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Abstract Adaptation is a complex and error-prone task in Case-Based
Reasoning (CBR), including the adaptation knowledge acquisition and
modeling efforts required for performing adaptations. This is also evident
for the subfield of Process-Oriented Case-Based Reasoning (POCBR) in
which cases represent procedural experiential knowledge, making cre-
ation and maintaining adaptation knowledge even for domain experts
exceedingly challenging. Current adaptation methods in POCBR address
the adaptation knowledge bottleneck by learning adaptation knowledge
based on cases in the case base. However, these approaches are based on
proprietary representation formats, resulting in low usability and main-
tainability. Therefore, we present an approach of using adaptation rules
and rule engines for complex adaptations in POCBR in this paper. The
results of an experimental evaluation indicate that the rule-based adap-
tation approach leads to significantly better results during runtime than
an already available POCBR adaptation method.

Keywords: Process-Oriented Case-Based Reasoning · Adaptive Work-
flow Management · Rule-Based Adaptation · Drools Rule Engine ·
Adaptation Operators

1 Introduction

Although Case-Based Reasoning (CBR) [1] systems have been well explored in
past research [4], the acquisition of adaptation knowledge still imposes a pri-
mary challenge in CBR [12, 16, 34, 35], also known as Adaptation Knowledge
Bottleneck [17]. For this reason, performing adaptations often requires in-depth
domain knowledge by experts [12,18,24,25]. This is particularly evident for syn-
thetic tasks in Process-Oriented Case-Based Reasoning (POCBR) [5,26], wherein
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cases represent procedural experiential knowledge in the form of semantic work-
flow graphs. Consequently, adaptations performed during the Reuse phase in
POCBR require profound and detailed knowledge about possible and valid struc-
tural graph modifications. For example, adaptation knowledge in POCBR is
represented by complex graph fragments that are inserted in or deleted from a
retrieved workflow. Creating such comprehensive adaptation knowledge is po-
tentially laborious and error-prone for domain experts [24,25]. In previous work,
adaptation methods in POCBR [24,25,28–30] have been developed that learn this
needed adaptation knowledge automatically. However, most adaptation methods
in CBR and POCBR rely on inherent and proprietary formats, without making
the adaptation knowledge intuitively accessible to domain experts. In addition,
CBR and POCBR frameworks often do not provide an easy mean for engineering
adaptation knowledge, resulting in difficulties for verification and maintaining
the learned knowledge or for manually creating new adaptation knowledge [32].

In this paper, we present an approach based on a previously developed adap-
tation method, in which the state-of-the-art rule engine Drools1 [3] is used for
performing workflow graph adaptations in POCBR. For this purpose, we utilize
the learning step of the operator-based adaptation [30] and encode the adapta-
tion knowledge directly as corresponding rules. Consequently, instead of encod-
ing adaptations as workflow graph fragments in POCBR, they are encoded as
adaptation rules, hiding the complexity of adaptations in suitable predicates in
the rules. For adaptation, the rules in the rule base are applied to the retrieved
workflow case to increase the similarity to the given query. In an experimen-
tal evaluation, we assess the suitability of the rule-based adaptation compared
to the operator-based adaptation [30]. By the proposed approach, the adapta-
tion knowledge is more intuitively encoded for domain experts and, thus, enables
verification and maintenance of it more easily. Moreover, the approach is domain-
independent and also usable for other case representations [4, 7] in CBR or for
other process-oriented domains that go beyond the cooking domain used in the
evaluation. Finally, by using a state-of-the-art rule engine, the rule-based adap-
tation approach benefits from new functionalities implemented in the future. For
example, advanced search and optimization techniques (e. g., OptaPlanner2) can
be utilized that are especially tailored for the representation of adaptation rules.

The paper is structured as follows: Section 2 describes the basics covering
adaptation in CBR and POCBR and discusses related approaches using rule
engines in CBR. In Sect. 3, the concept of encoding and applying adaptation rules
is introduced. Section 4 describes the experimental evaluation of the proposed
approach. Finally, Sect. 5 concludes the paper and discusses future work.

