
RMS-FlowNet++: Efficient and Robust Multi-Scale Scene

Flow Estimation for Large-Scale Point Clouds

Ramy Battrawy1*, René Schuster1 and Didier Stricker1

1Augmented Vision, German Research Center for Artificial Intelligence (DFKI),
Trippstadter Str. 122, Kaiserslautern, 67663, Rhineland-Palatinate, Germany.

*Corresponding author(s). E-mail(s): ramy.battrawy@dfki.de;
Contributing authors: rene.schuster@dfki.de; didier.stricker@dfki.de;

Abstract

The proposed RMS-FlowNet++ is a novel end-to-end learning-based architecture for accurate and
efficient scene flow estimation that can operate on high-density point clouds. For hierarchical scene
flow estimation, existing methods rely on expensive Farthest-Point-Sampling (FPS) to sample the
scenes, must find large correspondence sets across the consecutive frames and/or must search for cor-
respondences at a full input resolution. While this can improve the accuracy, it reduces the overall
efficiency of these methods and limits their ability to handle large numbers of points due to memory
requirements. In contrast to these methods, our architecture is based on an efficient design for hier-
archical prediction of multi-scale scene flow. To this end, we develop a special flow embedding block
that has two advantages over the current methods: First, a smaller correspondence set is used, and
second, the use of Random-Sampling (RS) is possible. In addition, our architecture does not need to
search for correspondences at a full input resolution. Exhibiting high accuracy, our RMS-FlowNet++
provides a faster prediction than state-of-the-art methods, avoids high memory requirements and
enables efficient scene flow on dense point clouds of more than 250K points at once. Our comprehen-
sive experiments verify the accuracy of RMS-FlowNet++ on the established FlyingThings3D data
set with different point cloud densities and validate our design choices. Furthermore, we demonstrate
that our model has a competitive ability to generalize to the real-world scenes of the KITTI data set
without fine-tuning.

Keywords: Point Cloud, Scene Flow, Random-Sampling, Farthest-Point-Sampling, Flow Embedding,
Patch-to-Dilated-Patch

1 Introduction

Robust perception of the dynamic environment is
a fundamental task for many real-world applica-
tions such as autonomous driving, robot naviga-
tion, augmented reality, and human-robot interac-
tion systems. The goal of scene flow is to estimate
3D displacement vectors between two consecu-
tive scenes, representing all observed points in the
scene as a dense or semi-dense 3D motion field.

Therefore, scene flow can serve as an upstream
step in high-level challenging computer vision
tasks such as object tracking, odometry, action
recognition, etc. With prior knowledge of the cam-
era’s intrinsic parameters, the 3D scene flow can
be projected onto the image plane to obtain its 2D
counterpart in pixel coordinates, which is called
optical flow.

1

Many approaches propose pixel-wise scene
flow estimation using stereo image sequences by
combining geometry reconstruction with optical
flow estimation to obtain dense scene flow [1–8].
Despite significant advances in such approaches,
the overall accuracy of the resulting scene flow
is highly dependent on the image quality, which
can be poor under adverse lighting conditions.
Compared to stereo systems, LiDAR sensors can
accurately capture 3D geometry in the form of 3D
point clouds and are less sensitive to lighting con-
ditions. Therefore, there is an increasing emphasis
on estimating scene flow directly from 3D point
clouds.

Handling point clouds and finding correspon-
dences in 3D space is more challenging due to the
irregularity, sparsity of points, and varying point
density of the scene. To tackle these challenges,
several techniques develop deep neural architec-
tures to estimate scene flow from point clouds.
Some of these methods project the point cloud
onto a permutohedral lattice [9] and then use
bilateral convolutions [10]. Others organize 3D
point clouds into voxels [11, 12] and use sparse
convolutions [13] to facilitate scene flow predic-
tion. However, these regular representations can
introduce discretization artifacts and information
loss that negatively affect the accuracy of the
network.

With the advent of point-based networks on
3D point clouds [14, 15], many works estimate
scene flow directly from raw point clouds using
the multi-layer perceptron (MLP) as in [16–24]
without the need for regular or intermediate rep-
resentations. All of these techniques build a flow
embedding module at coarse resolutions and then
either use hierarchical refinement modules along
with upsampling [16, 18, 20, 22–24] or use gated
recurrent units (GRUs) [25] with iterative flow
updating for the refinement process [17, 19, 21].
Despite their ability to capture both near and
far matches, GRU-based methods [17, 19, 21] are
less efficient in terms of runtime due to iterative
flow updates along with expensive flow embedding
layers.

Following hierarchical schemes, Wang et
al. [22] propose a double attentive flow embedding
along with the explicit learning of the resid-
ual scene flow. Their extension in [23] further
improves the results by jointly learning of back-
ward constraints in the all-to-all flow embedding

96.5 96.0
97.7

94.1
95.8

88.8

77.8

90.3

66.8

95.9 95.9
94.4

91.0 92.6
94.6

40

58
68

79 84

117 119 119 130
154

202
228

379

1369
1565

40

400

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

O
u
rs

 (
R

S
)

B
i-

P
o

in
tF

lo
w

N
et

 [
6

]

O
u
rs

 (
F

P
S

)

R
M

S
-F

lo
w

N
et

 (
R

S
)

[1
]

W
M

3
D

S
 [

5
5
]

P
o
in

tP
W

C
-N

et
 [

6
4
]

H
P

L
F

lo
w

N
et

 [
1
4

]

H
A

L
F

lo
w

 [
5
7

]

F
lo

w
N

et
3

D
 [

3
0
]

W
S

L
R

 [
1
2

]

S
C

T
N

 [
2

7
]

H
C

R
F

-F
lo

w
 [

2
8
]

F
L

O
T

 [
3
7
]

F
lo

w
S

te
p

3
D

 [
2
6

]

P
V

-R
A

F
T

 [
6
2
]

T
im

e
[m

s]

A
cc

3
D

R
 [

%
]

Acc3DR [%] Time [ms]

Fig. 1: Our RMS-FlowNet++ shows an accurate
scene flow (Acc3DR) with a low runtime. The
accuracy is tested on KITTIs [26] with 8192 points
as input and the runtime is analyzed for all meth-
ods equally on a Geforce GTX 1080 Ti.

layer to capture distant matches. However, both
methods [22, 23] reduce the scene flow resolution
to a quarter of the input points, and they show
that obtaining high accuracy of the scene flow at
the full input resolution requires a further refine-
ment module. This can be computationally expen-
sive, while using a simple interpolation method
can degrade the overall accuracy. In addition, the
use of an all-to-all flow embedding layer in [23]
increases the size of the correlation volume, which
in turn increases the computational load of further
operations. More recently, Bi-PointFlowNet [24]
has proposed to learn bidirectional correlations
from coarse-to-fine, searching for correspondences
in both directions, and it uses a flow embedding
layer at full input resolution.

All of the above point-based methods
use Farthest-Point-Sampling (FPS) and rely on
a K-Nearest-Neighbor (KNN) search with a large
set of correspondences during the flow embed-
ding, which both increases the computational and
memory requirements and limits the ability to
handle large point clouds.

To tackle these challenges, we present our
RMS-FlowNet++ – a hierarchical point-based
learning approach that requires smaller corre-
spondence sets compared to the state-of-the-art
methods and outperforms them when using FPS
on the KITTI [26] data set. In addition, our model

2

𝑄𝑡+1

𝑃𝑡

Farthest-Point-Sampling (FPS)

Adequate sampling in low-density areas

𝑄𝑡+1

𝑃𝑡

Random-Sampling (RS)

Underrepresentative sampling in low-density areas

D
is

si
m

il
ar

S
am

p
le

d
 P

at
te

rn
s

Fig. 2: The challenges of Random-Sampling (RS) (right) compared to Farthest-Point-Sampling (FPS)
(left): Both techniques sample two consecutive scenes P t (blue) and Qt+1 (green) into red and pink
samples, respectively. Areas of low density are often not sufficiently covered by Random-Sampling (RS),
resulting in dissimilar patterns. The patterns of the corresponding objects are much more similar when
FPS is used, making it easier to match the points.

allows the use of RS and is therefore more effi-
cient, has a smaller memory footprint, and shows
comparable results at a lower runtime compared
to the other state-of-the-art methods (cf. Fig. 1).

The advantage of RS combined with the
smaller correspondence set results in our model
being the only one that can robustly estimate
scene flow on a very large set of points, as shown
in Section 4.5. However, using RS for scene flow
estimation is challenging for two main reasons:
1.) RS will reflect the spatial distribution of the
input point cloud, which is problematic if it is far
from uniform, which is a disadvantage compared
to FPS. 2.) Corresponding (rigid) areas between
consecutive point clouds will be sampled differ-
ently by RS, while FPS will yield more similar
patterns. Both issues are illustrated in Fig. 2.

