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Abstract. Document layout analysis is a key area in document research,
involving techniques like text mining and visual analysis. Despite vari-
ous methods developed to tackle layout analysis, a critical but frequently
overlooked problem is the scarcity of labeled data needed for analyses.
With the rise of internet use, an overwhelming number of documents are
now available online, making the process of accurately labeling them for
research purposes increasingly challenging and labor-intensive. Moreover,
the diversity of documents online presents a unique set of challenges in
maintaining the quality and consistency of these labels, further compli-
cating document layout analysis in the digital era. To address this, we
employ a vision-based approach for analyzing document layouts designed
to train a network without labels. Instead, we focus on pre-training, ini-
tially generating simple object masks from the unlabeled document im-
ages. These masks are then used to train a detector, enhancing object
detection and segmentation performance. The model’s effectiveness is
further amplified through several unsupervised training iterations, con-
tinuously refining its performance. This approach significantly advances
document layout analysis, particularly precision and efficiency, without
labels.

Keywords: Unsupervised Learning · Document Segmentation · Docu-
ment Object Detection· Document Layout Analysis.

1 Introduction

Document layout analysis (DLA) has always been a key challenge in computer
vision and document understanding. Historically, the field has developed diverse
methodologies [1], ranging from traditional classical techniques [2,3,4] to more
contemporary, learning-based models [5,6]. The advancement of technologies
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such as convolutional neural networks (CNNs) has marked a notable improve-
ment in the precision and functionality of these models, showing a significant
evolution in the approach to DLA [7,8,9,10,11,12,13]. As technology advances,
there has been a corresponding change in the complexity of documents, particu-
larly in the digital domain. This shift is most evident in business environments,
where documents come in increasingly varied and complex formats [1,14]. These
developments present a new set of challenges, requiring models that are accurate
and adaptable enough to adjust to a wide range of document types and layouts.
In response to this dynamic landscape, the strategies employed in DLA have
been continuously refined and improved. The focus has expanded to include the
accuracy of analysis and the adaptability to handle the diverse array of modern
document formats. This ongoing advancement in DLA methods underscores the
importance and persistent relevance of the field in the broader context of doc-
ument understanding and computer vision research. As documents continue to
evolve, so will the techniques and technologies in DLA, ensuring that it remains
an essential and ever-progressing study area [15].

Previously, classical rule-based methods were employed for document lay-
out analysis [16,17,18,19,20]. More recently, it’s been approached as a Document
Object Detection (DOD) problem, employing vision-based object detection mod-
els [21,19,20,22,23,24,25,26]. Researchers have also combined sequence and lan-
guage models with object detection for better accuracy [5]. However, there’s an
overlooked issue. Unconventional document formats require labor-intensive an-
notation for traditional supervised methods. So, unsupervised approaches have
become important. Implementing unsupervision in DOD is challenging because
images contain multiple document objects of different classes, and treating each
image as a class isn’t effective. However, it’s worth noting that these salient ob-
ject detection methods [27] are specifically designed to locate a single object,
typically the most prominent one, and may not be suitable for handling real-
world document images containing multiple objects and complex layouts. This
raises questions about the effectiveness of unsupervision in document segmenta-
tion.

In this paper, we identify and localize graphical elements within documents
without labels. In the initial phase of unsupervised training, We use unlabeled
data, which lacks specific information about the locations and types of objects
in the documents. We generate initial layout masks based on features from a
self-supervised DINO [28]. We analyze patch-wise similarities for images with
multiple objects and use Normalized Cuts (NCut) to isolate a mask for each
object, repeating this multiple times for multiple objects. Later, we apply a
loss drop strategy in the detector training to improve performance. The model
undergoes several iterations of unsupervised training for further refinement. Pre-
vious research has shown self-supervised vision-based methods [28,29] to be less
effective for DLA tasks because they require direction from learned text and
layout embeddings. Yet, we propose that unsupervised learning employs visual
representation. The visual features generate masks that provide a preliminary
idea of where objects might be located within the documents, serving as a start-
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ing point for further analysis. In short, our approach does not rely on layout
information from pre-trained text recognition models. Instead, we use the inher-
ent visual information within documents as a layout guide for learning visual
representations.

In summary, the contributions of our paper are as follows:

• A vision-based unsupervised learning framework aims to train the detector
to perform document layout analysis. This approach recognizes and analyzes
the layout of documents autonomously.