2 Foundations and Related Work

The foundations for this work consist of the NEST graph representation and
similarity computation introduced by Bergmann and Gil [5] which are necessary
1 https://www.drools.org
2 https://www.optaplanner.org/

https://www.drools.org
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to represent and assess cases in POCBR. Further, knowledge representations
and adaptation approaches in transformational adaptation, i. e., adaptation rules
and operators, constitute a basis for this work. Hence, we introduce the relevant
concepts in the following.

2.1 Semantic Workflow Representation and Similarity Assessment

In POCBR, cases represent procedural experiential knowledge [5, 26]. In this
work, we use semantically annotated graphs, named NEST graphs [5], to repre-
sent cases. A NEST graph is a directed graph and represented by the quadru-
ple W = (N, E, S, T ): N is a set of nodes and E ⊆ N × N a set of edges.
T : N ∪ E → Ω assigns a concrete type to each node and each edge. Fur-
thermore, S : N ∪ E → Σ specifies a semantic description from a semantic
metadata language Σ to each node and edge. These semantic descriptions can
be used to describe a node or edge in more detail by semantic knowledge. A case
base consists of several such NEST graphs that can be utilized in a POCBR
system. In Fig. 1, an exemplary NEST graph is shown that represents a sim-
ple cooking recipe with different node and edge types and exemplary semantic
descriptions. In this context, task nodes describe the cooking steps performed,

d1

t1 t3

name: banana
unit: piece
amount: 1.0

d2 d4

task node data node

name: salmon
unit: slice
amount: 2.0

name: sandwich
unit: piece
amount: 1.0

name: combinename: peel

semantic description
dataflow

edge

control-flow 

edge

t2
name: chop

d3
name: olive
unit: piece
amount: 3.0

Fig. 1. NEST Graph with Semantic Descriptions.

and data nodes the corresponding ingredients used during preparation of the
dish. The semantic descriptions used specify the performed task in more detail,
i. e., which task should be executed. For data nodes, the semantic descriptions
can be used to specify the type of ingredient, the amount, and unit of it. Task
nodes are connected by control-flow nodes that define the execution order of the
cooking procedure. Dataflow edges are used to define which task node consumes
and produces which concrete data node, i. e., which task node needs a certain
ingredient for performing the cooking step and what is the result afterwards.
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To calculate the similarity between two NEST graphs, suitable similarity
measures are required. Bergmann and Gil [5] have developed a semantic similar-
ity measure that computes this similarity based on the local-global principle [4].
During this procedure, the global similarity is composed of the local similari-
ties computed between the individual graph elements, based on corresponding
local semantic similarity measures [5]. If the types of the graph elements to be
compared are not identical, i. e., a data node compared with a task node, the
local similarity is always 0.0. Otherwise, the similarity is calculated based on the
similarity of the semantic descriptions attached to the graph elements. A graph
mapping is initiated in which the best possible mapping, i. e., the mapping that
results in the highest global similarity, between the query workflow elements and
the case workflow elements is determined.