To overcome these problems, we propose a
novel Patch-to-Dilated-Patch flow embedding con-
sisting of four layers with lateral connections
(cf. Fig. 5) to incorporate a larger receptive field
during matching without increasing the physical
set of correspondences. Overall, our fully super-
vised architecture consists of a hierarchical fea-
ture extraction, an optimized flow embedding,
and scene flow prediction at multiple scales. The
preliminary version of our network design has
been published in RMS-FlowNet [27], but we are
improving the overall design, which will lead to

a very accurate result with higher efficiency. Our
contribution can be summarized as follows:

� We propose RMS-FlowNet++ – an end-to-end
scene flow estimation network that operates on
dense point clouds with high accuracy.

� Our network consists of a hierarchical scene
flow estimation with a novel flow embedding
module (called Patch-to-Dilated-Patch) which
is suitable for the combination with Random-
Sampling.

� Compared to our previous work in RMS-
FlowNet [27], we significantly reduce the size
of the correspondence set, and omit some lay-
ers in the feature extraction module to increase
the overall efficiency. Furthermore, we show that
a feature-based search can increase the overall
accuracy without sacrificing the efficiency.

� We explore the advantages of RS over FPS
on high-density point clouds and its ability to
generalize during the inference.

� We provide an intensive benchmark showing
our strong results in terms of accuracy, gen-
eralization, and runtime compared to previous
methods.

� Finally, we investigate the robustness of our net-
work to occlusions and evaluate it for points
acquired at longer distances (> 35 m).

3

Refinement

Hierarchical as in [1, 6, 14, 30, 55-58, 64],

Iterative Unrolling / GRU-based as in [10, 13, 26, 37, 62] or

Direct Rigidity Constraint as in [10, 12].

Feature Extraction

Backbones e.g., ConvNets [8],

RandLA-Net [17], Bilateral

NNs [23], PointNet++ [39] or

PointConv [63].

Scene

Flow

Cost Volume / Flow Embedding.

Searching Matches, and constructing point-

to-point [13], point-to-patch [30, 58], patch-

to-patch [6, 14, 56-57, 64], all-to-all [10, 12,

26-27, 37, 55, 62], patch-to-dilated-patch [1].

Representation

e.g., Permutohedral

Lattice [25], Voxels or,

Raw point clouds.

Lattice as in [14],

Voxels as in [12, 27] or

Raw as in [1, 6, 10, 13, 26, 30,

37, 55-58, 62, 64].

RandLA-Net as in [1]

Bilateral NNs as in [14],

ConvNets as in [12, 27],

PointConv as in [6, 64] or

PointNet++ as in [10, 13, 26,

30, 37, 55-58, 62].

P
o

in
t

C
lo

u
d

s

Fig. 3: We describe the generic pipeline of recent scene flow estimation methods. Like our previous work
[27], our RMS-FlowNet++ estimates scene flow directly from raw point clouds and extracts features
based on RandLA-Net [28]. Compared to recent scene flow methods, our novel Patch-to-Dilated-Patch
allows the use of RS along with hierarchical or coarse-to-fine refinement.

2 Related Work

3D scene flow was first introduced by [29], devel-
oped using image-based (e.g., RGB-D) setups [30–
35], and then further developed in advanced deep
learning networks [36, 37]. Since RGB-D sensors
can only perceive depth at short distances, there
have been many works that estimate scene flow
from stereo images by jointly estimating disparity
and optical flow [4, 5, 38, 39]. However, two-view
geometry has inherent limitations in self-driving
cars, such as inaccuracies in disparity estimation
in distant regions. It can also suffer from poor
lighting conditions, such as in dark tunnels. Our
work focuses on learning scene flow directly from
point clouds, without relying on RGB images.

Scene Flow from Point Clouds: With the
recent advent of LiDAR sensors, which provide
highly accurate 3D geometry of the environment
for autonomous driving and robot navigation, it
becomes increasingly important to estimate scene
flow directly from point clouds in 3D world space.
In this context, there is some work [40, 41] that
formulates the task of scene flow estimation from
point clouds as an energy optimization prob-
lem without taking advantage of deep learning.
Advances in deep learning on 3D point clouds
[14, 15, 42, 43] make neural networks more attrac-
tive and accurate for 3D scene flow estimation
than the traditional methods [9, 11, 16–21, 24, 44–
48]. These recent methods mostly follow a general
scene flow estimation pipeline as shown in Fig. 3,
but differ in how they represent point clouds,
extract features, design the cost volume, or apply

the refinement strategy. For example, with the
breakthrough architecture of PointNet++ [15],
many works estimate scene flow directly from raw
point clouds in an end-to-end fashion [16, 17, 19–
23, 47, 49, 50]. Based on PointNet++, FlowNet3D
[16] is the first work to introduce a novel flow
embedding layer. However, its accuracy is lim-
ited because there is only a single flow embedding
layer and the correlation in local regions relies on
the nearest spatial neighbor search, which may
fail for long-range motion (i.e., distant matches).
In an attempt to overcome the limitations of
FlowNet3D, many approaches introduce hierar-
chical scene flow estimation, iterative unrolling
methods, or work under rigidity assumptions.

Hierarchical Scene Flow: HPLFlowNet [9]
introduces multi-scale correlation layers by pro-
jecting the points into a permutohedral lattice
as in SplatNet [43] and applying bilateral con-
volutional layers (BCL) [10, 51]. Despite of the
efficiency of HPLFlowNet [9] on high-density point
clouds, but the accuracy of the network is prone
to unavoidable errors due to the splatting and slic-
ing process. PointPWC-Net [18] avoids the grid
representation in [9] and improves the scene flow
accuracy on raw point clouds based on Point-
Conv [14] by regressing multi-scale flows from
coarse-to-fine. Following the hierarchical point-
based designs, HALFlow [20] uses the point fea-
ture learning of PointNet++ [15], but proposes
a hierarchical attention learning flow embedding
with double attentions leading to better results
than PointPWC-Net [18]. Further improvements

4

are proposed in [22, 23] to develop the flow embed-
ding of [20] through explicit prediction of residual
flow [22] and backward reliability validation [23].
All previous methods take advantage of FPS for
downsampling to provide accurate scene flow esti-
mation, but at the cost of efficiency, especially
for dense points. Compared to these methods, our
network solves the challenge of using RS to work
with high-density points.

Iterative Unrolling for Scene Flow: Besides
hierarchical flow embedding schemes, a new trend
started in FLOT [47], inspired by [52–54], to
iteratively refine the scene flow by unrolling a
fixed number of iterations to globally optimize an
optimal transport map [55]. PV-RAFT [17], Flow-
Step3D [19], and RCP [21] extend unrolling tech-
niques from optimization problems to learning-
based models by using gated recurrent units
(GRUs) [25] and capturing both local and global
correlations. We find that iterative unrolling with
a fixed number of iterations and repeated use of
flow re-embedding works well at low input reso-
lution, but is inefficient compared to hierarchical
designs.

Rigidity Assumption for Scene Flow:
Axiomatic concepts of explicit rigidity assump-
tions with ego-motion estimation are explored in
[11, 50]. A plug-in refinement module is proposed
by HCRF-Flow [48], which uses high-order condi-
tional random fields (CRFs) to refine the scene
flow by applying the rigidity condition at the
region level. Our RMS-FlowNet++ is free of any
rigidity constraint, so it can work with non-rigid
bodies, such as pedestrians.

Flow Embedding on Point Clouds: The
irregular data structure of point clouds makes it
difficult to build cost volumes as with image-based
solutions [54, 56, 57]. Therefore, previous works
such as [9, 16, 18, 19] design complicated flow
embedding layers to aggregate the matching costs
from consecutive point clouds.

Patch-to-Point Correlation: FlowNet3D [16]
introduces the flow embedding in a patch-to-point
manner, which means that the set of neighbor-
ing correspondences in the target point cloud
set are grouped into the source one based on
the Euclidean space. Then, the correlations are
learned using multi-layer perceptron (MLP) fol-
lowed by max-pooling to aggregate the features of
the correspondence set.

Patch-to-Patch Correlation: To incorporate
a large field of correlations leading to better
accuracy, HPLFlowNet [9] proposes a multi-scale
patch-to-patch design that takes advantage of the
regular representation using the permutohedral
lattice [10, 51]. Apart from regular representa-
tions, PointPWC-Net [18] uses a patch-to-point
flow embedding layer to aggregate the features
of the correspondence set in the adjacent frames
based on the point-wise continuous convolution
in PointConv [14]. A point-to-patch embedding is
then applied to aggregate the set of neighbor cor-
respondences in the source itself. Instead of using
the backbone of PointConv [14], HALFlow [20]
uses a two-stage of attention mechanism to softly
weight the neighboring correspondence features
and allocate more attention to the regions with
correct correspondences. With two-stage atten-
tions, hierarchical and explicit learning of the
residual scene flow is proposed by [22] to reduce
the inconsistencies between the correlations and
to handle fast-moving objects. Bi-PointFlowNet
[24] uses the patch-to-patch mechanism in a bidi-
rectional manner across all multi-scale layers,
which requires intensive computation of forward-
backward KNNs and additional refinement at full
input resolution. Compared to [24], our network
finds reliable correlations under bidirectional con-
straints using the cosine similarity matrix at the
coarse scale, and then operates unidirectionally
at the upper scales, requiring a small number of
correlations defined by the KNN search. It also
makes our solution more efficient without sacrific-
ing accuracy by eliminating the need to refine at
full input resolution.