• A layout-guided strategy that generates initial layout masks using visual
features for document segmentation.

• An efficient unsupervised learning approach that learns about different doc-
ument objects to minimize data use. It can be used as a pre-training model
for document analysis.

We organize the content of the paper as follows. We begin with a thorough review
of existing literature in Section 2. Then, in Section 3, we detail the methodology.
Section 4 is dedicated to the discussion of our experiments and the results ob-
tained. In Section 5, we conduct an ablation analysis. Finally, we conclude our
paper in Section 6 with our final thoughts and findings.

2 Related Work

2.1 Fully-Supervised Document Understanding

Recent advancements in deep learning methodologies have broadened their ap-
plications, extending from healthcare [30,31], traffic analysis [32], to document
analysis [33,34,35,36,37,38]. In recent years, the idea of Document Understand-
ing (DU) has expanded to include many different challenges and tasks related to
Document Intelligence systems [39]. This includes, but is not limited to, Key In-
formation Extraction [40,41,42], Document Classification [43], Document Layout
Analysis [44,45], Question Answering [46,47], and Machine Reading Comprehen-
sion [48], particularly when dealing with Visually Rich Documents (VRDs) as
opposed to simple text or basic image-text combinations. Leading DU systems
predominantly utilize extensive pre-training to merge visual and textual ele-
ments [49,5,29,50,51]. However, methods like Donut [52] and Dessurt [53] focus
more on enhancing visual features using synthetic generation techniques [54,55,56]
for effective layout representation during document pre-training.

2.2 Fully-Supervised Document Layout Analysis

DLA has emerged as a key application in data utilization, focusing on optimizing
storage and handling of vast amounts of information [1]. The field has trans-
formed with the introduction of deep learning and Convolutional Neural Net-
works (CNN), leading to a shift in document layout segmentation [57,6,58,59,60]
towards a Document Object Detection. The development of extensive DLA
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benchmarks [44,45] has made it easier for deep learning techniques to be ap-
plied in this field. Biswas et.al [61] has considered DLA as an instance-level seg-
mentation task that is crucial for identifying bounding boxes and segmentation
masks in pages with overlapping elements. Transformer-based methods [5,62]
have recently achieved improved results in DLA, particularly for large-scale doc-
ument datasets, though they still face challenges in smaller datasets. Innovative
language-based methods like LayoutLMv3 [5] and UDoc [50] have shown im-
pressive results on the PubLayNet benchmark but struggle with more complex
layouts and smaller data samples.

2.3 Advancements in Self-Supervised Learning

In the evolving field of computer vision, researchers have been concentrating
on understanding complex visual details from different images. This led to the
development of data-driven machine learning models, for extracting and cor-
relating features, to meet increasingly complex demands. Advanced networks
require a lot of data. This makes data annotation very important, leading to
many self-supervised learning strategies. MoCo [63] introduced a novel approach
in contrastive learning settings, utilizing exponential moving averages and large
memory banks for weight updates. Building on this, SimCLR [64] proposed using
larger batch sizes as an alternative to memory banks. DINO [28] brought the con-
cept of self-supervision to vision transformers [65]. MoCov2 [66] and SwAV [67]
subsequently achieved remarkable results within this self-supervised framework.
Alternatively, BYOL [68] and SimSiam [69] approached the problem by treat-
ing different sections of the same image as analogous pairs, moving away from
traditional contrastive learning. Additionally, masked autoencoders [70] have re-
vitalized classic autoencoder techniques by incorporating a masking strategy for
learning representations through reconstruction.

Despite the remarkable success of supervised object detection techniques
such as Mask RCNN [71], Yolo [72], Retinanet [73], and DETR [74], their self-
supervised alternatives have been somewhat limited in scope until recently. Re-
cent advancements have seen the development of end-to-end self-supervised ob-
ject detection models like UP-DETR [75] and DETReg [76], as well as backbone
pre-training strategies such as Self-EMD [77] and Odin [78]. While significant
research has been done on self-supervised learning, unsupervised methods still
need to be explored. While some attempts have been made at unsupervised doc-
ument analysis [79,80], these methods have yet to improve effectively. This paper
aims to fill this gap by introducing