2.2 Adaptation Methods

Based on the semantic similarity assessment between a given query workflow and
a workflow graph from the case base, the most similar case is used as the basis for
adaptation. Adaptation is often required for synthetic tasks in Process-Oriented
Case-Based Reasoning (POCBR) to better fit the retrieved solution to the needs
of the user. In general, adaptation methods can be divided into two main cat-
egories: Generative adaptation and transformational adaptation [4]. Generative
adaptation is aiming to solve a problem from scratch, even without using a case
with experiential knowledge from the case base [4, 34]. Typically, a knowledge-
based problem solver is needed that can solve the problem from scratch. CBR
can be used to accelerate the adaptation process by reusing already available
solutions from the case base. In contrast, transformational adaptation aims to
modify a retrieved case from the case base to better fulfill the requirements that
a user specifies in a given query. Therefore, adaptation operators or adaptation
rules are used that specify the context in which a case can be modified. Depend-
ing on the degree of modification, a distinction is made between substitutional
adaptation for modifying values at the attribute level and structural adapta-
tion for larger and more complex, structural changes of the retrieved case [4].
In the following, the application of transformational adaptation with adaptation
operators and adaptation rules is described in more detail.
Adaptation Operators: Adaptation operators sequentially transform a re-
trieved case into a successor case if the successor case remains valid, i. e., they
describe generally applicable transformations of a retrieved solution. By chaining
several adaptation operators together, a retrieved case can be transformed into
an adapted case that better fits the user’s requirements. The sequence in which
operators are applied to a case is determined by search techniques, such as local
or global search algorithms. Müller and Bergmann [30] present an approach in
previous work in which they learn adaptation operators based on a case base in
POCBR. The proposed adaptation operators are inspired by STRIPS operators
from AI planning [14] and, thus, consist of an add part and a delete part. In
the terminology of workflows used in POCBR this means that the add part is
handled as an insertion into the graph and the delete part as a deletion. Both,
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insertion and deletion part, are comprehensive workflow graph fragments called
streamlets that are inserted or deleted in a retrieved workflow that should be
adapted. Based on these definitions, three kinds of adaptation operators can be
created: 1) an insert operator only consisting of an insertion part, 2) a delete
operator only consisting of a deletion part, and 3) an exchange operator with
both an insertion and a deletion part. During learning of the adaptation oper-
ators, workflow pairs from the case base are considered. In this context, one of
the workflows is transformed into the other one by deleting and adding parts
in the workflow or by exchanging workflow fragments. Since creating, verifying,
and maintaining complex workflow graph fragments such as used for adaptation
operators are demanding and challenging tasks, domain experts are required to
have in-depth knowledge about possible graph adaptations. In addition, state-
of-the-art CBR and POCBR frameworks lack the ability to adequately represent
such adaptation knowledge for domain experts and knowledge modelers [32].

Figure 2 depicts the NEST graph from Fig. 1 with a marked streamlet
(dashed line). According to the definition provided by Müller [27], a stream-
let consists of a partial workflow that is constructed based on a particular data
node. This data node is referred to as the head data node of the streamlet. Start-
ing from this head data node, a streamlet also includes all tasks that are directly
connected to the head data node by a dataflow edge. Based on the essential con-
cept of a head data node, the task node that only consumes the head data node
is called the anchor task. The anchor task determines the position of modifica-
tion in the graph. Every other node, e. g., t2, is a normal part of the streamlet.
Looking at the example from Fig. 2, the head data node d3, the anchor task t3,
and the task node t2 are part of the streamlet created during learning. Assuming
that this learned streamlet represents a delete streamlet means that 1) the head
data node is deleted from the workflow and 2) each unproductive task, i. e., task
nodes that do not have any incoming or outgoing dataflow edge, are deleted. t2
is after the deletion of d3 such an unproductive task that must be deleted. In
the example, d3 and also t2 are deleted. If there exists an insert streamlet in
the learned adaptation knowledge (see left side of Fig. 2), it can subsequently
be inserted into the graph. In the example, it is determined whether the anchor
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Fig. 2. NEST Graph with Learned Streamlet (Left Side) and Substitute Streamlet
(Right Side).
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tasks t3 and t5 from the insert streamlet are sufficiently similar to each other
and produce the same output, i. e., d4 and d6. Assuming that both conditions
are satisfied, the head data node of the streamlet d5 and the task node t4 are
inserted into the graph. Finally, a cleanup function restores the syntactical cor-
rectness of the graph by inserting control-flow edges between t1 and the newly
inserted node t4 and between t4 and the anchor task t3. In addition, a dataflow
edge between the new head data node d5 and the anchor task t3 is inserted. In
this context, it is important to note that every time an adaptation operator with
either an insert or delete streamlet is applied, only the plain streamlet, i. e., all
workflow components except of the anchor task are inserted or deleted to the
corresponding graph. During adaptation, each data node in the retrieved graph
is considered as head data node and a corresponding streamlet is constructed.
Based on this streamlet, suitable and applicable adaptation operators are re-
trieved and executed. This procedure is repeated until all data nodes have been
used once to construct a streamlet.
Adaptation Rules: In contrast to adaptation operators, adaptation rules [4]
transform the solution of a case into another solution by exploiting the differ-
ences between the given query and the problem description of the retrieved case.
Instead of modifying problem description and solution as for adaptation oper-
ators, only the solution part of the case is modified. Adaptation rules have a
precondition part that must be fulfilled to apply the corresponding transforma-
tion of the conclusion part. For this purpose, the query case, the retrieved case,
and the adapted case should be checked for their compatibility. Each adaptation
rule whose precondition is fulfilled is then executed on the case [4, 27].