All-to-All Correlations: There are several
approaches that compute a global cosine simi-
larity based on latent features and then learn
soft correlations by iteratively refining an opti-
mal transport problem using the non-parametric
Sinkhorn algorithm as in FLOT [47]. WSLR [11]
uses Sinkhorn, but refines the scene flow at
the object-level based on the rigidity assumption
and in combination with ego-motion estimation.
Apart from object-level refinement, FlowStep3D
[19] computes an initial global correlation matrix,
and then uses gated recurrent units (GRUs) for
local region refinement to iteratively align point
clouds. Another GRU-based method is proposed
by PV-RAFT [17], but its flow embedding design
combines point-based and voxel-based features

5

to preserve fine-grained information while encod-
ing large correspondence sets at the same time.
WM3D [23] designs all-to-all correlations, sup-
ported by reliability validation, but used only
at low scale resolution, where each point in the
source uses all points in the target for correlation,
and thus each point in the target can therefore
obtain the correlation with all points in the source.
Then, two-stage attentive flow embedding as in
[20, 22] is used to aggregate reliable correspon-
dences among this large set of correspondences.
All previous methods significantly increase the
number of correlation candidates, which makes the
refinement operations computationally intensive,
especially when the input point clouds contain
a large number of points. For this reason, some
approaches, such as [20, 22, 23], limit the scene
flow estimation to the quarter resolution of the
input points to avoid further computation. Com-
pared to [20, 22, 23], we design four stages in our
flow embedding, ending with two stages of atten-
tion for final correlations refinements in a large
receptive field. It also allows us to get the full res-
olution of the scene flow exactly the same as the
resolution of the input points.

RMS-FlowNet [27]: Our preliminary net-
work has proposed a trade-off between effi-
ciency and accuracy by replacing the FPS sam-
pling technique with the computationally cheap
RS technique. In RMS-FlowNet, we have pro-
posed a novel flow embedding design, called
as Patch-to-Dilated-Patch, with three embed-
ding steps to solve the challenges of using RS.
In addition, we significantly optimize the cor-
respondence search based on KNN by using
the Nanoflann framework [58]1, which further
increases the efficiency. Compared to RMS-
FlowNet [27], we change the architectural design
in our RMS-FlowNet++ to speed up the feature
extraction module by eliminating the upsampling
part (i.e., decoder) (cf. Fig. 4) and the dense lay-
ers at the full input resolution in the encoder
part. And in terms of accuracy, we add another
search step in the flow embedding based on the
feature space to improve the overall accuracy, and
we also improve the way of pairwise correspon-
dence search at the coarse scale under a bidirec-
tional constraint. With these improvements, our

1https://github.com/jlblancoc/nanoflann

Encoder

Encoder

D
ec

o
d

er
D

ec
o
d

er

F
C

F
C

shared weights

skip connections

skip connections

F
lo

w
 &

 H
ea

d
s

𝑃𝑡

𝑄𝑡+1

(a) RMS-FlowNet [27].

shared

weights

Encoder

Encoder F
lo

w
 &

 H
ea

d
s

𝑃𝑡

𝑄𝑡+1

(b) RMS-FlowNet++.

Fig. 4: Our network design consists of fea-
ture extraction, flow embedding, warping layers,
and scene flow heads, similar to our previous
work RMS-FlowNet [27]. Compared to the fea-
ture extraction module in RMS-FlowNet, which
consists of fully connected layers (FC) at full
input resolution, encoder and decoder modules
(a), we omit (FC) and the decoder in our
RMS-FlowNet++ (b).

RMS-FlowNet++ becomes much more accurate
while still showing high efficiency.

3 Network Design

Our RMS-FlowNet++ estimates scene flow as
translational vectors from consecutive frames of
point clouds (e.g., from LiDAR or RGB-D sen-
sors), with no assumptions about object rigidity or
direct estimation of sensor motion within the envi-
ronment (i.e., no direct estimation of ego-motion).

Given Cartesian 3D point cloud frames

P t = {pti ∈ R3}Ni=1 and Qt+1 = {qt+1
j ∈ R3}M

j=1

at timestamps t and t + 1, respectively, our
goal is to estimate point-wise 3D flow vectors

St = {sti ∈ R3}Ni=1 for each point within the ref-
erence frame P t (i.e., sti is the motion vector for
pti). The sizes (N , M) of the two frames do not
have to be identical, and the two frames should not
have exact correspondences between their points.
Our network is designed to estimate scene flow
at multi-scale levels through hierarchical feature
extraction using a novel design of flow embed-
ding, called Patch-to-Dilated-Patch, with warping
layers and scene flow estimation heads.

The components of each module are described
in detail in the following sections.

6

https://github.com/jlblancoc/nanoflann

3.1 Feature Extraction Module

The feature extraction module consists of two
pyramid networks with shared parameters for the
hierarchical extraction of two feature sets from
P t and Qt+1. Unlike our previous work in RMS-
FlowNet [27], the design of this module includes
only the encoder parts, while no decoder and no
transposed convolutions are required to upsam-
ple the extracted features to the full resolution, as
shown in Fig. 4.

The encoder part computes a hierarchy of fea-
tures at four scales {lk}3k=0 from fine-to-coarse
resolution, where l0 is the full resolution of (P t

and Qt+1) and the resolutions of the downsam-
pled scales are fixed to {{lk}3k=1 | l1 = 2048, l2 =
512, l3 = 128} during training, but are kept adap-
tive at higher point densities (cf. Section 4.5).
Each scale is essentially composed of two lay-
ers, where Local-Feature-Aggregation (LFA) is
applied to aggregate the features at the lk scale,
followed by Downsampling (DS) to aggregate the
features from the lk level to lk+1, resulting in a
decrease in resolution. Inspired by RandLA-Net
[28], which focuses only on semantic segmenta-
tion, we use the feature aggregation layer of LFA,
which consists of three neural units: 1) local spa-
tial encoding to encode the geometric and relative
position features, 2) attentive pooling to aggre-
gate the set of neighbor features, and 3) a dilated
residual block.

To apply LFA, we search for the number of
nearest neighbors (Kp) at all scales using KNNs
search in Euclidean space and aggregate the fea-
tures with two attentive pooling layers designed as
in [28], where the attentive pooling unit is based
on the mechanism of self-attention [59, 60]. DS
samples the points to the defined resolution in
layer lk+1 and aggregates the nearest neighbors
(Kp) from the higher resolution lk by using max-
pooling. During training and evaluation with RS,
Kp is set to 20 in all layers and changed to 16
during evaluation with FPS.

The feature extraction module outputs two
feature sets over all scales {F t

k ∈ Rck}3k=0

and {F t+1
k ∈ Rck}3k=0 for {P t

k ∈ R3}3k=0 and
{Qt+1

k ∈ R3}3k=0, respectively. Here, ck is the

feature dimension, which is fixed as {{c}3k=0 |
c0 = 32, c1 = 128, c2 = 256, c3 = 512}. The fea-
ture extraction module of our RMS-FlowNet++
is shown in Fig. 4b compared to our preliminary

design in Fig. 4a. The design of LFA and DS allows
the use of RS but still requires well-designed flow
embedding to ensure robust scene flow.

3.2 Flow Embedding

A flow embedding module across consecutive
frames is the key component for correlating the
adjacent frames of point clouds, where finding
reliable correlations is extremely important for
encoding 3D motion. In this context, previous
state-of-the-art methods combine: 1) grouping of
correspondences from Qt+1, 2) robust aggregation
of correspondence features into P t, 3) refinement
of flow embedding.

All point-wise learning-based methods take an
advantage of FPS (as explained in Fig. 2) to sam-
ple the consecutive frames and rely on finding
large correspondence sets (⩾ 32 matches) in the
sampled Qt+1 based on KNN as in [18, 20, 24]
or much more in all-to-all correlations as in [23].
While FPS can generate similar patterns across
consecutive scenes to facilitate obtaining strong
match pairs, finding large correspondence sets
can increase the likelihood of correlating distant
matches (i.e., for large displacements) [22, 23]. In
addition, some work aims to add refinement at
the fine resolution of the input points [18, 24].
Taken together, this can increase accuracy, but it
reduces the overall efficiency of these methods and
limits their ability to handle high point densities.
In addition, considering large correspondence sets
can greatly increase the possibility of aggregat-
ing unreliable correlations, leading to inaccurate
estimates.

To address these issues, we develop a special
flow embedding module that has two advantages
over current point-based methods: First, a smaller
correspondence set is used without the need for
flow embedding at full resolution, and second, the
use of RS is possible. As a result, we speed up
our model and make it amenable to RS, as shown
by our results in Section 4, which allows higher
point densities with low memory requirements (cf.
Fig. 7). We must recall that, the use of RS is
more challenging than FPS (cf. Fig. 2) for two rea-
sons. First, regions with low local point density
are underrepresented when using RS. Second, the
sampling patterns for corresponding regions are
less correlated across frames.

