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Abstract. Guiding students towards achieving the Intended Learning
Outcomes (ILOs) of an academic module as part of a mentoring process
presents a significant challenge, as it is important not only to emphasize
the necessary skills, but also to consider the ongoing personal progress
towards achieving a learning outcome. In addition, most educational con-
tent is presented in a ‘one-size-fits-all’ way, without taking into account
the individual needs of students. In this paper we present a recommen-
dation system based on Reinforcement Learning (RL) that derives its
suggestions from the students’ progress towards achieving the ILOs and
the current relevance of the ILOs, according to the specific didactic design
of the module. The taxonomy model proposed by Anderson and Krath-
wohl, serves as the groundwork for abstracting ILO progress, temporal
relevance, and the affiliation of recommendation items. In the process
of creating a recommendation pool, experts identified the mathemati-
cal concept and the taxonomy level addressed by existing e-assessments
in order to identify their possible association with ILOs. The RL agent
utilizes this dynamic measurement of the student’s ILO progress - mea-
sured by the Bayesian knowledge tracing algorithm - to improve its rec-
ommendations, contributing to the ongoing personalisation of learning
paths. In our evaluation, which utilized a test set of 129 mathemati-
cal tasks, the tested RL algorithms significantly outperformed a random
baseline, underscoring the potential of this approach to enhance person-

alized learning within the realm of higher education mathematics.
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1 Introduction

In the evolving landscape of higher education, the demand for delivering per-
sonalized learning paths tailored to the distinct needs and capabilities of each
student is paramount, as it has been shown to significantly enhance learn-
ing outcomes, student satisfaction, motivation, and engagement [6]. However,
the development of these personalized learning paths demands significant effort
and continuous adaptation from educators, who must meticulously specify the
Intended Learning Outcomes (ILOs), which define the knowledge and skills stu-
dents should have acquired on successful completion of the module, and select
and arrange the learning content accordingly to ensure that the learning objects
contribute effectively to the achievement of the learning objectives [4]. Moreover,
educators must continually monitor and adjust students’ learning trajectories
to optimize educational impact. To support this complex process, a variety of
strategies and methods from the field of Intelligent Tutoring Systems (ITS) offer
promising ways to create personalized learning experiences.

This paper presents a novel approach to the design of personalised learn-
ing in higher education mathematics by designing a system that focuses on the
students’ progress towards achieving ILOs, the current relevance and cognitive
demand level of topics (based on the didactic model of the module), and the
desired challenge level of the students. The aim of this process is to recommend
relevant and suitable mathematical tasks, contributing to the effective and effi-
cient achievement of the ILOs.

This work introduces a recommender system leveraging Reinforcement Learn-
ing (RL), with a focus on applying and comparing the Proximal Policy Optimiza-
tion (PPO) [13] and the Deep Q Network (DQN) [11] algorithms. By evaluating
their performance in recommending from a collection of 129 mathematical tasks
across 312 topics, we aim to establish a benchmark against a random selection
method. This comparison provides insights into the potential of combining ILO
and RL to personalize learning by aligning task recommendations with students’
progress and the challenge level they seek, directly contributing to the achieve-
ment of ILOs set by educators.

In the following sections, we first provide a reference to related work. Sub-
sequently, we thoroughly introduce the design and implementation of our app-
roach. Finally, we describe the experiments conducted and discuss them, before
concluding the paper.

2 Related Work

A large part of the education technology research has focused on the implemen-
tation of the increasingly data-driven systems. However, people tend to trust
humans more than algorithms, especially if the task is considered subjective or
it requires consideration of individual uniqueness [8]. Therefore, it is crucial to
give a close attention to specific learner characteristics in this process. A com-
prehensive meta-analysis [7] showed that digital tool use had a positive effect on
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student learning outcomes and can enhance learning in secondary school math-
ematics and science.

In recent research on adaptive learning recommendation systems, RL has
been utilized to personalize educational processes effectively. An example of indi-
vidualized educational support is a task recommender for the domain of mathe-
matics based on RL and Item Response Theory (IRT) [12]. The recommendation
used the estimated total score and item difficulty estimates derived from IRT.
The results suggested that this method allowed for personalized and adaptive
recommendations of items within the user-selected threshold while avoiding those
with an already achieved target score.