2.3 Rule Engines in CBR

In this section, we discuss relevant related approaches for using rule-based adap-
tation and rule engines in CBR. However, most of the existing work utilizes rule
engines in the context of classic CBR, targeting attribute-value based cases, and
not procedural cases in POCBR.

Bergmann et al. [8] present an approach of using adaptation and comple-
tion rules from general knowledge in CBR. For rule application, they propose
the usage of a forward chaining rule interpreter based on a Rete-Network. For
this, they use the NéOpus system [31], which allows the organization of rules
by the means of sub-rule bases and dedicated Rete-Networks according to the
structure of the case representation [8]. Bach and Althoff [2] introduce an ap-
proach in which they integrate the Drools rule engine into the open-source CBR
framework myCBR. By this, it is possible to use completion and adaptation
rules in a wide variety of myCBR application domains. Hanft et al. [15] describe
the integration of Drools within the SeMantic Information Logistics Architec-
ture (SMILA)3. In their work, the authors link the rule-based adaptation of
CBR systems with business-oriented workflow systems by introducing the Rule-
based Adaptation of Case-based Knowledge (RACK) for integrating CBR func-

3 https://projects.eclipse.org/projects/rt.smila

https://projects.eclipse.org/projects/rt.smila
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tionalities to SMILA [15]. Beyond this, there have been some general approaches
that investigate the application of rule engines for the purpose of context-aware
workflow adaptation: Döhring et al. [13] develop several adaptation patterns
for dynamically changing BPMN 2.0 4 workflows along with a prototypical im-
plementation using Drools. Similarly, the CBRflow system [33] can be used for
adaptive workflow management, combining rule-based adaptation representing
general knowledge and cases specifying already experienced adaptations in prob-
lem situations. Besides the exclusive application of a rule engine within CBR
systems, there are also some works that employ a hybrid approach of linking
CBR systems with rule-based expert systems for workflow modeling and deci-
sion support. In healthcare, for instance, rule engines are also applied within
Clinical Decision Support Systems [9] for medical diagnosis, as discussed in the
work of Cabrera and Edye [11]. In their work, they develop a Medical Diagnostic
System by combining a rule-based expert system with classical CBR methods.

Although there are related approaches that are used in CBR, they predom-
inantly make use of substitutional adaptation concepts or employ adaptation
rules for attribute-value cases. Moreover, only the approach by Bach and Al-
thoff [2] is directly integrated into a CBR framework, although adaptation rules
are universally better understandable than own, proprietary adaptation knowl-
edge formats, and, thus, promote the broader usability of CBR frameworks. The
presented approaches that incorporate a rule engine for workflow modeling sup-
port (e. g., [13, 33]) oftentimes deal with event-driven application scenarios and
are not necessarily utilizing directly the CBR or POCBR methodology. Thus,
it is currently not investigated how rule engines can be used in the context
of POCBR to perform complex structural and transformational adaptations of
semantic workflow graphs in the Reuse phase. In addition, the integration of a
rule-based adaptation approach into CBR frameworks is only rarely investigated
or not available at all in the context of POCBR. For this reason, this work aims
to address this gap and, thus, to provide a first step towards the integration of
rule-based adaptation into a POCBR framework.

3 Encoding and Applying Adaptation Rules in POCBR

In this section, we present a rule-based approach for using adaptation rules and
a rule engine to perform complex adaptations in POCBR. First, in Sect. 3.1,
we describe the predicates used to represent the adaptation operators as adap-
tation rules. After encoding of the adaptation rules, we discuss in Sect. 3.2 the
application of the rules during the Reuse phase.

3.1 Encoding Adaptation Operators as Adaptation Rules

As already described in Sect. 2.2, the operator-based adaptation by Müller and
Bergmann [30] consists of STRIPS-like adaptation operators. Each operator

4 https://www.omg.org/spec/BPMN/2.0.2/

https://www.omg.org/spec/BPMN/2.0.2/
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Fig. 3. Mapping Adaptation Operators to Adaptation Rules.

contains either an insertion or a deletion streamlet, or both of them. During
adaptation, suitable adaptation operators are selected, performing an insertion,
deletion, or an exchange in the retrieved workflow graph.

