8 95.2 95.2 93.6
50% 94.2 96.1 95.8 95.8

Table 2: Recall results comparison of
our semi-supervised approach with pre-
vious semi-supervised table detection ap-
proach. Here Def-semi refers to [99].

Dataset Labels Def-semi Our

TableBank-word
10% 87.1 97.4
30% 92.1 98.2
50% 94.5 98.3

TableBank-latex
10% 74.3 95.3
30% 89.0 97.7
50% 91.4 98.1

TableBank-both
10% 90.1 93.6
30% 91.5 93.6
50% 95.3 95.8

6 Results and Discussion

6.1 TableBank

In our study, we evaluate our approach using the TableBank dataset, examining perfor-
mance across various splits with different proportions of labeled data: 10%, 30%, and 50%.
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Table 1 shows we achieve mAP of 92.9%, 91.2%, and 92.7% by using 10% labels of Table-
Bank word, latex, and both splits, respectively. Unlike previous semi-supervised table de-
tection method [99], which employs deformable DETR [30] with a focus on improving the
attention mechanism to improve the performance. Our semi-supervised approach optimizes
the matching process between object queries and image features. As a result, our semi-
supervised strategy achieves significantly higher recall rates than earlier semi-supervised
methods, as shown in Tables 2. This improvement shows the effectiveness of semi-supervised
table detection, particularly when dealing with limited labeled data. Table 3 presents a

Table 3: Comparative analysis of our semi-supervised approach with previous supervised
and semi-supervised methods on the TableBank-Both dataset using 10%, 30%, and 50%
labeled data. Here, the results are reported on mAP.

Method Approach Detector 10% 30% 50%

Ren et al. [9] supervised Faster R-CNN 80.1 80.6 83.3
Zhu et al. [30] supervised Deformable DETR 80.8 82.6 86.9
STAC [94] semi-supervised Faster R-CNN 82.4 83.8 87.1

Unbiased Teacher [100] semi-supervised Faster R-CNN 83.9 86.4 88.5
Humble Teacher [101] semi-supervised Faster R-CNN 83.4 86.2 87.9

Soft Teacher [28] semi-supervised Faster R-CNN 83.6 86.8 89.6
Shehzadi et al. [99] semi-supervised Deformable DETR 84.2 86.8 91.8

Our semi-supervised Sam-DETR 92.7 93.8 94.2

comparative analysis of our semi-supervised approach against prior supervised and semi-
supervised methods using the TableBank-both dataset, which includes splits with 10%,
30%, and 50% labeled data. The outcomes demonstrate that our approach outperforms
the earlier methods across these varying levels of labeled data. This is a significant find-
ing, highlighting the effectiveness of our semi-supervised strategy in scenarios with limited
labeled data availability.

6.2 PubLayNet

We also evaluate the performance of our transformer-based semi-supervised learning model
on the PubLayNet dataset, experimenting with different ratios of labeled to unlabeled
data (10%, 30%, and 50%). This study aims at understanding the model’s performance in
scenarios with limited labeled data, a common challenge in real-world applications. Table 4
shows we achieve mAP of 89.9%, 90.9%, and 93.2% by using 10%, 30%, and 50% labels of
PubLayNet dataset. We shows the visual analysis of our semi-supervised approach in Fig. 3.
Our semi-supervised approach also provides higher recall than the previous semi-supervised
approach, as observed in Table 5.

Table 4: Performance of our semi-supervised
transformer-based approach on PubLayNet
dataset with varying percentage label data.

Dataset Label-percent mAP AP50 AP75 ARL

PubLayNet
10% 89.9 97.1 94.3 96.6
30% 90.9 97.4 94.9 96.9
50% 93.2 97.7 95.0 97.3

Table 5: Recall results comparison
of our approach with previous semi-
supervised table detection approach.

Method 10% 30% 50%

Shehzadi et al. [99] 91.0 93.2 96.0
Our 96.6 96.9 97.3
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Fig. 3: Visual Analysis of our semi-supervised approach. Here, blue represents ground truth
and red denotes our predictions results using 10% labels on PubLayNet datatset.

We also compare our approach against traditional deep learning methods, both super-
vised and semi-supervised, to highlight advancements. A key focus is the model’s perfor-
mance with only 10% labeled data, where we observe that our approach achieves the highest
mAP score of 89.9, as detailed in Table 6. This shows the effectiveness of our method in
leveraging minimal labeled data, demonstrating the significant potential of our approach
for practical applications in table detection and recognition.