Another approach is a knowledge graph-based, context-aware, recommender
system algorithm, which was influenced by agent exploration in RL, for cre-
ating sequential learning-path recommendations [1]. The evaluation showed an
enriched recommendation based on the learners’ context, as well as a better
discovery of relevant educational content.

[9] aimed at goal-oriented learning path recommendation and pointed out
that previous methods still failed to recommend effective goal-oriented paths due
to the under-utilizing of goals. Therefore they presented a Graph Enhanced Hier-
archical Reinforcement Learning (GEHRL) framework for goal-oriented learning
path recommendation. The framework divides learning path recommendation
into two parts: sub-goal selection (planning) and sub-goal achieving (learning
item recommendation). They employed a high-level agent as a sub-goal selector
to select sub-goals for the low-level agent to achieve. Experiments demonstrated
state-of-the-art performance of the framework.

Various RL-based strategies in educational recommendation systems typi-
cally utilize a Markov decision framework combined with specific RL algorithms
to solve it. For example, [2] integrates the Markov framework with Deep Deter-
ministic Policy Gradients to tailor online course recommendations to individual
learner profiles. Similarly, [15] also employs a Markov framework alongside DQN
to optimize learning paths by analyzing behavioral data. Additionally, [16] uses
a Markov decision process enhanced with DQN to dynamically adapt content
recommendations.

3 Design and Implementation

In the context of education, the principle of “Constructive Alignment” empha-
sizes the importance of aligning the ILOs (which reflect the goals and expecta-
tions of the educator for the students), learning activities (objects) and assess-
ment of a module, to ensure that the designed learning experiences are effectively
contributing to achieving the desired educational objectives [4]. To operationalize
the mapping of ILOs, various models exist, with one of the most well-known being
the revised Bloom’s taxonomy by Anderson and Krathwohl [3]. This, comprising
6 cognitive process dimensions (remember, understand, apply, analyze, evaluate,
create) and 4 knowledge dimensions (factual knowledge, conceptual knowledge,
procedural knowledge, metacognitive knowledge), serves as the foundation for
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this work, as it provides a structured framework for classifying learning objec-
tives and associated learning activities (objects). In the context of this research,
ILOs are technically defined by a mathematical concept and a certain taxon-
omy level. It is essential to note that this model is hierarchical, meaning that
addressing a specific level implies addressing all levels below it.

Within the domain of higher education mathematics described here, a vast,
university-wide pool of tasks exists, utilized, maintained, and further developed
by universities in Saxony, which comprises over 5000 mathematics tasks in the
area of higher education mathematics that, once classified according to these
taxonomies, can be effectively aligned with ILOs to achieve targeted educa-
tional objectives. The logical and structured progression of mathematical con-
cepts allows for the strategic reuse of tasks across different learning objectives.
This not only demonstrates the interconnectedness of mathematical topics, but
also significantly improves the efficiency of resource utilization. By repurposing
tasks, educators can enhance the use of existing educational materials, reducing
the necessity to develop new tasks for each distinct learning objective and pro-
moting a more sustainable approach to curriculum development. Additionally,
within the existing task pool, a significant portion lacks student outcome data,
limiting the applicability of conventional recommendation techniques. However,
the approach proposed in this paper, focusing on the taxonomy-classification
of tasks, enables dynamic and cross-module application even in the absence of
outcome data.

For our technical implementation, we utilized two principal reinforcement
learning algorithms: Proximal Policy Optimization (PPO) [13] and Deep Q Net-
work (DQN) [11]. The PPO, an On-Policy method, i.e. it directly optimizes
the policy currently making decisions, is known for its balance between perfor-
mance and interpretability. It uses a trust region approach to ensure minimal
deviation from the previous policy while seeking improvements [13]. Conversely,
DQN is an Off-Policy method, optimizing a policy that is separate from the
one generating the current data, that learns from a broader collection of past
interactions through experience replay and fixed Q-targets [11]. This approach
not only allows DQN to leverage historical data for learning but also enhances
stability and efficiency in the learning process. Both PPO and DQN are model-
free methods, meaning they learn optimal policies directly from interaction with
the environment without constructing a model of the environment, which is
particularly advantageous in complex or unknown environments where model-
ing the dynamics can be challenging. Both methods were implemented through
the Ray RLlib library [10], providing a comprehensive framework for managing
reinforcement learning experiments, and the Gymnasium package [17], offering
a standardized interface for simulating a wide array of environments, thereby
enabling the effective training and evaluation of our models.