7

𝑒3𝑖
𝑡 𝑒𝑚𝑏𝑒𝑑. 𝑖𝑛𝑡𝑜 𝑝𝑖

𝑡

𝑆𝑚𝑎𝑙𝑙 𝑅𝑒𝑐. 𝐹𝑖𝑒𝑙𝑑 𝐿𝑎𝑟𝑔𝑒 𝑅𝑒𝑐. 𝐹𝑖𝑒𝑙𝑑

𝑅𝑒𝑠. 𝐶𝑜𝑛𝑛.

𝑒1𝑖
𝑡 𝑒𝑚𝑏𝑒𝑑. 𝑖𝑛𝑡𝑜 𝑝𝑖

𝑡

3rd

Embed.

𝐴𝑡𝑡.
4th

Embed.

𝐴𝑡𝑡.

መ𝑓𝑖
𝑡 𝑒𝑚𝑏𝑒𝑑. 𝑖𝑛𝑡𝑜 𝑝𝑖

𝑡

2nd

Embed.

𝑀𝑎𝑥.
1st

Embed.

𝑀𝑎𝑥.

⊕

©
M

at
ch

es
 S

ea
rc

h

G
ra

p
h

.
R

ep
.

G
ra

p
h

.
R

ep
.

F
ea

t.
 S

p
ac

e
G

ro
u

p
.

E
u

c.
 S

p
ac

e
G

ro
u

p
.

E
u

c.
 S

p
ac

e
G

ro
u

p
.𝑒1𝑖

𝑡

𝑓𝑗
𝑡+1𝑒𝑚𝑏𝑒𝑑. 𝑖𝑛𝑡𝑜 𝑝𝑖

𝑡

𝑒2𝑖
𝑡

𝑒3𝑖
𝑡

𝑒4𝑖
𝑡

𝑠𝑓𝑖
𝑡

ȇ2𝑖
𝑡

𝑝𝑖
𝑡

𝐶𝑜𝑛𝑐𝑎𝑡.

𝑝𝑖
𝑡 𝑝𝑖

𝑡
𝑝𝑖
𝑡

Fig. 5: Our novel Flow-Embedding (FE) module consists of four main steps and yields the scene flow
feature sf t

i : Two maximum embedding layers based on both Euclidean and feature space followed by two
attentive embedding layers. Lateral connections are also used: A Concatenation (Concat.) between the
first two embeddings and a residual connection (Res. Conn.).

Our novel and efficient flow embedding, called
Patch-to-Dilated-Patch, aggregates large corre-
spondence sets without increasing the physical
number of the nearest neighbors. This is basically
the same design as in our previous work RMS-
FlowNet [27], but we apply some changes that are
outlined in Table 4. In this context, we search
for correspondences not only in Euclidean space,
but also in feature space, and we add another
embedding step.

Matches Search: Grouping strong corre-
spondences is the first step in any flow embedding.
Many state-of-the-art methods search for the set
of matches based on Euclidean space, but apply
soft weights in different ways. Since the grouping
of correlations based on Euclidean space may not
be sufficient to capture distant matches, we use
the feature space to find reliable matches at the
coarse scale (last down-sampled layer) l3.

Point-to-Point Bidirectional Map: For the
above reasoning, we compute a simple cosine sim-
ilarity matrix based on the feature space to find
a pair of matches under bidirectional constraint
that applies a point-to-point (i.e., one-to-one) cor-
relation map. Based on the above reasoning, qt+1

j

in Qt+1 is a true match to pti in P t if the high-
est similarity score is guaranteed in a bidirectional
way, otherwise the search for matches is done in
Euclidean space. Finding robust matches at the
coarse scale leads to a high quality initial estimate
of the scene flow at scale l3. This also approx-
imates the distant matches at the upper scales

using the warping layer, so that pti is close to its
match in Qt+1.

Patch-to-Point Search: For the upper scales
{l}2k=1, it is not worth computing the cosine simi-
larity, since it is difficult to get distinctive features
in a one-to-one manner at high point densities,
and it is worth searching for the number of closest
matches pti within Qt+1 based on the Euclidean
space, denoted by NQ(p

t
i).

Graph Representation: After finding the
likelihood correspondences, we construct the cor-
relations in a graph form G = (V, E), where V and
E are the vertices and edges, respectively. Then,
we apply multi-layer perceptron (MLP):

hE
Θ(vi) = MLP ({[vi, vj − vi] | (i, j) ∈ E}) (1)

where ([., .] denotes the concatenation, vi is a
central vertex feature, and vj − vi denotes the
edge features. This representation is compared in
Table 4 with the original form in our preliminary
work RMS-FlowNet [27], which omits the vi part
in Eq. (1) and keeps only the edge features.

Flow Embedding Steps: Having found the
number of possible matches (i.e., NQ(p

t
i)) within

the representation in the form described above,
we apply the flow embedding aggregation steps at
each scale lk for every ith element within the down-
sampled scales {l}3k=1, except the full-resolution
scale l0, as follows:

� 1st Embedding (Patch-to-Point): We first apply
max-pooling to the output of Eq. (1) and obtain

8

et1i as shown in the following equation:

et1i = MAX
ft+1
j ∈NQ(pt

i)
(h

NQ(pt
i)

Θ (f t
i)) (2)

� 2nd Embedding (Patch-to-Point): Compared to
RMS-FlowNet, we add another embedding step
to group correspondences that are semanti-
cally similar by applying KNN in feature space,
inspired by the backbone of DGCNN [61]. For
this purpose, we group the number of nearest
neighbors NE(e

t
1i) for each output element of

Eq. (2) based on the feature space and apply
the graph form, whereNE denotes the neighbor-
ing features of et1i. Next, we apply max-pooling
to obtain êt2i, which is then channel-wise con-
catenated with et1i, followed by a multi-layer
perceptron (MLP) to obtain et2i:

êt2i = MAX
et1j∈NE(et1i)

(h
NE(et1i)
Θ (et1i)), (3)

et2i = MLP ([et1i, ê
t
2i]) (4)

� 3rd Embedding (Point-to-Patch): Using
channel-wise concatenation, we combine the
feature f t

i of pti with the output of Eq. (4)
on the coarse scale l3, and further combine
the upsampled scene flow feature sf t

i (com-
puted by Eq. (10)) and the upsampled scene
flow sti (computed by the scene flow head in
Section 3.3) on the upper scales as follows:

f̂ t
i = [f t

i , e
t
2i, sf

t
i , s

t
i] (5)

Then, we group the nearest features f̂ t
i based

on the Euclidean search NP (p
t
i) (pti is the 3D

spatial location of f̂ t
i), then compute the atten-

tion weights wt
1i and sum the weighted features

to obtain et3i:

wt
1i = g(f̂ t

i ,W), (6)

et3i =

Kp∑
n=1

(f̂ t
n · wt

1n) (7)

where g() consists of a shared MLP with train-
able weights W followed by softmax. With this
attention mechanism, high attention is paid to

the well-correlated features, while the less cor-
related features are suppressed. The attention-
based mechanism is generally inspired by [59,
60].

� 4th Embedding (Point-to-Dilated-Patch): It
repeats the previous step on the output result
et3i with new attention weights wt

2i for the near-
est features based on Euclidean space. This
embedding layer results in an increased recep-
tive field embedding et4i:

wt
2i = g(et3i,W), (8)

et4i =

Kp∑
n=1

(et3n · wt
2n) (9)

where g() consists of a shared MLP with train-
able weights W followed by softmax. Techni-
cally, we aggregate features from a larger range
by repeating the aggregation mechanism with-
out physically increasing of the number of the
nearest neighbors, inspired by [28].

Finally, to improve the quality of our flow embed-
ding, we add a residual connection (Res. Conn.),
which is an element-wise summation of et2i and et4i,
resulting in the scene flow feature sf t

i (cf. Fig. 5):

sf t
i = et2i + et4i (10)

Note that for all of the above flow embedding
steps, we need to group a certain number of fea-
tures (Kp) and aggregate their features either by
max-pooling or by attention. Kp is set to 20 in all
layers with RS and changed to 16 during the eval-
uation with FPS. We found that training with RS
generalizes well with FPS without any fine-tuning
(cf. Table 7). In addition, we must emphasize
that the third and forth embedding steps do
not require a new KNN search because we reuse
the predefined neighbors of the feature extraction
module. Together, these four steps lead to our
novel Patch-to-Dilated-Patch embedding, which is
described in Fig. 5. In this way, we are able to
obtain a larger receptive field with a small num-
ber of nearest neighbors, which is computationally
more efficient.

Experiments with the 1st, 3rd, and 4th flow
embedding steps were performed in our previous
work [27], and we explore our feature-based search
in the additional 2nd embedding step in Table 4.

9

𝐹𝐸
(𝐾𝑝)

US

(𝐾𝑞)

𝑊𝐿
𝑙2x𝐶3

𝑊𝐿2

𝑙1x𝐶2

𝑙0x𝐶1

𝑊𝐿1

𝑙3x𝐶3

𝑙2x𝐶2

𝑙1x𝐶1

𝐹3
𝑡+1

𝐹3
𝑡

𝐹2
𝑡

𝐹2
𝑡+1

𝐹1
𝑡

𝐹1
𝑡+1

𝑆1
𝑡

𝑆𝑡

𝑆3
𝑡

𝑆2
𝑡

𝑙2x3

𝑙1x3

C

C

𝐶𝑜𝑛𝑐𝑎𝑡.