Based on the learning process in which adaptation operators are created, we
inspect either the insertion streamlet or the deletion streamlet or, in the case of
an exchange operator, both. To generate suitable adaptation rules, the concepts
that are currently encoded in the operator-based adaptation algorithm itself
(see [30]) must be converted into suitable predicates. This is required to enable
the rule engine to perform validation checks or to find best matching positions
in the graph. Figure 3 depicts the mapping of the concepts used for adaptation
operators to suitable predicates in the adaptation rules. During the mapping
process, the predicates are divided into a set of predicates in the form of precon-
ditions that are inevitably required for the execution of a rule, and corresponding
effects that specify the modifications of the adapted case after execution of a rule.
To satisfy the property of identifying the best matching anchor task in the graph
for the insertion streamlet, we introduce the predicate isBestMatchingAnchor.
The remaining preconditions of the streamlet insertion, i. e., the condition that
the head data node should not exist in the graph yet, can be realized by regular
pattern matching and do not require special predicates (see Line 3 in Lst. 1). The
insertion of the streamlet elements themselves, i. e., the conclusion of the rule, is
represented by straightforward predicates, each assigned to a corresponding item
type. For deletion, we specify the predicate isHeadOfMostSimilarStreamlet
that is used within the precondition. According to the principles outlined in
Sect. 2.2, this predicate allows the identification of a data node residing in the
graph that acts as the head data node of the most similar streamlet that is con-
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Fig. 4. Adaptation of a NEST Graph by Insertion.

structable out of all data nodes present. Since it is not clear which streamlet is
to be identified as the most similar one to the deletion streamlet, the conclusion
of a deletion rule makes use of a generic predicate cleanUp responsible for the
removal of left over streamlet elements as proposed by Müller [27].

Figure 4 illustrates the insertion of a streamlet into a NEST graph according
to the principles outlined previously. We can represent this insertion procedure
by the means of a corresponding adaptation rule. Listing 1 depicts this equivalent
rule according to the syntax of Drools Rule Language (DRL) after the mapping
process. The when part describes the preconditions that need to be satisfied
for execution, and the then part represents the modifications to be performed
on the retrieved workflow graph. DRL provides multiple keywords, e. g., not, as
well as the definition of variables, e. g., $aC, which can be matched to objects/-
facts during the activation of the precondition. In particular, these objects/facts,
e. g., nodes and edges, are the items of the NEST graph that are inserted into
the working memory of the engine. This working memory, also called Fact Base,
acts as a storage for all facts known to the engine [3].

Listing 1. Adaptation Rule for an Insert Adaptation Operator.
1 rule " INSERT === Streamlet 7818 (Egg)"
2 when
3 not DataNode (" egg ")
4 $aC: TaskNode ( isBestMatchingAnchor (" mix", $aC , 1.0))
5 then
6 insertDataNode (" egg", " piece ", 1.0);
7 insertTaskNode (" slice ");
8 insertDataFlowEdge (" slice ", "egg ");
9 insertDataFlowEdge (" egg", " slice ");

10 insertDataFlowEdge (" egg", $aC);
11 insertControlFlowEdge (" slice ", $aC);
12 end

As already described, a streamlet consists of a head data node, an anchor task,
and all other nodes that are linked to the anchor task. To represent adaptation
operators that consist of these concepts, we apply the predicates presented in
Fig. 3. In the example depicted in Fig. 4, the streamlet on the right side of
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Fig. 2 is encoded as an adaptation rule. In this example, we use the predicate
isBestMatchingAnchor to determine the best possible anchor which has a sim-
ilarity of 1.0 to the streamlet anchor mix (see Fig. 2). Assuming that the graph
task node combine satisfies this condition, it is stored in the variable $aC. Sub-
sequently, the plain streamlet consisting of the task slice and the data node one
piece egg is inserted into the graph and connected to the other graph elements,
including the newly identified anchor $aC. While rules as the one depicted in
Lst. 1 are generated automatically, they can also be edited or created manu-
ally within the bounds of the domain vocabulary and the DRL syntax. This
aspect also elicits explainability of adaptation knowledge, as knowledge encoded
in rules is perceived to be more intuitive [20] as well as it provides insights into
the adaptation process and its properties.