Table 6: Comparative analysis of our semi-supervised approach with previous supervised
and semi-supervised methods on PubLayNet table class dataset using 10%, 30%, and 50%
labeled data. Here, the results are reported on mAP.

Method Approach Detector 10% 30% 50%

Ren et al. [9] supervised Faster R-CNN 83.4 86.6 87.9
Zhu et al. [30] supervised Deformable DETR 83.9 86.8 88.1

Soft Teacher [28] semi-supervised Faster R-CNN 88.3 89.5 92.5
Shehzadi et al. [99] semi-supervised Deformable DETR 88.4 90.3 92.8

Our semi-supervised SAM-DETR 89.9 90.9 93.2

6.3 PubTables

In this subsection, we detail our experimental results for the PubTables dataset in a semi-
supervised setting using different percentages of labeled data. Our analysis includes a com-
parison between our transformer-based semi-supervised method and earlier CNN-based
and transformer-based supervised approaches. As shown in Table 7, our semi-supervised
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approach achieves a 92.3 mAP score even with only 10% of the data labeled, which high-
lights the effectiveness of our method in utilizing a smaller amount of labeled data to attain
high accuracy.

Table 7: Performance of our semi-supervised transformer-
based approach on the PubTables dataset with varying lev-
els of labeled data (10%, 30%, 50%). Results show high
accuracy with even a minimal amount of labeled data.

Dataset Label mAP AP50 AP75 ARL

PubTables
10% 92.3 93.7 93.8 87.8
30% 93.5 94.8 93.7 88.1
50% 93.8 94.8 94.8 88.3

Table 8 presents a comparison between our semi-supervised approach and previous su-
pervised methods. While a direct comparison isn’t feasible due to different percentages of
label data for training, our results are notably comparable. For instance, a Faster R-CNN
model trained on fully labeled data achieved an mAP of 82.5, whereas our semi-supervised
approach reached an mAP of 92.3 using only 10% labeled data.

Table 8: Comparative Analysis of Semi-Supervised and Supervised
Methods. It clearly shows that our semi-supervised model achieves
comparable results even with limited data.

Method Approach Detector mAP AP50 AP75

Smock et al. [65] supervised Faster R-CNN 82.5 98.5 92.7

Smock et al. [65] supervised DETR 96.6 995 98.8

Our semi-supervised (10%) SAM-DETR 92.3 93.7 93.8

Comparisons with Previous Table Detection Approaches. In Table 9, we present a
comprehensive comparison of our semi-supervised table detection approach against exist-
ing supervised and semi-supervised methods. Our approach facilitates learning with signif-

Table 9: Comparative analysis of our semi-supervised approach with previous supervised
and semi-supervised methods. Here, the results are reported on mAP.

Method Approach Labels TableBank PubLayNet PubTables

CDeC-Net [83] supervised 100% 96.5 97.8 -
CasTabDetectoRS [45] supervised 100% 95.3 - -
Faster R-CNN [60] supervised 100% - 90

VSR [102] supervised 100% - 95.69
Smock et al. [65] supervised 100% - - 96.6

Shehzadi et al. [99] semi-supervised 10% 84.2 88.4 -
Our semi-supervised 10% 92.7 89.9 92.3
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icantly fewer labeled instances. Our semi-supervised method performs well despite limited
labeled data, achieving high mAP scores on datasets and outperforming previous semi-
supervised models. It shows improved performance in scenarios with scarce labeled data,
offering comparable results to fully supervised methods while using only 10% of their labeled
data.

6.4 ICDAR-19

In our analysis, we additionally conduct an evaluation of the ICDAR-19 TrackA table
detection dataset across different Intersection over Union (IoU) thresholds using 50% labeled
data. Furthermore, we compare our semi-supervised approach with earlier supervised and
semi-supervised strategies, as depicted in Table 10. The results, utilizing 50% labeled data,
show that our transformer-based semi-supervised framework surpasses prior semi-supervised
methods, demonstrating superior accuracy.

Table 10: Performance comparison between the proposed semi-supervised approach and
previous state-of-the-art results on the dataset of ICDAR 19 Track A (Modern).

