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Abstract—Machine Learning on time series has great potential
in solving real-life problems, from medical monitoring to machine
predictive maintenance. In practice, however, the deployment
domain can differ from the training conditions. These domain
shifts give rise to the domain adaptation field which extends
to time series data. However, despite the fact that broad domain
shift definitions were already proposed, there is no clear definition
adapted specifically to time series in the current literature. More-
over, even though evaluation methods were proposed, evaluations
on real data do not allow a full control over the benchmarks.
In this paper, we first propose a novel definition of domain shift
based on a State Space Model (SSM). Then, we introduce a
new dataset based on these SSMs to provide a benchmark using
controlled domain shifts. Lastly, we perform an evaluation of the
State of the Art on these generated domain adaptation problems,
and hence systematically evaluate the domain shift effects on the
adaptation performances.

Index Terms—Domain Adaptation, Domain Shift, Machine
Learning, Multivariate Time Series, Time Series

I. INTRODUCTION

In research, a theoretical model has often to adapt to the
experiment results. This analogy can also be found in the
field of machine learning, where models trained on a particular
dataset may be confronted with different configurations during
deployment. This domain shift has been extensively studied in
the scientific literature and has given rise to the field of domain
adaptation originally in computer vision with various methods
[1].

Domain adaptation aims to help a model to bridge the gap
between a source and a target domain. Preliminary methods for
domain adaptation try to minimize a statistical distance, such
as Maximum Mean Discrepancy (MMD), in order to bring
source and target domains closer together [2]–[4]. Moreover,
Adversarial-based methods were also introduced, which train
a feature extractor network to extract a domain invariant
representation with the constraint of a domain discriminator
[5] or by Gradient Reversal Layer [1]. Since then, this research
field attracted a lot of interest from the research community
and has been expanded to sub-domains such as Closed set [5],
Open set [6], Partial [7] and Universal Domain Adaptation [8].

In recent years, this interest has been extended to the field of
time series and all related applications. However, time series
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data introduces new challenges such as the lack of certain data
points or dynamic reaction time [9]. Moreover, despite the
fact that evaluation approaches have already been proposed
[10], the datasets used do not allow carrying out a precise
evaluation. Ragab et al. [11] have proposed an approach
for evaluating domain adaptation methods across multiple
datasets. This method has the particularity of standardizing
architectures, making the focus on the method rather than
the architecture employed. Even though this method is a
building block towards a standardized evaluation method, it
evaluates architectures on real datasets and hence does not
lead to a fully controllable evaluation in terms of domain shift.
Furthermore, during the literature investigation, we identified
changes towards more specific domain shift definition [9],
[12]. Nevertheless this definition does not fully expose the
relationship between time series which is an essential feature
for real world application.

The current literature did not deeply investigate the capa-
bility of proposed methods to close the gap between specific
domain shift in time series. In reaction to that, we first
propose a definition of domain shift for time series. Then,
based on this definition, we introduce domain shifts with an
increasing level of difficulty using a State Space Model (SSM).
We then detail our approach to evaluate recently released
domain adaptation models for comparison. Our dataset and the
simulator code is available at https://github.com/Henri-Hoyez/
ChemicalStateSpaceModel.

II. RELATED WORK

A. Domain Adaptation in Time Series

Unsupervised Domain Adaptation (UDA) received great
attention in computer vision tasks such as Medical Imaging
[13] or Semantic Segmentation [14]. Since the first domain
adaptation approaches, many publications contributed to the
progression of the domain adaptation field for time series [8],
[12], [15].