3.1 Reinforcement Learning Environment

The presented recommendation problem of assigning optimal tasks for the effi-
cient and targeted achievement of ILOs was modelled as a Markov Decision
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Process (MDP), a common strategy in recommender systems known for its effec-
tiveness in sequential decision-making and long-term outcome optimization [14].
With MDP, an agent aims to select an action a from the set of all possible actions
A in a state s from a set of states S in order to reach a new state s’. This mod-
elling approach is based on the assumption that the transition to the subsequent
state s’ depends exclusively on the current state s and not on previous states.
This assumption is known as the Markov assumption and forms the basis of the
MDP. For the state transitions, the agent considers the transition probabilities
P and the set of reward functions R associated with these transitions. These
reward functions are used to reward or penalise the agent for state changes. The
objective of this method is to identify a policy that maximises the expected total
reward. Encapsulating the state space, action space, reward functions and tran-
sition probabilities in the tuple (S, A, R, T) provides a comprehensive definition
of the MDP [18].

State Space S. The state space, also known as the agent’s observation space,
defines all possible states that can be assumed by the agent’s environment. In
our modelling, each state s can be defined by a tuple (ut, pl, st), where:

1. wut: Is a list of tasks that the student has already solved.

2. pl: Is a prioritization list representing the current relevance of each concept,
influenced by the progress in the course and its didactic design. This is imple-
mented as a dictionary, where each element includes:

(a) The position in the prioritization list.

(b) A taxonomy mapping determining the desired cognitive level at which
the concept should be addressed in relation to the current state of the
course.

3. st: Is the representation of a student, also represented as a dictionary. Each
student contains:

(a) A challenge level indicating how much the student desires to be chal-
lenged.

(b) Progress on each concept. This is expressed by a taxonomy mapping
describing the extent of the student’s mastery of the concept at each
cognitive level.

Action Space A. The action space describes all actions that the agent can
choose in a given state. In our model, this encompasses all tasks that can be
recommended.

Reward Function R. The reward function evaluates an action in a given state
by a numerical value. In our model, we have integrated four different rewards
that reflect the adaptation of a task to the required relevance, the contribution
to the student’s progress, the selection of new tasks for the student and the
correspondence between the difficulty of a task and the desired challenge level
of the student. The assignment of the Relevance Reward ranges from 0 to 100,
and the Difficulty Reward and Reward for New Tasks functions range from 0
to 10. The Progress Reward typically ranges from 0 to 100 but can exceed 100
upon the achievement of ILOs, reflecting significant learning milestones.
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1. Reward based on the relevance of the selected task is determined by the
correspondence between the concepts and the addressed cognitive level rec-
ommended by the task and the prioritization list. The reward is computed for
each concept, and subsequently, the average across all concepts is considered
as the final relevance reward. For each concept i in a recommended task, the
reward is calculated as follows:

(a) Calculation of the Concept Relevance Factor (CRF):

|prioritization list| — index of concept;

CRF; =
! |prioritization list|

(b) Calculation of the Tazonomy Relevance Factor (TRF): For each concept
1 that is both in the task and the prioritization list, the TRF is calculated
to reflect the alignment between the cognitive levels of the tasks and the
requirements from the prioritization list. For cognitive levels j that match
exactly (j € matching levels), a factor of 1 is used. If a task addresses a
concept at a lower cognitive level (j € lower levels) than specified in the
prioritization list, a factor of 0.5 is used. Conversely, addressing a concept
at a higher cognitive level (j € higher levels) than specified results in a
factor of —1, penalizing the misalignment.