3 Methodology

In our research, we focus on applying unsupervised learning to document layout
segmentation and object detection domains, as shown in Fig. 1. Our primary
data, denoted as D, consists of a comprehensive collection of RGB document
images. To align with the unsupervised learning framework, which emphasizes
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Fig. 1: Overview of our unsupervised training module: It takes unlabeled data
to train models for object detection and instance segmentation. Then, Ob-
jects Masking [27] generates rough object masks utilizing the features of self-
supervised DINO [28]. We employ a patch-wise similarity matrix for multiple
object masks in an unlabeled image. Applying Normalized Cuts (Ncut) to this
matrix, we initially extract a mask for a single foreground object. This procedure
is repeated, altering the affinity matrix each time, allowing Objects Masking to
discover multiple object masks in one image, demonstrated here with eight iter-
ations.

learning from unlabeled data, we derive an unlabeled dataset Du = {xi
u}

Nu
i=1

from D, where Nu represents the total number of images in Du. It does not con-
tain traditional annotations or labels usually associated with supervised learning
tasks, such as explicit object categories, locations, or dimensions.

Initially, we employ a mask generation technique following [81,27,28] that
creates several binary masks for each document image utilizing unsupervised
features derived from DINO [28]. The approach for extracting this mask is de-
tailed in Section 3.1, highlighting the extraction process that emphasizes the
document’s physical layout. Furthermore, as outlined in Section 3.2, we em-
ploy a dynamic loss reduction approach to effectively train a detector using the
initial masks generated previously while simultaneously prompting the model
to identify object masks that may have been overlooked. Lastly, as explained
in Section 3.3, we enhance our method’s effectiveness by implementing several
iterations of unsupervised training.

3.1 Layout Mask Generation for Multiple Objects

Generating the layout masks is crucial in our approach, as our unsupervised
framework relies on them for visual guidance. For input document image x, we
create multiple object masks within an image without the need for any manual
annotations. In our approach, we initially partition the input document image
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into smaller image patches. We create a patch-wise similarity matrix to analyze
the relationships between these patches. The crucial aspect here is using a self-
supervised DINO [28], which extracts meaningful features from these patches
without needing labeled data. These extracted features are then employed to
determine the similarity between each pair of patches, resulting in the formation
of the similarity matrix as follows:

Wij =
FiFj

∥Fi∥2∥Fj∥2
(1)

where Fi and Fj represent the key features of patch i and patch j, respectively.
The diagonal elements in the patch-wise similarity matrix have the highest val-
ues because they represent the same patch overlapping with itself, making them
inherently identical and, therefore, maximally similar as shown by arrows around
infinity metrix in Fig 1. This matrix is a fundamental component in our pipeline,
facilitating subsequent analysis and tasks by capturing the visual relationships
within the document image. We then employ the Normalized Cuts algorithm [82]
on the similarity matrix, generating a single mask that highlights the primary
foreground object within the image. Normalized Cuts (NCut) approaches con-
sider image segmentation a problem of dividing a graph into meaningful parts.
To do this, we create a fully interconnected and undirected graph, representing
each image patch as a node. Edges between nodes are established with weights,
denoted as Wij , which quantify how similar the connected nodes are. NCut aims
to find the optimal way to split this graph into two distinct sub-graphs, essen-
tially forming a bipartition. It is achieved by solving a generalized eigenvalue
system, minimizing the overall cost of this partitioning process as follows:

(Dm −W )xm = λDmxm (2)

where xm is the eigenvector associated with the second smallest eigenvalue
λ at stage m. Here, Dm represents a diagonal matrix of size N × N , with
d(i) =

∑
j Wij , and W is a symmetrical matrix of size N × N . One crucial

aspect of this approach is determining which group of patches corresponds to
the foreground, a fundamental step in object mask generation. For this, we em-
ploy two specific criteria. Firstly, we identify the patch with the highest absolute
value in the second smallest eigenvector of the binary mask Mm. This selec-
tion intuitively represents the most prominent part of the foreground, enhancing
object detection. Secondly, we incorporate a straightforward yet empirically ef-
fective prior: the foreground group should not contain two of the four input im-
age corners. These criteria help ensure accurate identification of the foreground
and background regions. The generated mask for a single document object is as
follows:

Mm
ij =

{
1, if Mm

ij ≥ mean(xm)