Cai et al. [9] argued that time series can vary not only in
amplitude but also in time shift. They also suggest the idea that
the causal relationships are stable across domains. They hence
propose SASA, a method based on the extraction of sparse
associative structure as a domain-invariant representation. To
be robust against the varying time delay between input and



output, they develop Adaptive Segment Summarization. Jin
et al. [16] introduce a Domain Adaptation Forecaster (DAF)
where the adaptation is made by sharing the attention key
and value as domain-invariant and domain-specific vectors
respectively. These two vectors can then be used by their
multi-horizon forecasting model. Wang et al. [17] proposed
to decompose the multivariate time series into endo- and
exo-features. The endo-features represent local dependency,
more precisely one sensor and its interactions, the exo-feature
represents the sensors together. They align these features
by using a contrastive learning approach on built sequential
graphs.

Focusing on another representation, He et al. [18] suggest
that domain shift can happen in the time and frequency domain
and show that frequency features are more domain invariant
than time features. Using a time-frequency feature extractor
and the latest advancement of domain adaptation in images [8],
RAINCOAT proposed a universal domain adaptation approach
for time series. To further correct misalignments and detect
unknown classes, they propose “align-then-correct”. On the
other hand, Liu et al. [2] note that the common feature
extractors in MMD-based approaches fail to capture the most
useful statistics of time series, such as non-stationarity. To
address this issue, they developed a hybrid spectral kernel
matching technique as an improved feature extractor. This
method extracts more appropriate statistics for a reinforced
MMD. AdvSKM is trained through an adversarial approach
and also reduces the computational load.

In contrast to the work above, Ozyurt et al. [19] introduced
CLUDA. They propose a contrastive learning algorithm that
extracts the contextual representation of embedding which pre-
serves the label information. To further align these contextual
representations between domains, they use nearest-neighbor
contrastive learning. Another work based on contrastive learn-
ing is CoTMix by Eldele et al. [20]. They state that better
augmentation methods can be used to preserve the temporal
dependency between variables. They hence introduce a new
augmentation method called Temporal Mixup which generates
a “source-dominant” and a “target-dominant” augmentation
from the source and target domain respectively. This aug-
mentation method preserves the temporal consistency for the
time series and helps the features extractor to extract domain
invariant representations.

III. DOMAIN SHIFT DEFINITIONS

In this section, we will introduce a general definition of
domain shift, then we will relate some contributions that
introduce more specific domain shift definition.

Given a labeled source domain DS = {XS
i , Y

S
i }NS of size

NS and a target domain DT = {XT
i , Y

T
i }NT of size NT .

Where X and Y represent the input time series and the label,
either from the source or the target domain. The label Y is
defined by a task such as a classification or a regression. Using
this notation, we can define a domain shift as a deviation
between DS and DT .

Beyond this definition, Stojanov et al. [12] formally defined
more specific domain shifts using the decomposition of the
joint probability distribution formula.

P (X,Y ) = P (X | Y )P (Y ) (1)

In Eq. 1, P (X,Y ) represents the joint probability distri-
bution, P (X | Y ) defines the conditional distribution, and
P (Y ) describes the output distribution. From this equation,
they defined three domain shifts:

• Target Shift: Where P (Y S) ̸= P (Y T ) but P (XS |
Y S) = P (XT | Y T ).

• Conditional Shift: Where P (XS | Y S) ̸= P (XT | Y T )
but P (Y S) = P (Y T ).

• Conditional-target Shift: Both joint probability distri-
bution and conditionals changes independently.

This definition provided a strong foundation. However, as
the majority of work in domain adaptation comes from images,
it is normal to see image data as probability distributions due
to the complexity of the data. Furthermore, chaotic time series
such as financial data can be seen as stochastic processes
such as a Wiener process. Nevertheless, time series are often
recorded with sensors of particular industrial assets or humans
in physiological monitoring. Hence, this representation does
not enhance the temporal relationships and correlations present
in all multivariate time series.

The second paper closely related to our work is from Ragab
et al. [11], who state that the evaluation method for time
series domain adaptation suffers from inconsistency. Based
on this finding, they propose a unified evaluation protocol
where an architecture normalization is adopted. Even though
this modification shifts the focus of the experiments to the
adaptation methodology, the evaluation method is conducted
on real data which provides a less controllable domain shifts.