Method Approach IoU=0.8 IoU=0.9
Recall Precision F1-Score Recall Precision F1-Score

TableRadar [59] supervised 94.0 95.0 94.5 89.0 90.0 89.5
NLPR-PAL [59] supervised 93.0 93.0 93.0 86.0 86.0 86.0

Lenovo Ocean [59] supervised 86.0 88.0 87.0 81.0 82.0 81.5
CDeC-Net [83] supervised 93.4 95.3 94.4 90.4 92.2 91.3

HybridTabNet [46] supervised 93.3 92.0 92.8 90.5 89.5 90.2
Shehzadi et al. [99] semi-supervised (50%) 71.1 82.3 76.3 66.3 76.8 71.2

Our semi-supervised (50%) 73.5 83.8 77.2 68.4 77.8 72.1

7 Ablation Study

In the ablation study, we evaluate the model’s performance using only 30% of the labeled
data from the PubTables dataset. The study observes the effect of varying the pseudo-
labeling confidence threshold, the number of filtered pseudo-labels, and the number of
learnable queries, offering insights into their roles in enhancing model performance in doc-
ument analysis tasks.
Pseudo-Labeling confidence threshold The choice of a confidence threshold in pseudo-
labeling influences the performance of our semi-supervised approach, as observed in Ta-
ble 11. A low threshold leads to the filtering of a large number of pseudo-labels. However,
these include incorrect pseudo-labels, introducing noise into the training process, and poten-
tially degrading the model’s performance. On the other hand, a high threshold ensures the
generation of high-quality pseudo-labels, reducing the risk of noise. However, this results in
fewer pseudo-labels fed into the student network, thus not fully leveraging the advantages of
semi-supervised learning. The balance between generating enough pseudo-labels and ensur-
ing that these pseud-labels are accurate enough to be useful is crucial in optimizing model
performance.
Influence of Learnable queries Quantity We examine the effect of both increasing and
decreasing the number of input queries on the performance of our semi-supervised approach,
as highlighted in Table 12. While increasing the queries can improve the model’s ability to
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Table 11: Performance comparison using dif-
ferent Pseudo-labeling confidence threshold
values. The best threshold values are shown
in bold.

Threshold AP AP50 AP75

0.5 89.8 91.3 90.4
0.6 90.4 92.1 91.5
0.7 93.5 94.8 93.7
0.8 90.2 91.7 90.2
0.9 88.6 89.3 89.1

Table 12: Performance comparison using
different numbers of learnable queries to the
decoder input. Here, the best performance
results are shown in bold.

Queries AP AP50 AP75

10 88.5 87.8 86.8
30 93.5 94.8 93.7
60 91.8 92.8 91.5
100 88.6 90.2 87.3
300 82.1 85.3 84.1

detect and focus on a wide range of features, enhancing accuracy in complex detection
tasks, it also leads to more overlapping predictions, necessitating the use of Non-Maximum
Suppression (NMS). Conversely, decreasing the number of queries reduces computational
complexity but limits the model’s detection capabilities. We find that our model achieves
the best performance with 30 queries. Deviating from this optimal count, whether by in-
creasing or decreasing the number of queries, significantly impacts the model’s accuracy
and efficiency.

Table 13: Performance evaluation using top-k pseudo-labels. The best results are in bold.

Top-k AP AP50 AP75

1 90.5 93.8 91.2
2 91.7 94.4 91.9
3 93.5 94.8 93.7
4 92.8 94.2 92.5

Influence of quantity of Pseudo-label Filtering In Table 13, we observe the impact
of varying quantities of filtered pseudo-labels generated by the teacher network on model
performance. While including more pseudo-labels enhances model performance, it is also
vital to consider their quality. Selecting more pseudo-labels, such as the top-4, inherently
introduces some lower-quality labels into the training process. Including less reliable pseudo-
labels can adversely affect the model’s performance, highlighting the need for a balanced
approach in pseudo-label selection that optimizes quantity and quality to achieve the best
model performance.

8 Conclusion

Our research addresses the challenge of accurately and efficiently detecting document ob-
jects, such as tables and text, in semi-supervised settings. This approach utilizes minimal
labeled data and employs student-teacher networks that mutually update during training.
Previous transformer-based research focused on improving attention or increasing the num-
ber of object queries, which impacts training time and performance. We eliminate the need
for NMS and focus on matching between object queries and image features. Our novel ap-
proach using SAM-DETR in a semi-supervised setting helps align object queries with target
features, significantly reducing false positives and improving the detection of document ob-
jects in complex layouts. In short, our semi-supervised method enhances the accuracy of
document analysis, particularly in scenarios with limited labeled data.
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