1+ > 05 + > -1

jE€matching levels j€lower levels j€higher levels

TRF, =
1J]

(¢) Calculation of the General Relevance Reward (RR):
RR; = (T'RF; - CRF; - weight;) - 100

2. The reward for contributing to the student’s learning progress, whose calcu-
lation is described in Subsect. 3.2, is calculated specifically for concepts that
appear in the prioritization list and at cognitive levels that are addressed
by these prioritized concepts. The calculation is performed for each relevant
concept i, with a greater impact on improvements in more relevant concepts.
(a) Calculate progress: Utilizing the Bayesian Knowledge Tracing (BKT)

algorithm, which accounts for the possibility of regression as well as
advancement in learning progress, we calculate the difference in student’s
mastery level before and after completing a recommended task. However,
to ensure the reward is positive, negative values are set to 0. The differ-
ence is calculated on average over each cognitive level j:

>_; max(0, value after; ; — value before; ;)
I

dif fi =

(b) Calculation of General Progress Reward (PR):

PR; = diff; - 100
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(¢c) Calculation of Achieved Bonus: This bonus is applied for each cognitive
level j where progress exceeds 90% (j € achieved), denoting mastery. If
mastery at any cognitive level regresses below this threshold, the bonus
is retracted.

PR;=PR;+ Y  CRF;-100

JE€achieved

3. The Difficulty Reward (DR) is calculated based on the task difficulty for
fulfilling the student’s challenge level.

DR — 10 if challenge level >= difficulty
0 else

4. The New Task Reward (NTR) is awarded for each task recommended to the
student that they haven’t completed yet.

NTR — {10 if tasks have not yet been completed by the student
)0 else

Transition Probability T. The transition probability quantifies the chance
of moving from one state to another when an action is performed in a particu-
lar state. In our context, this represents the probability that the progress of a
particular student will change as a result of the recommendation of a task.

3.2 Assessing Student Progress

In intelligent tutoring systems, the Bayesian Knowledge Tracing (BKT) algo-
rithm was initially designed to track how students acquire skills over time. Its
purpose is to estimate the likelihood of a student mastering a given skill based
on their performance in tasks or tests requiring that skill [5].

Extending BKT’s application beyond its original scope, we utilize it to moni-
tor students’ progression towards achieving ILOs within academic modules. This
adaptation allows us to assess each student’s advancement for specific concepts
covered by recommended tasks and at every cognitive level associated with these
concepts (encompassing all levels below), thereby offering a tailored approach to
enhancing educational content recommendations.

The BKT relies on four primary parameters, which can be adapted to our
context as follows:

— Pi,it: Initial probability of a student having achieved an ILO before attempt-
ing the recommended task

— Piransit: Probability of transitioning from not achieving to achieving an ILO
upon attempting the recommended task

— Pgip: Chance of a student making an error despite having achieved the ILO

— Pgyyess: Likelihood of a correct answer without achieving mastery of the ILO
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In our implementation, we assume that a student has not previously made
progress in any ILO of the module, starting with P;,;; = 0. In each recommen-
dation iteration, the test’s success is used to estimate the new level of progress,
becoming the new P;,;; in the subsequent iteration. To determine Pj.qpnsi¢ the
concept weight, the cognitive level addressed in the recommended task and the
task difficulty are multiplied together. Py, and Pgyess were assessed by math-
ematical experts on the basis of the task structure. The complete calculation is
performed as follows:

For a correct solution to the recommended task, we determine Pops—correct
using the formula:

P " _ Pinit . (1 - Pslip)
obs=correct —
F)init : (1 - Pslip) + (1 - Pznzt) : Pquess

If the solution is incorrect, Pops—wrong is calculated using the following formula:

P _ Pinit - Pstip
obs=wrong Bnit . Pslip + (1 _ Pi'n,it) . (1 — Pguess)

Subsequently, these calculated probabilities are employed to assess the student’s
progress within the specific concept ¢ and cognitive level j:

Progressm = Iobs + (1 - Pobs) . Ptransit

4 Experiments

4.1 Recommendation Pool

In order to create a recommendation pool to train the RL agent and measure
students’ progress in the ILOs, an experienced maths expert evaluated 129 exist-
ing online maths exercises taken from the learning management system OPAL
and the integrated examination software ONYX. This selected set of tasks repre-
sents all the exercises available to students in a first-semester Bachelor’s course
at HTWK Leipzig. The 129 exercises reflect the breadth of the module and cover
a total of 312 different concepts. Various criteria were taken into account when
selecting the exercises:

id Reference of the task

name Name of the task

link Direct link to the task for the presentation of the recommendation

difficulty Overall difficulty of the task

vector of weights Refers to the differentiated assignment of significance or
prominence to different concepts within a task

vector of concepts List of all concepts addressed in the task

vector of process dimensions Mapping of the addressed cognitive process
dimension per concept
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vector of knowledge dimensions Mapping of the addresed knowledge dimen-
sion per concept

slip probability Probability that a student who already has the skills required
in the task can fail the task

guess probability Probability that a student who does not have the skills
required in the task can solve the task by guessing