3.2 Applying Adaptation Rules

After encoding the adaptation rules, they can be applied to a retrieved workflow
graph for adaptation. Figure 5 illustrates the general inference mechanism of
the Drools rule engine for searching and triggering adaptation rules to adapt a
retrieved workflow graph. Each available and encoded rule is part of the Fact
Base of Drools. In addition, the retrieved workflow graph is also part of the
fact base, i. e., each graph element can be accessed to check or modify it during
adaptation. To perform adaptations, Drools internally initiates an inference pro-
cedure that consists of several required steps for each adaptation rule contained
in the fact base: 1) the preconditions encoded as predicates in a rule are accessed
by the rule engine; 2) the graph elements of the retrieved workflow graph are
checked whether they satisfy the preconditions of the corresponding rule; 3) if
the preconditions of a rule are not satisfied, the next rule is checked. But if the
preconditions are satisfied by the retrieved workflow, the rule is triggered by
the rule engine; 4) the effects of the adaptation rule are executed, leading to
modifications performed on the graph elements of the retrieved workflow. The

AR1

AR3

AR2

AR4

Wn

Fact Base Trigger
Rule

Get
Preconditions

Precondition
Verification

Perform
Modifications

Drools
Rule Engine

Fig. 5. General Inference Mechanism of the Rule Engine for Applying Adaptation
Rules.
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described search process is repeated by the rule engine until no further rule can
be triggered, or the process is stopped externally, e. g., if the adaptation goal is
already reached or the similarity as approximating function for the utility cannot
be increased further. In general, it is difficult to find the best possible sequence
of adaptation rules, i. e., the sequence that increases the similarity the most.
Therefore, the best possible rules are determined step by step, similar to the
application of adaptation operators (see Sect. 2.1). However, the application of
adaptation operators considers each fragment of the retrieved graph only once,
i. e., streamlets are sequentially created based on the data nodes of the workflow
graph. In contrast, during adaptation with adaptation rules, the same fragment
in the graph can be adapted more than once, depending on the availability of
executable rules in the fact base. Finally, the rule engine needs to be aware of
1) the current state of the workflow (see Fig. 5), this involves all elements of
the respective NEST workflow graph and, thus, all nodes and edges have to be
inserted into the fact base; 2) every adaptation rule contained in the fact base;
3) all applicable adaptation rules for a given workflow state Wn by evaluating
the preconditions of the rules; 4) the similarity improvement of the application
of a rule w. r. t. the retrieved graph during rule evaluation.

4 Experimental Evaluation

In this section, we evaluate the rule-based approach in the domain of cooking
recipes (see Sect. 2.1 for an example). Therefore, a direct comparison between the
proposed approach and the existing adaptation operators [30] is conducted. In
this context, it is important to note that Müller and Bergmann propose several
POCBR adaptation methods (e. g., [28–30]). As the operator-based adaptation
has the highest coverage, and it is the most sophisticated adaptation method,
we apply it as the basis for the proposed approach in this work. The goal of the
evaluation is to determine how well adaptations are performed by the rule-based
approach and whether it leads to better and qualitative higher results. Differ-
ences in time and quality may arise from the varying utilization of adaptation
knowledge in the application (see Sect. 3.2). For this purpose, we conduct an
experiment by comparing the runtime properties of the rule-based adaptation
compared to the adaptation operators and investigate the following hypotheses:

H1 The rule-based adaptation leads to syntactically correct adapted work-
flows, i. e., the resulting workflows are consistent NEST graphs.

H2 The rule-based adaptation results in equal or better adapted workflows
w. r. t. the semantic similarity than only using the retrieved workflow with-
out adaptation.

H3 The rule-based adaptation requires less adaptation knowledge to obtain
similar improvements compared to the operator-based adaptation.