𝐶𝑜𝑛𝑐𝑎𝑡.

Fig. 6: Multi-scale scene flow prediction with
three Flow-Embedding (FE) modules (each con-
sists of four steps), two Warping-Layers (WLs),
four scene flow estimators and Upsampling (US)
layers.

3.3 Multi-Scale Scene Flow
Estimation

Our RMS-FlowNet++ predicts scene flow at mul-
tiple scales, inspired by PointPWC-Net [18], but
we consider significant changes in conjunction
with RS to make our prediction more efficient. Our
scene flow prediction over all scales consists of two
Warping-Layers (WLs), three Flow-Embeddings
(FEs), four scene flow estimators, and Upsam-
pling (US) modules, as shown in Fig. 6. Compared
to the design of PointPWC-Net [18] and Bi-
PointFlowNet [24], we save one element from each
category and do not use FE at full input resolu-
tion. As a result, we speed up our model without
sacrificing accuracy, as shown in Fig. 1. The multi-
scale estimation starts at the coarse resolution by
predicting St

3 with a scene flow estimation module
after an initial FE. The scene flow estimation head
takes the resulting scene flow features in Eq. (10)
and applies three layers of MLPs with 64, 32, and
3 output channels, respectively. Then, the esti-
mated scene flow and the upcoming features from
FE are upsampled to the next higher scale using
one nearest neighbor based on KNN search (i.e.,
Kq = 1). We use the same strategy to upsample
the scene flow from the l1 scale to the full input
resolution l0 without any additional FE.

Our Warping-Layer uses the upsampled scene
flow St

k at scale level lk to warp P t
k toward Qt+1

k to

obtain P̃ t+1
k . This forward warping process does

not require any further KNN search because the
predicted scene flow is associated with P t

k. This

is more efficient compared to PointPWC-Net [18]
or Bi-PointFlowNet [24], which must first asso-
ciate the scene flow with Qt+1

k using KNN search
in order to warp Qt+1

k to P t
k in the backward

direction.

3.4 Loss Function

The model is fully supervised at multiple scales,
similar to PointPWC-Net [18]. If St

k is the pre-
dicted scene flow and the ground truth is St

GT,k at
scale lk, then the loss can be written as follows:

L(θ) =
3∑

k=0

αk

lk∑
i=1

∥stki − stGT,ki∥2, (11)

where ∥.∥2 denotes the L2-norm and the weights
per level are {{αk}3k=0 | α0 = 0.02, α1 =
0.04, α2 = 0.08, α3 = 0.16}.

4 Experiments

We conduct several experiments to evaluate the
results of our RMS-FlowNet++ for scene flow esti-
mation. First, we demonstrate its accuracy and
efficiency compared to the state-of-the-art meth-
ods. Second, we verify our design choice with
several analyses.

4.1 Evaluation Metrics

For a fair comparison, we use the same evalua-
tion metrics as in [9, 16–24, 47]. Let St denotes
the predicted scene flow, and St

GT denotes the
ground truth scene flow. The evaluation metrics
are averaged over all points and computed as
follows:

� EPE3D [m] : The 3D end-point error computed
in meters as ∥St − St

GT ∥2.
� Acc3DS [%] : The strict 3D accuracy which is
the ratio of points whose EPE3D < 0.05 m or
relative error < 5%.

� Acc3DR [%] : The relaxed 3D accuracy which is
the ratio of points whose EPE3D < 0.1 m or
relative error < 10%.

If a metric is subscripted with ”noc”, only the non-
occluded points are evaluated, otherwise all input
points are considered.

10

4.2 Data Sets and Preprocessing

As with state-of-the-art methods, we use the orig-
inal version FT3Do and the subset version FT3Ds

of the established large-scale synthetic data set
FlyingThings3D (FT3D) [62]. The subset version
FT3Ds differs from the original FT3Do by exclud-
ing some frames from the original and adding more
labels. This data set provides the ground truth for
scene flow represented as disparity changes over
consecutive frames, disparity maps for consecutive
frames and optical flow components, so that the
3D translation vector of the ground truth for scene
flow can be computed. In addition, the FT3Ds

subset provides occlusion maps on the basis of
disparity, future and past motions.

In contrast to FT3D, the KITTI data set [26] is
a small data set with optical flow labels that con-
sists of real outdoor scenes for autonomous driving
applications and provides sparse disparity maps
generated by a LiDAR sensor. The given second
disparity map at timestamp t+1 has been aligned
with the first frame at timestamp t, allowing the
computation of 3D translation vectors for scene
flow.

Point Clouds Generation: Since the exist-
ing scenes of data sets and labels do not provide
a direct representation of point clouds (i.e., 3D
Cartesian locations), the state-of-the-art methods
[9, 16–24, 47] basically generate 3D point cloud
scenes for their models using the given calibra-
tion parameters in the data sets. The generated
point clouds are randomly subsampled to be eval-
uated at a certain resolution (e.g., 8192 points)
and shuffled to dissolve correlations between con-
secutive point clouds. For this, we use the pre-
processing strategies of the pioneering work in
FlowNet3D [16] and HPLFlowNet [9], the latter of
which yields non-occluded and exact correlations
between the scenes. We also use other preprocess-
ing strategies to ensure that there are no exact
correlations between consecutive point clouds. To
do this, we use the given consecutive disparity
maps in FT3Ds, and for the KITTI data set, we
use the de-warped disparity maps of the second
frame at timestamp t+ 1 generated by [63, 64].

All of the above preprocessing mechanisms
differ in how the second point cloud Qt+1 is gen-
erated, which either results in exact correlations

or not, and whether occluded points are consid-
ered or not. This is summarized in Table 1 and
described in more detail below.

Preprocessing in HPLFlowNet [9]2: This
preprocessing considers the complete set of Fly-
ingThings3D subset (FT3Ds), which consists of
19640 labeled scenes available in the training set
and all 3824 frames available in the test split
for evaluation. Unlike the FlowNet3D prepro-
cessing [16], this preprocessing removes all the
occluded points using occlusion maps provided in
FT3Ds and the second point cloud frame Qt+1 is
generated from disparity change and optical flow
labels. For the KITTI data set, the 142 labeled
scenes of the training split available in the raw
KITTI data are preprocessed. The second frame
of the point cloud Qt+1 is generated from the
second disparity map by warping in 3D space,
but without occlusion handling. The data gener-
ated from KITTI by this preprocessing is referred
to as KITTIs. The preprocessing in HPLFlowNet
results in an exact correlation between the con-
secutive point clouds and occluded points are not
taken into account.

Preprocessing in FlowNet3D [16]3: Here,
the original version of FlyingThings3D (FT3Do) is
used, with 20,000 images from the training set and
2,000 images from the test set randomly selected
for training and evaluation, respectively. During
preprocessing, many occluded points are included
in the data and an occlusion mask is computed for
P t, since there are no predefined occlusion maps
in FT3Do. The frames of the point clouds P t and
Qt+1 are generated directly from the consecutive
disparity maps and there are no exact correlations
between the consecutive scenes. For the KITTI
data set, this preprocessing considers 150 frames
with occlusions, but does not compute an occlu-
sion mask. The second frame of the point cloud
Qt+1 is generated using the second disparity map
by a warping process in 3D space with occlusion
handling. The data generated from KITTI by this
preprocessing is referred to as KITTIo.

Preprocessing with Occlusion Masks: In
contrast to the preprocessing in HPLFlowNet [9],
we generate both point clouds (P t and Qt+1)
directly from the consecutive disparity maps of
the FT3Ds, resulting in very low correlations and

2https://github.com/laoreja/HPLFlowNet.
3https://github.com/xingyul/flownet3d.

11

https://github.com/laoreja/HPLFlowNet
https://github.com/xingyul/flownet3d

Table 1: The preprocessing mechanisms of the
data sets differ in how the second point cloud Qt+1

is generated and whether occluded points are con-
sidered or not.

Data Set Processing
Corre-
lated

None
Occ.

Partial
Occ.

Large
Occ.

FT3D [62]
FT3Ds [9] ✓ ✓ ✗ ✗

FT3Do [16] ✗ ✗ ✗ ✓

FT3Dso

(ours)
✗ ✗ ✓ ✓

KITTI [26]
KITTIs [9] ✓ ✓ ✗ ✗

KITTIo [16] ✗ ✗ ✓ ✗

KITTId [64] ✗ ✗ ✓ ✓

existing occlusions in the scenes. By using the
occlusion maps for disparity change and optical
flow of consecutive scenes in forward and back-
ward direction provided by FT3Ds, we omit most
of the occlusions in consecutive frames, leaving
very few occluded points in all frames. These
remaining occlusions are due to imperfections in
the occlusion masks, and are referred to as partial
occlusions. We also generate the same data with-
out filtering any of the occlusions. This version is
referred to as large occlusions. The preprocessed
data from FT3Ds with partial or large occlusions
are referred to as FT3Dso.