IV. DOMAIN SHIFT TIME SERIES

Time series can tell us the history of chemical reactions,
physical or physiological states. These examples can be em-
bedded in the form of a system, where an output is given in
response to some inputs. More formally, a given system can
be modeled as a State Space Model:{

ẋ(t)=Ax(t) +Bu(t)
y(t)=Cx(t) +Du(t)

(2)

Where A is the state matrix, B is the input matrix, C is the
output matrix, and D is the feed-forward matrix. x(t), u(t)
and y(t) are the state vector, the multivariate inputs and the
output of the system respectively.

However, even if this form is able to introduce the time
dependency between samples, this system is not able to model
all types of real-world systems as many of them are non-linear.
To solve this problem, we modify the Eq. 2 as follows.{

ẋ(t)=A(t)x(t) +Bu(t− τ)
y(t)=h(Cx(t) +Du(t− τ))

(3)



Where h is a function which aims to introduce non-linearity,
and τ introduces time delay between the input and the reaction
of the system. A(t) represents the fact that the state of the
system is dynamic and can react differently through time.

Inspired by [12] and the field of Image-to-Image Transla-
tion, we define several sub-fields of domain shift:

• Content Shift: The content shift is defined as a change in
the input and the output signals. For example, two same
cars that drive at different speeds on the same road will
not need the same inputs. The system is the same but
operated differently, which defines a content shift. More
formally, this can be seen as a change of u(t) and y(t)
in Eq. 3.

• Style Shift: Similarly to Wang et al. [17], we define the
style shift as a change in the relationship between all time
series. If we take the vehicle example again, since a style
shift is a change inside the system, this style shift could
be a change between car and truck. More formally, the
style shift is defined by a deviation in the matrices A, B,
C, D, and τ in Eq. 3.

• Content-Style Shift: A Content-Style shift happens when
there is both a style and a content shift.

In this given definition, we modify either the signals or the
relationship between these. We hence make precise modifica-
tion in P (X) and P (X | Y ). Therefore, these 3 shifts belong
to the conditional shift concept depicted in III.

V. PROBLEM DEFINITION

Unsupervised domain adaptation aims to extract a knowl-
edge learned in a source domain in order to be robust in an
unsupervised target domain. More precisely, given again a
source domain DS = {XS

i , Y
S
i }NS and an unlabeled target

domain DT = {XT
i }NT , the aim of a domain adaptation

method is to train a classifier f(.) to perform well in both
DS and DT . Because the largest part of the literature focuses
on closed-set domain adaptation, the scope of this paper
is defined within closed-set domain adaptation, where the
label space is the same between the source domain and the
target domain. More specifically, this means that we want to
challenge the domain adaptation literature on the conditional-
shift by modifying the relationships between the variables u(t)
and y(t) in Eq. 3.

VI. EVALUATION METHODOLOGY

A. Dataset:

To evaluate the representative works of the current literature
on their ability to adapt to specific domain shifts, we generate
a dataset that simulates a simple chemical reaction between
two chemical components that come into contact.

3u1 + u2
kf−→ 2y1 + y2 (4)

As depicted in Eq. 4, the simulated dataset is composed of
two input concentrations, u1 and u2, to compute the output
concentrations of y1 and y2. In our simulation, u1 and u2

are entered at a given velocity vc(t) and temperature T (t).

This velocity and temperature control the chemical reaction
intensity kf as defined in Eq. 5. The coefficient kf introduces
dynamic time shift and step response as depicted by [9].

kf (vc, T ) = e−[α2βvc−α1(1−β)(T−Tmax)] (5)

In Eq. 5, the importance of a change in T or vc for kf
is controlled by β. α1 and α2 control the slope of kf (vc, T )
when T or vc varies. This reaction intensity will be denoted
as kf for clarity. Then, from this generated data, we define a
classification task where the goal is to classify the range of
temperature where the chemical reaction occurred.