0, otherwise.
(3)

where, If Mm
ij is greater than or equal to the average value of xm, it sets Mm

ij to 1,
effectively marking that element in the mask. If Mm

ij is less than the mean of xm,
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it sets Mm
ij to 0, indicating that the element is not part of the mask. In this way,

it generates a mask that identifies elements belonging to the foreground. If we
don’t meet certain criteria previously explained, as if there are two input image
corners in the current foreground, We reverse the foreground and background
as Mm

ij = 1−Mm
ij . Moreover, we set values of Wij less than τt to 1× 10−5 and

values greater than or equal to τt to 1.
Mask Pooling: To ensure that each object in the sequence receives a distinct
mask, focusing on different data or image areas. We exclude nodes previously
identified as part of the foreground. This exclusion ensures that the mask gen-
eration process remains consistent with the specific characteristics of each ob-
ject, leading to accurate mask generation. For this, we obtain the mask for the
(m+1)th object by updating the node similarity Wm+1

ij and excluding the nodes
corresponding to the foreground in previous stages as follows:

Wm+1
ij =

(Fi

∏m
l=1 M̂

l
ij)(Fj

∏m
l=1 M̂

l
ij)

∥Fi∥2∥Fj∥2
(4)

were,M̂ l
ij1 − M l

ij . Here, masking by excluding the nodes of previously masked
foreground enables our approach to uncover multiple object masks within a
single image. In document mask generation, we’ve set m to 10. We can vary
this according to maximum possible objects in the document image. In Fig 1 we
adept at generating up to six distinct object masks in the image. This strategic
masking enables the uncovering of multiple object masks within a single image.
Employing the updated similarity matrix Wm+1,ij , we iterate through Eqs. 1
and 2 to derive a new mask denoted as Mm+1. This innovative pipeline allows us
to reveal and distinguish various objects within the same image without manual
supervision or annotations.
Augmentation: In our training process, we incorporate copy-paste augmenta-
tion approach, following [83,84]. However, we modify this technique to enhance
our model’s ability to segment small objects precisely. Traditionally, copy-paste
augmentation involves taking a portion of an image and placing it elsewhere
within the same image or in another image. Instead of following this conventional
approach, we introduce an additional step. When we copy a portion of the mask,
we randomly reduce its size by a certain factor. This reduction is determined
by a scalar value that we randomly select from a uniform distribution between
0.3 and 1.0. For small objects, we downsizing the mask this way to effectively
replicate scenarios where objects are small. This adjustment aids the model in
becoming more proficient at handling and accurately segmenting these smaller
objects throughout its training process, leading to an overall enhancement in its
performance.

3.2 Loss Reduction for Exploring Object Regions

In standard object detection, the loss function penalizes predictions pj that do
not align with the actual ground-truth. However, in our unsupervised setting,
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we consider the previously generated mask as the ground-truth that may over-
look certain instances, making it essential to extend beyond the standard loss to
enable the detector to identify new, unlabeled instances effectively. To address
this challenge, we employ Ldrop, which selectively ignores the loss for predicted
regions (pj) that exhibit minimal overlap with the masked ground-truth. Dur-
ing training, we drop the loss for each predicted region (pj) if its maximum
Intersection over Union (IoU) with any masked ground-truth instance is below
a threshold of τi = 0.01, as described by the equation:

Ldrop(pj) =

{
Ldet(pj) if IoUmax

j > τi = 0.01

0 otherwise
(5)

Here, IoUmax
j represents the highest IoU of pj with all generated masked in-

stances, and Ldet denotes the conventional loss function used in detectors. By
implementing Ldrop, the model avoids penalties for detecting objects not present
in the previously generated mask, allowing it to focus on exploring various image
regions.

3.3 Multi-Iterations Unsupervised Training

Our experiments show that as we train detection models, they become surpris-
ingly good at improving the quality of the masks they generate. Even when they
start with rough masks, the models gradually make them better. It, along with
Ldrop strategy, helps the models find new object masks effectively. To improve
performance, we employ multiple rounds of unsupervised training. We take the
masks and proposals generated in the previous round in each round, but only if
they have a confidence score exceeding 0.75−0.5 from the m-th round. These be-
come annotations for the next round (m+ 1)-th, helping the model learn more
about the objects in the data. To avoid feeding the network redundant infor-
mation, we skip ground-truth masks that have IoU greater than 0.5 with the
predicted masks. We aim to avoid redundancy in the model’s learning process to
ensure efficiency. Our experiments have shown that doing this training process
three times works well. With each round, the model has more high-quality mask
examples to learn from, making it better at generating object masks in complex
scenes.