To generate decorrelated points in KITTI,
where the given disparity maps of t+1 are aligned
to the reference view at timestamp t, we use the
preprocessing mechanism proposed in [63, 64]. In
this preprocessing, the ground truth of the optical
flow is used to generate Qt+1 through a pixel-by-
pixel de-warping process for each disparity map of
t+1 aligned with the reference view, which largely
dissolves the correlations between the point cloud
scenes. We consider the 142 labeled scenes of the
training split available in the raw KITTI data
for preprocessing. The de-warped disparity maps
can be downloaded directly from the source code
of DeepLiDARFlow [64]4, and are used to com-
pute the point clouds for both frames (i.e., P t and
Qt+1). Given the occlusion maps in KITTI, we
can either omit or include occluded points to cre-
ate partial or large occlusions. The data generated
from KITTI by this preprocessing is referred to as
KITTId.

4https://github.com/dfki-av/DeepLiDARFlow.

4.3 Implementation, Training and
Augmentation

As in related work, we train our model twice;
once with non-occluded data from FT3Ds, con-
sidering all frames in the train split of FT3Ds

[62], and a second time with FT3Do, containing
20,000 frames with largely occluded points. Dur-
ing training, the preprocessed data is randomly
subsampled to 8192 points, where the order of the
points is random and the correlation between con-
secutive frames is dissolved by random selection.
Following related work, we remove points with
depths greater than 35 meters, which retains the
majority of moving objects contained.

We use the Adam optimizer with default
parameters and train the final version of our
model with RS for 1260 epochs. The final model
generalizes well with both RS and FPS sam-
pling methods, and no further training with FPS
is required (cf. Table 7). However, to speed up
some experiments, we also train with FPS for 420
epochs, which converges faster than the training
with RS. When we report the results of the model
trained with FPS, we highlight (∗) next to FPS
to distinguish it from the final model trained with
RS.

We apply an exponentially decaying learning
rate that is initialized at 0.001 and then decreases
at a decaying rate of 0.8 every 20 epochs when
training with FPS and every 60 epochs when
training with RS.

We add two types of augmentation: First, we
add geometric augmentation, i.e., points are ran-
domly rotated by a small angle around the X,
Y, and Z axes, and a random translational offset
is added to increase the ability of our model to
generalize to KITTI [26] without fine-tuning. Sec-
ond, when training with non-occluded data from
FT3Ds, each high-resolution frame is randomly
sampled to 8192 points in each epoch differently.
However, we do not consider this type of aug-
mentation with the FT3Do because the processed
data set using the established preprocessing strat-
egy in FlowNet3D [16] contains only 8192 points.
The augmentation increases the ability of our
model to generalize to the KITTI data set without
fine-tuning (cf. Table 8).

12

https://github.com/dfki-av/DeepLiDARFlow

Table 2: When training with non-occluded data on FT3Ds, we evaluate 8192 points in non-occluded
scenes from FT3Ds and KITTIs, and the results are written in white cells. The light and dark gray cells
contain the results with partial and large occlusions from FT3Dso and KITTId. In all cases, we evaluate
all input points, i.e. 8192. The best result per data set and column is highlighted in bold and the second
best is underlined. Each method marked with (�) is designed to estimate the scene flow at a quarter
resolution of the input points (i.e., 2048 points out of 8192).

Data
Model

without occlusions with partial occlusions with large occlusions
Set EPE3D Acc3DS Acc3DR EPE3D Acc3DS Acc3DR EPE3D Acc3DS Acc3DR

[m] ↓ [%] ↑ [%] ↑ [m] ↓ [%] ↑ [%] ↑ [m] ↓ [%] ↑ [%] ↑

F
T
3
D

s
/F

T
3
D

s
o
[6
2
]

FlowNet3D [16] 0.114 41.25 77.06 0.197 21.46 43.17 0.293 8.330 31.35

HPLFlowNet [9] 0.080 61.60 85.57 0.131 44.22 72.33 0.344 19.02 43.27

PointPWC-Net [18] 0.059 73.79 92.76 0.113 65.30 83.58 0.292 35.72 55.94

FLOT [47] 0.052 73.20 92.70 0.130 37.40 69.91 0.227 30.26 59.21

WSLR [11] 0.052 74.60 93.60 0.140 55.60 79.10 0.461 28.00 49.70

HALFlow� [20] 0.049 78.50 94.68 0.125 46.11 74.96 0.313 22.67 47.41

HCRF-Flow [48] 0.049 83.37 95.07 - - - - - -

PV-RAFT [17] 0.046 81.69 95.74 0.131 61.19 81.27 0.441 29.85 50.53

FlowStep3D [19] 0.046 81.62 96.14 0.111 62.67 82.75 0.361 30.73 51.62

RCP [21] 0.040 85.67 96.35 - - - - - -

SCTN [12] 0.038 84.70 96.80 - - - - - -

ResidualFlow� [22] 0.031 91.39 97.68 - - - - - -

WM3D� [23] 0.028 92.90 98.17 0.078 77.66 89.58 0.267 46.49 65.81

Bi-PointFlowNet [24] 0.028 91.80 97.80 0.085 75.55 87.68 0.284 46.04 62.04

RMS-FlowNet (RS) [27] 0.051 80.00 95.60 0.104 64.20 84.20 0.305 35.50 57.20

RMS-FlowNet (FPS) [27] 0.052 79.10 95.60 0.111 61.30 83.00 0.336 33.10 55.20

RMS-FlowNet++ (RS) 0.033 91.00 97.51 0.087 76.24 88.41 0.301 45.12 63.43

RMS-FlowNet++ (FPS) 0.029 92.41 98.10 0.081 77.54 89.17 0.285 47.04 64.94

K
IT

T
I s
/
K
IT

T
I d

[2
6
]

FlowNet3D [16] 0.177 37.38 66.77 0.206 15.16 44.05 0.330 13.17 36.32

HPLFlowNet [9] 0.117 47.83 77.76 0.161 40.62 68.37 0.338 31.93 52.95

PointPWC-Net [18] 0.069 72.81 88.84 0.096 74.36 85.91 0.276 59.82 69.81

FLOT [47] 0.055 75.93 91.00 0.135 57.54 76.08 0.318 46.71 63.69

WSLR [11] 0.042 84.90 95.90 0.107 72.70 84.50 0.344 60.90 70.90

HALFlow [20] 0.062 76.49 90.26 0.133 56.88 77.26 0.250 52.25 67.10

HCRF-Flow [48] 0.053 86.31 94.44 - - - - - -

PV-RAFT [17] 0.051 83.24 94.55 0.095 73.63 87.60 0.213 59.67 73.73

FlowStep3D [19] 0.056 79.94 92.58 0.103 69.84 84.48 0.296 58.11 70.31

RCP [21] 0.048 84.91 94.48 - - - - - -

SCTN [12] 0.037 87.30 95.90 - - - - - -

ResidualFlow� [22] 0.035 89.32 96.20 - - - - - -

WM3D� [23] 0.031 90.47 95.80 0.048 83.92 92.34 0.215 65.09 73.44

Bi-PointFlowNet [24] 0.030 92.00 96.00 0.059 86.08 91.45 0.233 68.68 74.52

RMS-FlowNet (RS) [27] 0.052 83.30 94.10 0.094 69.50 85.40 0.259 58.40 71.50

RMS-FlowNet (FPS) [27] 0.047 88.20 95.80 0.093 75.60 86.90 0.256 63.90 73.20

RMS-FlowNet++ (RS) 0.035 90.23 96.53 0.062 83.35 92.03 0.236 66.95 75.13

RMS-FlowNet++ (FPS) 0.027 93.98 97.67 0.046 88.94 94.50 0.214 71.42 77.72

4.4 Comparison to State-of-the-Art

To demonstrate the accuracy and generalization
of our model, we compare it with state-of-the-art
methods in Table 2. The white cells denote the
evaluation on the non-occluded FT3Ds as usually
done in related work. The results within the light
and dark gray cells denote the evaluation with par-
tially and extensively occluded scenes of FT3Dso.
Our RMS-FlowNet++ allows the use of RS and
shows very comparable results to the use of FPS,
but with lower runtime (cf. Fig. 1), especially for
higher resolution points (cf. Fig. 7).

Evaluation on FT3Ds: We test our
RMS-FlowNet++ on non-occluded data from
FT3Ds, as shown in the white cells in Table 2.
Processing the entire points with an all-to-all cor-
relation (i.e., global correlation) using an optimal
transport solver in FLOT [47] shows significantly
lower accuracy than the hierarchical mechanism
of our RMS-FlowNet++ using RS. This confirms
our decision to design our model in a hierarchi-
cal way. The RS version of our RMS-FlowNet++
significantly outperforms the regular representa-
tive methods as in [9, 11, 12]. This supports our

13

Table 3: Occluded points are taken into account
during training and inference. FT3Do and KITTIo
are generated using FlowNet3D [16] preprocess-
ing.