H4 Related to the operator-based adaptation, rule-based adaptation requires
more time for adaptation, but achieves in relation much higher improve-
ments, i. e., the improvement per time is higher.
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Hypothesis H1 investigates whether the rule-based adaptation maintains syn-
tactically correctness of the workflow graphs. This property is retained by the
operator-based adaptation, and, thus, should also be satisfied by the rule ap-
proach. Similarly to this, Hypothesis H2 examines whether the rule-based ap-
proach leads to an improvement w. r. t. the similarity and not to a degradation.
As the application of adaptation rules is not restricted to certain graph regions,
we assume that less adaptation knowledge is required to obtain similar results
compared to the adaptation operators (see Hypothesis H3). In addition, due to
the different utilization of adaptation knowledge, and, thus, more executed rules
in total than adaptation operators, we expect that the rule-based adaptation
requires significant more adaptation time compared to the adaptation operators
(see Hypothesis H4). However, it is expected that the improvement is higher in
relation to the additional time needed, i. e., the improvement per time is higher.

4.1 Experimental Setup

In the following, we describe the experimental setup to validate the hypotheses.
We perform a Leave One Out Cross Validation with a case base of 40 distinct
cooking workflows. In this context, the cases in the case base contain on average
21.15 graph nodes and 55.63 graph edges. For the experiment, the rule-based
adaptation approach is implemented in the POCBR framework ProCAKE5 [6]
using the Drools rule engine6. For each of the 40 workflows, we perform a retrieval
on the remaining 39 recipes in the case base. Based on that, the retrieved work-
flows serve as a starting point for adaptation. The required adaptation knowledge
is learned automatically based on the remaining case base by using the learning
approach for the adaptation operators [30]. In this context, it is important to
note that we ensure the separation of training and test cases by constructing a
separate operator repository for every evaluation run. More precisely, the par-
ticular query workflow is omitted during learning of the respective repository.
On average, the resulting repositories contain 2622.85 operators in total, out of
which 1840.7 are exchange operators, 740.4 insert operators, and 41.75 delete
operators. Based on these operator repositories, adaptation rules are encoded
according to the concepts described in Sect. 3.1. To ensure comparable results,
the same parameters that have been used during learning are also used for ap-
plying the rules and operators. This means that the Anchor Candidate Threshold
∆T and the Streamlet Similarity Threshold ∆S are set to be 0.5 for learning and
applying the operators afterwards. Furthermore, the experiment is performed on
growing fractions of the learned adaptation knowledge to observe effects related
to the existing amount of adaptation knowledge regarding adaptation quality
and time. Therefore, 20, 40, 60, and 80 percent of the operator repository are
extracted randomly, and the experiment is conducted on each of those fractions
independently. Moreover, we perform three runs for each fraction with different

5 https://procake.uni-trier.de
6 The implementation can be found at: https://gitlab.rlp.net/procake/

procake-rule-engine

https://procake.uni-trier.de
https://gitlab.rlp.net/procake/procake-rule-engine
https://gitlab.rlp.net/procake/procake-rule-engine


Improving Complex Adaptations in POCBR by Rule-Based Adaptation 13

random seeds. For each of those runs, the minimum, maximum, and average as
well as the median of the similarity gain and the adaptation time are recorded.

4.2 Experimental Results

Table 1 illustrates the results of the experiment7. All differences are statistically
significant with p < 0.05 for runs conducted with 20% and p < 0.01 for the other
fractions. We measured the improvement gained by adaptation in percent (see
Column Imp) based on the semantic similarity measure (see Sect. 2.1), the time
needed for adaptation in seconds (see Column Time), and the improvement per
time, i. e., the improvement per second (see Column Imp/s). Furthermore, we
evaluate several fractions of potential usable adaptation knowledge, i. e., 20 %,
40 %, 60 %, 80 %, and 100 %. For every run with 40 adaptations, we calculate
the values for all adaptations and represent them as minimum, maximum, aver-
age, and median. All performed adaptations either by the rule engine or by the
adaptation operators lead to syntactically correct workflows, showing that the
knowledge is valid and the application of it is correct. Thus, we accept Hypothesis
H1. In Hypothesis H2, we investigate whether the application of the rule-based
adaptation does not lead to a degradation of the retrieval result, i. e., the se-
mantic similarity remains at least the same or increases after adaptation. As
can be determined in the first row of Tab. 1, the minimum improvement is 0,
indicating that at worst the adaptation leads to the retrieved workflow with-
out changing anything. The same also holds for the operator-based adaptation.
Consequently, we accept Hypothesis H2. Considering Hypothesis H3 which ad-
dresses the amount of potential adaptation knowledge, it can be determined
that if less adaptation knowledge is available, the rule-based adaptation results
in higher improvements regarding the semantic similarity (see Column Avg and

Table 1. Results of the Experimental Evaluation.