4 Experimental Setup

4.1 Datasets

We employ several specialized datasets such as PubLayNet [44], DocLayNet [85],
and TableBank [86] for our document unsupervised detection and segmentation
framework. DocLayNet [85] dataset includes 69,375 training images, 6,489 val-
idation images, and 4,999 test images across six domains, each annotated for
11 classes. PubLayNet [44], a large public dataset, contains 335,703 training,
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11,240 validation, and 11,405 test images, with annotations for figures, lists, ti-
tles, tables, and texts in academic images. TableBank [86] dataset is designed
to identify tables in scientific documents and contains 417,000 document images
from the arXiv database. It classifies tables into LaTeX, Word, and combined
categories and includes table structure recognition data. However, we only used
the training images without ground-truth labels during the training.

4.2 Evaluation Metrics

We evaluate our unsupervised document analysis approach using the following
metrics: mAP box, AP box

50 , AP box
75 , mAPmask, APmask

50 , and APmask
75 . The mean

Average Precision mAP box calculates the average precision of bounding box
detections. AP box

50 and AP box
75 extend this evaluation to specific IoU thresholds

of 50% and 75%, respectively. Similarly, mAPmask measures the precision of
object segmentation masks, while APmask

50 and APmask
75 assess this precision at

the same IoU thresholds. These metrics provide a comprehensive assessment
of the model’s capability in accurately detecting and segmenting objects with
varying degrees of precision.

4.3 Implementation Details

Our approach employs Document analysis dataset, without utilizing any an-
notations during training. For image processing, Objects Masking is employed
in three stages. Images are resized to 480 × 480 pixels, and a patch-wise simi-
larity matrix is generated using the ViT-B/8 DINO model. Post-processing of
masks is conducted using a Conditional Random Field (CRF) to calculate their
bounding boxes. We employ Cascade Mask R-CNN [87] starting with initial
masks and bounding boxes for 150k iterations. Specifically, when leveraging a
ResNet-50 backbone [88], the model is initially equipped with weights from a
self-supervised pretrained DINO model [28]. We train our network on 2 GPUs
RTXA6000 for around 8 hours. The detector is optimized over 150k iterations
using Stochastic Gradient Descent (SGD). It begins with a learning rate of 0.005,
which is decreased by 5 times after 80k iterations. The training uses batches of
16, a weight decay of 5× 10−5, and a momentum of 0.9.

4.4 Performance Analysis

The effectiveness of our unsupervised training method is evaluated in Table 1.
It shows unsupervised performance for object detection and instance segmenta-
tion on different datasets, PubLayNet, DocLayNet, and TableBank. TableBank
outperforms PubLayNet and DocLayNet due to its single-class focus on tables,
making the task simpler. Consequently, TableBank achieves significantly higher
accuracy in both bounding box and mask predictions. We initialize the back-
bone with DINO network [28] and employ cascade Mask RCNN as the detector.
TableBank shows high AP and mAP scores, indicating precise detection and
segmentation capabilities without table labels.
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Fig. 2: Comparative visual analysis of unsupervised learning on the PubLayNet
dataset: top-predicted layouts; bottom-corresponding ground-truth layouts. The
model’s proficiency in detecting details overlooked by human annotators is also
highlighted, marked by red arrows.

Table 1: Quantitative analysis of unsupervised detection and segmentation in
document datasets such as PubLayNet, DocLayNet, and TableBank. We discuss
the effectiveness of detection and segmentation, focusing on the detection method
and backbone initialization (Init) with DINO [28]. The term ’Cascade’ here
represents the Cascade Mask R-CNN network [87].

Dataset Unsup-train Detector Init. Performance

mAP box AP box
50 AP box

75 mAPmask APmask
50 APmask

75

PubLayNet
✓ ’Cascade’ DINO

28.7 43.1 30.0 29.3 44.1 30.5

DocLayNet 22.4 37.5 23.1 24.2 38.7 24.8

TableBank 88.6 91.2 89.7 88.8 91.2 89.7

TableBank has mAP of 88.6% for detection and 88.8% for segmentation on
unsupervised training. Fig. 2 shows the performance of our unsupervised learn-
ing approach on the PubLayNet dataset. The analysis includes the unsupervised
model’s predicted layouts against the ground-truth layouts. Notably, the model
demonstrates an improved ability to recognize various elements within a docu-
ment, such as footers. It also excels in precisely segmenting smaller components
like text blocks. A key aspect of this analysis is the model’s remarkable perfor-
mance in identifying fine details within the layouts, some of which might even



UnSupDLA: Towards Unsupervised Document Layout Analysis 11

be missed by human annotators. These instances, where the model’s predictions
positively diverge from human annotations, are specifically highlighted with red
arrows. It highlights the model’s advanced capability in document object detec-
tion and segmentation in unsupervised settings.