Data
Model

EPE3D EPE3Dnoc Acc3DSnoc Acc3DRnoc

Set [m] ↓ [m] ↓ [%] ↑ [%] ↑

F
T
3
D

o
[6
2
]

FlowNet3D [16] 0.212 0.158 22.86 58.21

HPLFlowNet [9] 0.201 0.169 26.29 57.45

PointPWC-Net [18] 0.195 0.155 41.60 69.90

FLOT [47] 0.250 0.153 39.65 66.08

FESTA [49] - 0.125 39.52 71.24

OGSFNet [65] 0.163 0.122 55.18 77.67

OGSelSFNet [66] 0.138 0.103 63.76 82.40

WM3D [23] - 0.063 79.10 90.90

Bi-PointFlowNet [24] 0.102 0.073 79.10 89.60

RMS-FlowNet++ (RS) 0.126 0.074 74.18 88.53

RMS-FlowNet++ (FPS) 0.113 0.066 77.16 90.04

K
IT

T
I o

[2
6
]

FlowNet3D [16] 0.175 - 9.850 41.98

HPLFlowNet [9] 0.343 - 10.30 38.60

PointPWC-Net [18] 0.118 - 40.30 75.70

FLOT [47] 0.110 - 41.90 72.10

FESTA [49] 0.094 - 44.58 83.35

OGSFNet [65] 0.075 - 70.70 87.25

OGSelSFNet [66] 0.060 - 77.55 90.69

WM3D [23] 0.073 - 81.90 89.90

Bi-PointFlowNet [24] 0.065 - 76.90 90.60

RMS-FlowNet++ (RS) 0.067 - 80.63 90.58

RMS-FlowNet++ (FPS) 0.051 - 89.00 94.78

decision to handle the raw points without inter-
mediate representations for scene flow estimation.
Furthermore, our RMS-FlowNet++ with RS out-
performs GRU-based methods [17, 19, 21] with a
lower runtime (cf. Fig. 1).

Compared to hierarchical designs that basi-
cally use FPS, our RMS-FlowNet++ with RS
outperforms [16, 18, 20, 48] on all metrics and is
highly competitive with very recent methods [22–
24] at lower runtime as shown in Fig. 1. However,
the FPS version of our RMS-FlowNet++ outper-
forms the methods of [22, 24] and shows very
comparable results to [23] with slight differences.

Moreover, our improvements in
RMS-FlowNet++ are significant in both RS and
FPS sampling versions, even for a small number
of correspondences (i.e., Kp is set to 20 with
RS and 16 with FPS), compared to our pre-
liminary work RMS-FlowNet [27], which uses a
correspondence set of 33 points.

Generalization to KITTIs: We test the
generalization ability to the KITTI data set [26]
without fine-tuning, as shown in Table 2, where
the white cells denote the scores on KITTIs.
Our RMS-FlowNet++ shows a stronger gener-
alization ability with both sampling techniques,
RS and FPS, than all state-of-the-art methods.
This is best indicated by the much smaller gap
in scores between the synthetic FT3Ds and the
realistic KITTIs results. With both sampling tech-
niques, our RMS-FlowNet++ outperforms all the
methods of [9, 16–22, 47]. Compared to the
competing methods in [23, 24], RS with our

RMS-FlowNet++ shows comparable results, but
with lower runtime (cf. Fig. 1), and FPS outper-
forms these methods for all metrics.

Robustness to Occlusions: Training with
non-occluded points using FT3Ds shows that our
RMS-FlowNet++ is able to estimate a reasonable
accuracy of scene flow on the test split data when
evaluated on FT3Dso, as shown in the light and
dark gray cells in Table 2. When evaluated on the
FT3Dso, the scores of all input points are reported,
taking into account the partial or large number of
occluded points. In the evaluation of the FT3Dso

test split with occlusions, the FPS and RS versions
of our RMS-FlowNet++ take second and third
place, respectively, behind the method in [23].

On KITTId, i.e. including occluded points
in the evaluation, the FPS version of our
RMS-FlowNet++ shows the best results of all
methods in all metrics, and the faster RS ver-
sion of our method shows comparable results to
competing methods [23, 24] when evaluated.

Table 3 shows the results on FT3Do and
KITTIo, where occluded points are additionally
considered during training. For a fair comparison,
we follow the other method’s evaluation scheme
and include the occlusions during inference and
evaluate over all input points in the EPE3D met-
ric. In the EPE3Dnoc, Acc3DSnoc, and Acc3DRnoc

metrics, we ignore the occluded points when com-
puting the scores, but still include them as input.
For both data sets, FT3Do and KITTIo, our
RMS-FlowNet++ with RS ranks right behind the
competing methods [23, 24], but with FPS we rank
second for FT3Do and first for KITTIo.

4.5 Varying Point Densities

We evaluate the two versions of our
RMS-FlowNet++, i.e. with RS and FPS, against
our earlier work [27] and the competing methods
[23, 24] in terms of accuracy (Acc3DR) and run-
time at different input densities. The results of
this comparison are shown in Fig. 7. We consider
a wide range of densities N = {4096 ∗ 2i}7i=0 of
FT3Ds, and finally all available non-occluded
points are evaluated, which corresponds to ∼225K
points on average. For a fair comparison, all meth-
ods are trained with a fixed resolution of 8192
points only, and we do not consider fine-tuning
or further training with different point densities.
We measure the inference time for all methods

14

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

3 4 5 6

FT3Ds (Acc3DR [%])

WM3D Bi-PointFlowNet RMS-FlowNet(RS)
RMS-FlowNet++(RS) RMS-FlowNet++(FPS) RMS-FlowNet++(FPS*)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

10 10 10 10
points

FT3Ds (Acc3DR [%])

max. possible density

x100

T
ra

in
ed

 o
n

 8
1

9
2

increase resolution rate
38 40

59
92

150

277

507

1059

49
68

104

277

563

1074

2106

6998

10

100

1000

10 10 10 10# points

Time [ms]

65436543

Fig. 7: Analysis of accuracy and runtime on FT3Ds for different numbers of input points compared to
state-of-the-art methods.

equally on a Geforce GTX 1080 Ti, including our
RMS-FlowNet++ and RMS-FlowNet [27] with
RS.

For both RS and FPS versions of our method,
to keep the accuracy stable for densities > 32K,
we increase the resolution rate of the downsam-
pling layers (cf. Section 3.1) to {{l}3k=1 | l1 =
4096, l2 = 1024, l3 = 256} without any further
training or fine-tuning. Furthermore, for the RS
of our RMS-FlowNet++ for densities > 131K, we
increase the resolution rate of the downsampling
layers to {l}3k=1 | l1 = 8192, l2 = 2048, l3 = 512}
without further training or fine-tuning. Increas-
ing the resolution of the downsampling layers is
not possible with FPS, as this would exceed the
memory limit of the Geforce GTX 1080 Ti. Never-
theless, the accuracy of our method remains stable
over a wide range of densities for both RS and FPS
versions (cf. Fig. 7). To maintain the accuracy of
WM3D [23] and to evaluate more than 8192 input
points, we had to increase the resolution rate of
the downsampling layers based on the resolutions
suggested in [23]. Yet, for the competing methods
WM3D [23] and Bi-PointFlowNet [24], the max-
imum possible densities are limited to 16384 and
32768, respectively, since they exceed the mem-
ory limit of the Geforce GTX 1080 Ti at higher
densities. For the other state-of-the-art-methods
FLOT [47], PV-RAFT [17], PointPWC-Net [18],
and HPLFlowNet [9], the maximum possible den-
sities are limited to 8192, 8192, 32768 and 65536,

respectively, for the same reason (not shown in
Fig. 7).

In contrast, our RMS-FlowNet++ allows very
high densities with high accuracy without exceed-
ing the memory limit of the Geforce GTX 1080 Ti.
Although FPS is computationally expensive, the
reduced number of nearest neighbors (Kp = 16)
allows the operation with ∼225K points. Using RS
with the increased number of nearest neighbors
(Kp = 20) allows our RMS-FlowNet++ to oper-
ate 5 to 6 times faster than with FPS, especially
at densities > 65K. Consequently, the design
of RMS-FlowNet++ allows a much higher maxi-
mum density compared to other methods in terms
of memory requirement and time consumption.
However, the runtime of our RMS-FlowNet++
still increases super-linearly with increasing input
density > 225K due to the KNN search. In addi-
tion, the initial drop in accuracy at ∼225K points
in Fig. 7 indicates that it may be necessary to fur-
ther increase the resolution of the downsampling
layers when using even higher densities.

We visually present some results on KITTIs
with dense points (∼50K points) and three exam-
ples of non-occluded points of the FT3Ds (∼300K
points) in Fig. 9. To obtain a denser scene in
the KITTIs, we include distant points down to
< 210 meters. Our RMS-FlowNet++ shows a high
accuracy even with this very dense data.

15

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

35 55 75 95 115 135 155 175 195 215

Diagrammtitel

WM3D Bi-PointFlowNet RMS-FlowNet(RS)

RMS-FlowNet++(RS) RMS-FlowNet++(FPS) RMS-FlowNet++(FPS*)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

35 70 105 140 175 210

depth [m]

FT3Ds (Acc3D [%])

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

35 70 105 140 175 210

depth [m]

KITTIs (Acc3DR [%])x100 x100

Fig. 8: Analysis of accuracy for different depth limits on FT3Ds and KITTIs compared to state-of-the-
art methods.