For the purpose of introducing content shifts, the inputs of
the system are defined as sinusoidal functions in Eq. 6:

ui={1,2}(t) = a sin(2πft) + b+ ϵ(t) (6)

Where a is the amplitude of the input, b is the mean of the
input signal, f represents the frequency and ϵ(t) ∼ N (µ, σ)
is a noise.

Since our domain shift definition is based on SSMs, we
can then define the dynamics of the Eq. 3 using the following
matrices:

A =

[
3ρ2kf − 3kf 0

0 ρ2kf − kf

]
;B =

[
ρ
ρ

]
;

C =

[
2kf − 2ρ2kf 2kf − 2ρ2kf
kf − ρ2kf kf − ρ2kf

]
;u(t) =

[
u1(t)
u2(t)

]
; (7)

In Eq. 7, ρ is the material flow rate, u1(t) and u2(t) are our
input concentrations. These equations define the dynamics of
the output concentrations y1(t) and y2(t).

In this simulation, parameters a, b, f , vc, T , ϵ(t), and τ
control the input of our system. Moreover, the inner reaction
of the system is influenced by the parameter kf , and hence
β, α1, and α2. Since all these parameters contribute to the
time series relationships, this set of parameters defines its own
domain. Furthermore, we introduce several controlled domain
shifts including content and style domain shifts.

• Input amplitudes shift (content): An amplitude shift
between two simulations is defined when the amplitude
factor a in the input Eq. 6 differs between the source and
the target simulations.

• Input mean shift (content): This shift happens when the
coefficient b in the Eq. 6 differs between two simulations
source and target.

• Input frequencies shift (content): Defined by a modifi-
cation of the frequency coefficient f in the Eq. 6 between
two simulations.

• Noises shift (content/style): This noise can occur in
input, output signal or both. For the input noise, we
modify the noise variance of ϵ(t) in the Eq. 6. For the
output noise we add a gaussian white noise term to the
function h in the Eq. 3.

• Reaction-time shift (style): The reaction time shift is
defined as the time delay between the action and the



reaction of the system. This is modeled by a modification
of the factor τ in the Eq. 3 between two simulations.

• Non-linearity (style): To introduce non-linearity in our
system, we modify the h function of the Eq. 3.

• Causal shift (style): Causal shift is defined by a mo-
dification of the reaction of the system due to a change
of the matrix of the SSM. In our case, this shift is
implemented by changing the parameters β in Eq. 5
which influences the reaction intensity kf in the matrix
A(t) in Eq. 3. In this way, we modify the inner relations
in the system by making it more sensitive to a change of
temperature T or gas velocity vc.

• Shift in unit (content): It defines a modification of the
input signal which does not affect the reaction of the
system. For example, an input can be defined as a material
flow or can be normalized by a time varying production.
We implemented this causal shift with a progressive shift
of parameter B in the Eq. 3.

B. Experimental Settings:

In our experiments, we first consider a generated source
domain with a fixed set of parameters. From this set of
parameters, we simulate deviations by modifying specific
parameters in the source domain to generate a target domain.
Therefore we vary a parameter of the SSM in 10 steps to define
target systems with specific domain shift of different intensity.
For each domain shifts, each tested method is trained on the
source to target scenario. Each method has been trained 10
times on each domain adaptation problem. In order to focus
on the literature challenges, we will present our benchmark on
the Causal shift, Input/Output noise, and Reaction-time shift.

• Causal shift: In this experiment, we want to simulate
two different systems. To make these variations, we
progressively modify β inside the Eq. 5 in the range 0 to
0.9 with a step of 0.1.

• Input/Output Noise: We want to know which models
are more robust to noises. These noises can be present in
the input or the output. To accomplish this, we apply a
variation by applying a modification on the input noise
ϵ(t) in the Eq. 6. For the output noise we modify h in
the Eq. 3.

• Reaction-time shift: Here, we want to know the ability of
the literature to adapt to a system with different reaction
times. To do this, we apply modifications on τ in the Eq.
3.