Table 2: Merged Results for PubLayNet, TableBank, and DocLayNet
PubLayNet TableBank DocLayNet

Methods mAP box mAPmask mAP box mAPmask mAP box mAPmask

Fully-supervised methods:
V+BERT-12L [58] 96.5 - - 81.0 -
VGT [59] 96.2 - - - -
SwinDocSegmenter [60] - 93.72 - 98.04 -
TRDLU [89] 95.95 - - - -
VSR [90] 95.7 - - - -
CDeC-Net [7] 96.7 - 89.8 - - -
DocSegTr [8] - - 93.3 - -
Layout LMv3 [9] - - 92.9 - -
GLAM + YOLOv5x6 [91] - - - - 80.8
Mask R-CNN [92] - - - - 78.0

Unsupervised methods:
Our 28.7 29.3 88.6 88.8 22.4 24.2

Table 2 compares our unsupervised approach with previous fully supervised
approaches, highlighting the effectiveness of the unsupervised approach in object
detection and segmentation tasks within document layout analysis. Supervised
methods, which have the advantage of learning from labeled data, generally
yield high precision scores; for instance, SwinDocSegmenter [60] achieves an im-
pressive 93.72 APbox on TableBank, indicating its strong capability to identify
and localize objects accurately. However, the unsupervised method is particu-
larly noteworthy, achieving an APmask of 88.8 on TableBank without the aid of
labeled training data. This high score in segmentation precision suggests that
our approach can predict the shapes and boundaries of document elements,
such as tables or text blocks, almost as effectively as its supervised approaches.
The ability of our approach to perform so well in an unsupervised manner is
significant as it implies a considerable reduction in the dependency on costly
and time-consuming data labeling processes. It also opens up new possibilities
for analyzing documents in domains where obtaining labeled data is difficult,
thus expanding the applicability of unsupervised learning in document analysis.
Therefore, it provides a performance benchmark for current methods and the
possibility of unsupervised learning approaches in real-world document layout
understanding tasks.
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Size → 240 360 480 640

APmask
50 86.4 87.5 88.6 88.7

(a) Image size.

τt → 0 0.1 0.15 0.2

APmask
50 88.2 88.5 88.6 88.5

(b) τt for Objects Masking.

N → 5 10 15

APmask
50 88.1 88.6 88.6

(c) # masks per image.

τi → 0 0.01 0.1 0.2

APmask
50 88.3 88.6 85.5 82.9

(d) τi for Ldrop.

Table 3: Ablations for mask generation and loss reduction for exploring object
regions. This study examines the impact of different parameters on unsuper-
vised training performance using the TableBank dataset. The parameters varied
include: (a) image size, (b) the threshold value τt which determines the spar-
sity level of the affinity matrix in Normalized Cuts, (c) the number of masks
generated by Objects Masking, and (d) the threshold τi in Ldrop, which is the
maximum allowable overlap between predicted regions and ground-truth before
excluding loss for those regions. Default parameter settings are indicated in gray.

5 Ablation Study

Design choices of unsupervised training parameters. This study conducts
an ablation analysis on the design choices of unsupervised training parameters in
the context of mask generation and loss reduction for exploring object regions, as
shown in Table 3. The research is centered on utilizing the TableBank dataset to
evaluate the impact of various parameters on unsupervised training performance.
The parameters under scrutiny encompass: (a) the image size, (b) the threshold
value τt, which plays a crucial role in determining the sparsity of the affinity
matrix within the Normalized Cuts method, (c) the quantity of masks generated
through the Objects Masking technique, and (d) the threshold τi in Ldrop, which
dictates the maximum allowable overlap between predicted regions and ground-
truth before dismissing the loss for those regions. A key aspect of this analysis is
identifying default parameter settings, which are distinctly highlighted in gray
for reference. Understanding the influence of unsupervised training parameters
in object region exploration is important for optimizing mask generation and
loss reduction efficiency and accuracy. By varying these parameters and assessing
their effects on performance, this research provides the best results for enhancing
the overall performance. The study’s insights can aid in fine-tuning unsupervised
training processes, ensuring more precise and effective results in tasks related to
document analysis and object recognition.
Effectiveness of unsupervised training iterations. Multiple rounds of un-
supervised training effectively enhance the quality and quantity of object masks,
as indicated in Table 4. Through iterative refinement, the model progressively
improves the precision of object masks, even when starting with rough initial
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predictions. This process generates more masks, aiding the model’s training.
Combining these masks with the Ldrop strategy, which focuses on uncertain pre-
dictions, helps the model target areas where it initially struggles, improving mask
accuracy. Our experiments suggest that performing unsupervised training three
times provides a balance between generating high-quality masks and avoiding
overfitting, making it particularly valuable for handling even small and complex
document objects in document analysis data.