To obtain a detailed insight into the classification and assignment of tasks, refer
to the following representative example:

Task: Replace the question mark with one of the following quantifier to
make the following statement true:

vpeN:?qezzgeQ

A. V... for all

B. 3... there exists (at least one)
C. Z... there exists none

D. None of the above

The task engages students with concepts such as quantifiers, specifically the exis-
tential and universal quantifiers, and sets, including natural, real and rational
numbers. It is classified under the cognitive process dimension of “understand”
and the knowledge domain of “conceptual knowledge” for all its concepts, requir-
ing the identification of the correct quantifier to make the statement true. The
probability to slip is 0.1 due to the simplicity of the task and the absence of
input fields other than the single choice boxes. The guess probability is 0.25,
reflecting a chance of guessing the correct answer among the provided options.
Overall, the task is classified as having low difficulty, with a rating of 0.1 (10%
difficult), making it accessible for those with a foundational understanding of
the involved mathematical concepts.

4.2 Experimental Setup

In our study, we train the RL models and observe their performance in sim-
ulated environments with virtual students. For this purpose, the environments
were created wherein the RL-agent recommends a task to a randomly generated
student, for which an outcome is estimated. As described in Subsect. 3.1, each
environment consists of a student and a prioritization list for relevant concepts.
In our experimental setup, both are generated with random parameters at each
initialisation. For the prioritization list, a selection is made by choosing a ran-
dom number of concepts with a random selection of taxonomy levels at which
these concepts should be addressed. In order to simulate the processes of real
students, simulated students are generated by assigning them a random ability
level that represents their overall capability in handling tasks and a random



126 A. Pogelt et al.

progress, which is created by a random selection of concepts for which a random
value of progress per cognitive level was determined. Additionally, a function
was developed to determine whether a simulated student successfully completes
a given task. This determination is based on calculating a success rate, which
integrates the student’s ability level, the difficulty of the task, and the discrep-
ancy between the student’s progress and the task’s requirements. The success
rate is computed as follows:

success_rate = 0.5+ (a — 0.5) — (d — 0.5) — (g — 0.3)

where a represents the student’s ability level, which varies from 0 to 1, d indicates
the difficulty level of the task, also ranging from 0 to 1. g denotes the average gap
between the cognitive levels concepts are addressed in the task and the highest
level in which the student has achieved any progress in these concepts, with
values ranging from —1 to 1. Here, negative values indicate that the student’s
mean progress exceeds the cognitive levels adressed in the task. If this success
rate exceeds 0.5, the task completion is considered successful, and the student’s
learning progress is updated as detailed in Subsect. 3.2.

4.3 Results

To evaluate the effectiveness of the trained models a comparative analysis was
conducted against a random baseline across 1000 unique, randomly generated
environments, as described in Subsect. 4.2. These settings were created to sim-
ulate diverse student progress levels and the relevance of ILOs, incorporating
all 129 tasks as potential recommendations. Each model was required to issue a
single recommendation per environment.

The outcomes, depicted in Fig.1, are illustrated through two bar graphs,
showcasing the average rewards received from the recommendations. The first
graph offers a detailed breakdown by individual reward functions, revealing that
PPO outperforms in ‘Relevance Reward’ and ‘Progress Reward’ categories, sur-
passing both DQN and the random baseline. The noticeable outperformance
of both PPO and DQN in the ‘Progress Reward’ (PR) category compared to
the random baseline may be attributed to their more effective selection of tasks
that contribute to a student’s progression. All three approaches show similar
performance in the ‘New Task Reward’ category. This can be attributed to the
test environment setup, where each model was required to issue only a single
recommendation per environment, ensuring that the recommended task is inher-
ently new and thus all models invariably score the full 10 points in this category.
However, for ‘Difficulty Reward’ (DR), DQN’s recommendations stand out, out-
performing those of PPO and the random baseline, which suggests that DQN
may have a better strategy for gauging or responding to task difficulty levels.