C. Compared Methods:

In this paper, we want to specifically investigate the ca-
pability of domain adaptation methods to handle simulated
domain shifts. For this purpose, we test four domain adap-
tation methods. CLUDA [19], CoTMix [20], AdvSKM [2]
and RAINCOAT [18]. These domain adaptation methods will
have to classify between 3 ranges of temperatures where the
simulated reaction occurs. For evaluation and visualization
purposes, methods will be compared thanks to the accuracy
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Fig. 1. Overall accuracy of evaluated literature on Causal shift. Where β is
influencing kf in the Eq. 5. The area represents the standard deviation of the
metric.

metric, which is the number of correctly classified samples
divided by the total number of samples.

Inspired by [11] and [18], we modified the paper’s imple-
mentation to normalize the architecture of the feature extrac-
tors and classifier in terms of number of trainable weights. We
compare all these approaches against a source-only classifier,
which is a simple 1D convolutional classifier trained on source
data only. For the presented results, each model has been
trained on a source-target scenario with the goal of being as
robust as possible on the target dataset.

VII. RESULTS

Fig. 1 is representing the accuracy on the Causal Shift
domain adaptation task. In this test, we progressively change
β in the Eq. 5. This variation change the coefficients inside
the A(t) matrix in Eq. 3 and hence its internal workings. The
source dataset has a β = 0.5. Firstly, we can observe that
all domain adaptation methods smoothed out the curve of the
source only model. Especially AdvSKM and RAINCOAT are
shown to degrade more slowly with the strength increase of the
domain shift. Moreover, RAINCOAT is the best performing
model outperforming the literature in the majority of β. This
can be attributed to the fact that RAINCOAT uses a frequency
representation in the latent space that is less sensitive to
domain shift.

In our second test, we test the literature on its ability to adapt
to input and output noise. In the Fig. 2, we can see that RAIN-
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Fig. 2. (a), Overall accuracy of the tested approaches on the Input Noise
domain shift. (b), Overall accuracy of the tested approaches on the Output
Noise domain shift. The area represents the standard deviation for the
accuracy.
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Fig. 3. Accuracy on the time shift domain adaptation task, where τ represents
the shift in unit of data points. The area represents the accuracy standard
deviation between runs.

COAT is not outperforming the literature being overtaken by
AdvSKM in both input and output noise domain shift. This
is because white noise has a value in all frequencies and this
may disturb the frequency feature extractor of RAINCOAT. In
this domain shift, AdvSKM is performing better. This could
be explained because the inner working of AdvSKM is based
on spectral features extraction.

The performance of the literature under a reaction-time
shift is displayed in Fig. 3. In this domain adaptation task,
we can see that the phase extraction in its time encoder
makes RAINCOAT outperform the literature. Furthermore, the
accuracy increases after τ = 14 because the periodicity of our
input signal.

Overall, despite the fact that contrastive learning methods
enable automatic domain invariant feature extraction, these
extracted features are not the most optimal. Presented results
suggest that frequency-based features extraction is a big ad-
vantage in the domain adaptation scenarios. However, these
frequency features can be fooled by a noisy domain adaptation
task. Here, a simpler approach such as AdvSKM is preferable.
Nevertheless, these frequency features extractor are subject to
the Shannon law and hence limit the minimum sequence length
for smaller problems.

VIII. CONCLUSION

In this paper, we first provided a definition of domain shift
adapted to time series and dynamic systems. From this defi-
nition we designed a simulator based on SSMs and modified
its parameters to construct domain adaptation scenarios with
an increasing level of complexity. With these simulations, we
made a controlled benchmark of recent domain adaptation
methods over specific types of domain shifts. The results
suggest that methods like RAINCOAT or AdvSKM based
on frequency feature extraction tend to extract a more gen-
eral representation and hence perform better than contrastive
learning algorithms, even if the non periodic settings have not
been investigated yet. We have released the simulator code
in order to provide a controlled evaluation benchmark to the
community.
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