Table 4: Analysis of training iterations in unsupervised
learning. Here, analysis shows that three iterations pro-
vide the best results using Cascade Mask RCNN on the
TableBank dataset.
Iteration mAP box AP box

50 AP box
75 mAPmask APmask

50 APmask
75

1 86.2 89.5 88.4 88.2 89.6 88.9
2 88.3 90.7 89.1 88.5 90.8 89.4
3 88.6 91.2 89.7 88.8 91.2 89.7
4 88.6 91.0 89.5 88.7 91.2 89.7

Effectiveness of quantity of pre-training data. The quantity of unsuper-
vised training data significantly influences the effectiveness of our unsupervised
approach. Essentially, the larger the dataset we have for training, the better our
model tends to perform in terms of its ability to generalize and achieve higher
performance. This relationship between data quantity and model performance is
demonstrated in Table 5. Using only 10% of the data for unsupervised training,
we achieved an mAP of 82.9 for detection and 85.2 for segmentation. However,
when we utilized the full 100% of the available data, our performance improved
significantly to an mAP of 88.6 for detection and 88.8 for segmentation.

Table 5: Performance analysis of Cascade Mask RCNN
unsupervised training with varying percentages of data
utilized in TableBank dataset.
% data mAP box AP box

50 AP box
75 mAPmask APmask

50 APmask
75

10% 82.9 88.9 86.0 85.2 88.9 86.6
30% 85.4 89.3 87.2 86.2 89.3 87.2
50% 85.8 90.5 88.1 87.3 90.5 88.2
100% 88.6 91.2 89.7 88.8 91.2 89.7

Effectiveness of cross-data unsupervised learning. Moreover, in Table 6,
we examine the impact of training data on the efficiency of unsupervised training.
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Specifically, we investigate the performance differences when a network is unsu-
pervisely trained sequentially on two distinct datasets. Initially, the network un-
dergoes unsupervised training for 150k iterations exclusively on just PubLayNet
dataset. In second experiment, the network is first unsupervisely trained on the
TableBank dataset for 75k iterations. Following this, the network undergoes an

Table 6: Impact of Dataset Selection on Cross Unsupervised Training. We
explore how different datasets affect cross unsupervised training results.

Cross Unsup-training mAP box AP box
50 AP box

75 mAPmask APmask
50 APmask

75

PubLayNet 28.7 43.1 30.0 29.3 44.1 30.5
TableBank + PubLayNet 65.6 84.8 71.2 65.3 85.2 71.5

additional 75k iterations of unsupervised training on the PubLayNet dataset.
Our findings reveal a significant performance improvement when cross-training
is employed. Specifically, training solely on the PubLayNet dataset resulted in a
mAP of 28.7 for document object detection. In contrast, the cross-data training
approach, involving both TableBank and PubLayNet datasets, yields a substan-
tially higher mAP of 65.6. Our experiments show that unsupervised training the
network on multiple datasets, rather than just one, significantly improves its
performance.

6 Conclusion

In conclusion, the paper presents a significant advancement in the field of doc-
ument layout analysis by introducing a vision-based approach that effectively
addresses the challenges of limited labeled data and the diversity of documents
online. This method diverges from traditional techniques that rely heavily on
labeled data, which are increasingly impractical due to the massive volume of
documents on the internet. The proposed approach begins with pre-training that
generates simple object masks from unlabeled document images, bypassing the
need for extensive labeling. These masks are then employed to train a detector,
leading to improved object detection and segmentation precision. The model’s
performance is further enhanced through multiple training iterations, allowing
for continuous refinement. This approach offers a more efficient, accurate, and
flexible way for analyzing document layouts, making a major improvement in the
field of document research. In the future research, we intend to investigate how
unsupervised techniques can be utilized to improve Document Layout Analysis.
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