The second graph compares the total rewards obtained by the algorithms,
highlighting that PPO achieves the highest improvement, outperforming the
random baseline by an average of 36.61%. Meanwhile, DQN also demonstrates
a notable advancement, being 30.49% better than the random selection. These
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findings underscore the efficacy of both RL algorithms and highlight the poten-
tial of RL to enhance personalized learning pathways in higher education
mathematics.

- PO 70 +36.61%
= DON +30.49%
= Baseline
259 60
04
204 >
T
£ 40
15 <
&
o
1]
Z 304
104
20
54
10
u- 0
RR PR NTR DR PPO DN Baseline
Reward Types Algorithms

Fig. 1. Comparison of algorithms PPO and DQN, along with a random baseline, across
four different reward functions (RR - Relevance Reward, PR - Progress Reward, NTR
- New Task Reward, DR - Difficulty Reward) in the left bar charts. The right bar chart
illustrates the cumulative reward comparison for PPO, DQN, and the baseline

5 Discussion

In this study, we introduced a RL-based recommendation system designed to sup-
port students in achieving ILOs. Our results showcase the system’s efficacy, with
the PPO algorithm outperforming a random baseline by 36.61%, and the DQN
algorithm also showing a commendable performance improvement of 30.49%
over the baseline. These findings highlight the practical utility of our approach
in personalizing learning experiences.

Despite the promising outcomes, the reliance on expert-classified data intro-
duces a potential for errors or subjective biases, suggesting a need for future
studies to involve multiple independent raters to enhance the classification’s
reliability. A further limitation noted is the selection bias introduced by utiliz-
ing all tasks from a specific module as the recommendation pool. This approach
does not account for the entire spectrum of possible tasks, potentially skewing
the algorithms’ performance when faced with a completely different set of tasks.
Acknowledging this, future work should investigate the system’s robustness and
performance across a broader range of tasks, ensuring its effectiveness in uni-
versally enhancing learning outcomes. The results of this study, derived from
a simulated environment, underscore the need for real-world testing to validate
the RL-based system’s effectiveness in actual educational settings. Conducting
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practical tests will be crucial for future work to identify potential challenges and
confirm the system’s impact on learning outcomes. Unlike related studies, such
as [12], which base recommendations on statistical analyses, our approach pro-
vides the capability to recommend tasks for which no outcome data is available.
Furthermore, the adaptability of the proposed methods, such as BKT and tax-
onomy classification, suggests broader applicability to diverse domains, opening
avenues for future research. It is conceivable to extend this approach to create a
generalized mathematics recommendation system suitable for various academic
modules with distinct ILOs. Although our approach requires the classification of
learning materials based on concepts and taxonomy levels, which poses a scalabil-
ity challenge, it uniquely allows for module-transcendent use of these materials.
In contrast to systems that recommend learning materials tailored to specific
skills, our method enables a more individual selection of materials aligned with
course-specific learning objectives. This facilitates contributions from multiple
stakeholders, such as instructors, who can add to a shared pool of resources that
others may use effectively.

6 Conclusion

This paper introduces an effective recommendation system designed for academic
settings, assisting students attaining the predefined learning objectives of a mod-
ule while considering the learner’s individual progress and specific preferences for
challenging tasks. By comparing the PPO and DQN algorithms against a ran-
dom baseline, we have shown that both algorithms are more efficient in selecting
appropriate tasks, indicating the potential of RL for enhancing the relevance of
educational content recommendations.

While the outcomes are encouraging, we acknowledge the study’s initial
reliance on simulated environments. Future work will focus on real-world appli-
cations to better understand the system’s practical benefits and limitations. This
step is crucial for assessing the system’s real impact on student learning and for
making necessary adjustments to enhance its effectiveness.

By moving towards implementing and testing in actual educational settings,
we aim to validate the system’s potential to personalize learning at a broader
scale. This research contributes to the ongoing discussion on integrating Al in
education, highlighting the importance of further exploration to fully realize its
benefits.
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