7 All evaluation results and descriptions of how to reproduce the experiment with
the proposed implementation can be found at: https://gitlab.rlp.net/procake/
publications/procake-rule-engine-iccbr-2024

https://gitlab.rlp.net/procake/publications/procake-rule-engine-iccbr-2024
https://gitlab.rlp.net/procake/publications/procake-rule-engine-iccbr-2024
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Mdn for 20 %). In general, the results also indicate that the quality of adapta-
tion increases with more potential usable adaptation knowledge, but more for the
rules and only slightly for the operators. Consequently, the adaptation operators
only lead to a small increase in improvement, even if the amount of adaptation
knowledge increases. As the improvements are much higher for the rule-based
adaptation compared to the adaptation operators with 20 % of knowledge, we
accept Hypothesis H3. However, the results also reveal that the rule-based adap-
tation requires much more time for adaptation than the adaptation operators.
Examining the calculated improvements per second, it can be determined that
the rule-based adaptation has mostly lower improvements per second than the
adaptation operators. As a conclusion, the rule-based adaptation leads to sig-
nificantly better results, but also requires considerably more time for doing that
than the adaptation operators. For this reason, we reject Hypothesis H4.

5 Conclusion and Future Work

In this paper, we propose an approach for using adaptation rules and a rule en-
gine for performing complex adaptations in Process-Oriented Case-Based Reaso-
ning (POCBR). Based on previous adaptation methods for POCBR, we develop
suitable predicates that are used for encoding adaptation knowledge as adapta-
tion rules. This prevents the modeling and definition of adaptation knowledge in
the form of complex graph fragments. Thus, it is now more feasible for domain ex-
perts to model workflow adaptation knowledge in POCBR as adaptation rules8.
In addition, the experimental evaluation results demonstrate that the rule-based
adaptation leads to syntactically correct workflows, and indicates that the im-
provement is significantly higher than for the operator-based adaptation [30].
By the proposed approach, we contribute to the complex task of workflow adap-
tation in POCBR and help to reduce the laborious and time-consuming task of
modeling and maintaining this adaptation knowledge.

In future work, we want to implement further adaptation methods for POCBR
(e. g., [28, 29]) by using adaptation rules. Moreover, the current implementa-
tion is based on the Drools rule engine, but the conceptual idea and the use
of special predicates for representing the concepts of adaptation operators is
also transferable to other available rule engines. In this context, it is also inter-
esting to investigate how the rule-based approach can be integrated into other
CBR and POCBR frameworks developed with other programming languages
(e. g., Python [19]) instead of Java. Furthermore, the Drools rule engine also of-
fers a graphical user interface for manually modeling and maintaining adaptation
rules. Thus, we want to investigate how such a user interface can be integrated
into the ProCAKE framework. Another topic for further research in this con-
text is to examine how large language models can help in creating and modeling
adaptation knowledge in CBR and POCBR [10]. In the experiments, we use the
8 An initial user study provides evidence to support this claim. The results

of this user study can be found at: https://gitlab.rlp.net/procake/publications/
procake-rule-engine-iccbr-2024.

https://gitlab.rlp.net/procake/publications/procake-rule-engine-iccbr-2024
https://gitlab.rlp.net/procake/publications/procake-rule-engine-iccbr-2024
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domain of cooking recipes as procedural semantic workflows. In future work, we
intend to investigate also other workflow domains, such as for scientific work-
flows [36] or for cyber-physical workflows [21,22]. Both domains have in common
that they often require complex, structural adaptations to ensure executability
of the processes. Moreover, it should be examined how well the proposed rule-
based adaptation approach can be applied to other case representations, such as
time series in temporal CBR domains [23]. There are also possibilities for fur-
ther improvement in the evaluation and application of the rules. For example,
we are planning to use especially tailored search and optimization techniques for
rule engines, which should further improve the use and application of adaptation
rules, leading to even better workflow adaptation results.

Acknowledgments. This work is funded by the Federal Ministry for Economic
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thank Veronika Kurchyna and Vincent Muljadi for an initial concept and proto-
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