4.6 Varying Depth Ranges

We emphasize that all state-of-the-art methods
only consider objects in the near range (< 35
meters) during training and evaluation. We con-
sider the same range during training, but in this
work, for the first time, we evaluate the accuracy
of scene flow for more distant objects using the
FT3Ds and KITTIs data sets (cf. Fig. 8).

On FT3Ds, the accuracy of our
RMS-FlowNet++ with RS and FPS is better
than the competing methods for every depth
limit. The accuracy of WM3D [23] decreases sig-
nificantly, and the accuracy of Bi-PointFlowNet
[24] is ∼8% lower than ours. Surprisingly, RS
generalizes slightly better than FPS to increas-
ing depth limits. When RMS-FlowNet++ is
trained and evaluated with FPS (marked with
∗), the results are on par with our prior work
RMS-FlowNet [27] and the competing method Bi-
PointFlowNet [24]. When evaluated on KITTIs,
our RMS-FlowNet++ shows significantly better
results than our prior work RMS-FlowNet [27].
Furthermore, both sampling strategies perform
significantly better than WM3D [23]. How-
ever, when trained with RS and evaluated with
FPS, the scene flow accuracy exceeds that of
Bi-PointFlowNet [24].

It follows that training with RS can better
generalize to a wider range of points than FPS,
leading to better scene flow accuracy with FPS
than training with FPS itself. In other words, FPS

causes the downsampled points to cover approxi-
mately the same spatial locations, which reduces
the variation during training.

Qualitatively, we visualize two scenes of
KITTIs with the corresponding error maps
in Fig. 10. We qualitatively compare our
RMS-FlowNet++ with both sampling techniques
to the most competitive method [24]. Without
changing the training strategy, we compare the
predicted scene flow with the narrowest depth
range (< 35m) and with the widest range (<
210m) against Bi-PointFlowNet. Testing within
the trained depth range (< 35m), we see that
Bi-PointFlowNet has higher errors on flat sur-
faces than our approach, which produces the best
results with FPS. Testing outside the trained
depth range (> 35m) shows that the accuracy
decreases when distant points (< 210m) are
included. In [24], even nearby objects (e.g. moving
cars) are negatively affected when distant points
(> 35m) are included in the scene. However, our
RMS-FlowNet++ performs robustly in this case.

4.7 Ablation Study

To speed up our experiments, we verify our design
decisions, the additional components in the FE by
training with FPS, which converges faster than
RS. We also compare RS with FPS and increase
the KNNs to test the effect on the results. Finally,
we compare the impact of our augmentation on
the overall results with RS.

16

Example 1 Example 2 Example 3
S
ce
n
e

E
rr
o
r
(2
1
0
m
)

S
ce
n
e

E
rr
o
r
(3
5
m
)

Fig. 9: Three examples from the non-occluded versions of FT3Ds and KITTIs show that our
RMS-FlowNet++ allows high point densities with high accuracy using RS. The scene of each example
(first and third rows) visualizes P t as green color. The error map of each scene (second and forth rows)
shows the end-point error in meters according to the color map shown in the last row.

Design Decisions: First, we reduce the num-
ber of correlation points (Kp) from 33 in our pre-
liminary work of RMS-FlowNet [27] to 16 in the
whole design (i.e., all scales of LFA and FE), then
we verify our improvements in RMS-FlowNet++
as shown in Table 4. The accuracy of our prelim-
inary work RMS-FlowNet decreases by reducing
the number of correlation points to 16, but it is
improved again by using the graph representation
of Eq. (1) in our FE, which adds the f t

i part to
the original representation in RMS-FlowNet [27].
Second, we slightly improve the results by omit-
ting the decoder part in the feature extraction
which saves more operations and upsampling lay-
ers and avoids the use of KNN search. Third, we

show the positive effect of adding the 2nd embed-
ding step to the FE of RMS-FlowNet [27], which
is based on the feature space. Then, we check the
positive effect of our similarity map (i.e., one-to-
one map) based on the feature space to find a
pair of matching points under a bidirectional con-
straint as explained in Section 3.2. Finally, we
show the final results using the FPS of the model,
but trained using the RS sampling technique with
correspondence set (Kp) during training. Com-
pared to RMS-FlowNet [27], the reduction of Kp

makes the method more efficient, while the sum of
architectural changes improves the results.

Aspects of Attention in FE: We design
our Flow-Embedding (FE) with two maximum
embedding layers based on both Euclidean and
feature space followed by two attentive embedding

17

Bi-PointFlowNet [24] Our RMS-FlowNet++ (RS) Our RMS-FlowNet++ (FPS)
S
ce
n
e
+

S
F

E
rr
o
r
(3
5
m
)

E
rr
o
r
(2
1
0
m
)

S
ce
n
e
+

S
F

E
rr
o
r
(3
5
m
)

E
rr
o
r
(2
1
0
m
)

Fig. 10: Two examples taken from KITTIs show the impact of our RMS-FlowNet++ compared to the
competing method Bi-PointFlowNet [24]. The scene of each example (first and forth rows) visualizes P t

as blue color and the predicted and ground truth scene flow after adding them to P t in green and red
color, respectively. The error map of each scene (second, third, fifth and sixth rows) shows the end-point
error in meters according to the color map shown in the last row. Our RMS-FlowNet++ shows lower
errors (dark blue) over a wide area of the observed scene, compared to the competing method.

layers (see Fig. 5). Focusing on our stacked atten-
tion layers, we verify three important aspects of
our stacked attention design on the FT3Ds data
set as follows:

1. Adding the feature of reference frame f t
i (as in

Eq. (5)) to the input of the attention mecha-
nism.

2. Adding the residual connection (Res. Conn.) as
in Figure 5 or et2i as in Eq. (10).

3. Encoding of the spatial locations to the features
and the concatenation to the f̂ t

i in the Eq. (5).

Combining all of the above components yields
more accurate results, as verified in Table 5.

18

Table 4: We explore our improvements in RMS-FlowNet++ compared to our preliminary work RMS-
FlowNet [27]. To speed up the experiments, we use FPS during training and evaluation. The first line
corresponds to the method in [27].

Kp Graph Rep. Decoder 2nd Embedding Bidirectional Map
FT3Ds [62] KITTIs[26]

EPE3D Acc3DR EPE3D Acc3DR

[m] [%] [m] [%]

33 ✗ ✓ ✗ ✗ 0.051 95.60 0.047 95.80

16 ✗ ✓ ✗ ✗ 0.054 95.15 0.067 91.72

16 ✓ ✓ ✗ ✗ 0.041 96.85 0.043 94.16

16 ✓ ✗ ✗ ✗ 0.034 97.63 0.039 94.57

16 ✓ ✗ ✓ ✗ 0.033 97.77 0.036 95.52

16 ✓ ✗ ✓ ✓ 0.029 98.09 0.030 97.63

16 Trained with RS with Kp = 20 0.029 98.10 0.027 97.67

Table 5: We verify the aspects of our stacked
attention in flow embedding on FT3Ds data set.
To speed up the experiments, we use FPS for
training and evaluation.

Spatial
fti

Res. EPE3D Acc3DR

Encoding Conn. [m] ↓ [%] ↑
✗ ✗ ✗ 0.050 95.13

✓ ✗ ✗ 0.040 96.84

✓ ✓ ✗ 0.038 97.20

✗ ✓ ✓ 0.038 96.96
✓ ✓ ✓ 0.029 98.09

Trained with RS with Kp = 20 0.029 98.10

Training with FPS vs. RS: First, we train
with FPS using different numbers of Kp and eval-
uate with the same numbers used in training to
determine the appropriate number of Kp (i.e.,
the correct correspondence set) that gives the
best results, as shown in Table 6. We find that
small correspondence sets such as 8 and 12 have
lower accuracy than 16 and 20, which both give
roughly comparable results, making them appro-
priate numbers, but at the cost of a higher number
of FLOPs. Based on this, we train with RS and
these determined numbers of Kp (i.e., 16 and 20).
After evaluation, we find that Kp = 20 works best
with RS, as shown in Table 6. Based on this, we set
Kp to 16 and 20 for FPS and RS, respectively. We
then perform cross evaluations with both sampling
techniques to verify which sampling method gen-
eralizes better. The results are shown in Table 7.
RS generalizes much better than FPS. It even
improves the results when evaluated with FPS,
compared to the original training with FPS.

Impact of Augmentation: We examine the
effect of our data augmentation (cf. Section 4.3)
individually. The results of these experiments are

shown in Table 8. As mentioned before, to speed
up the tests, we train with FPS and a correspon-
dence set of 16.

When training without any augmentation, the
results are good on FT3Ds, but generalize poorly
to the real-world data of KITTIs. When we ran-
domize the initial sampling in each epoch (i.e.,
change the spatial locations for each epoch), the
results on the FT3Ds data set drop slightly,
but the accuracy and end-point error on KITTIs
are significantly improved. We observe a similar
behavior when adding only the geometric aug-
mentation, with an even larger positive impact
on KITTIs. Both augmentation strategies together

Table 6: We evaluate the number of KNNs that
can be used for both FPS and RS sampling
techniques. Training and evaluation are always
performed with the same sampling technique and
number of nearest neighbors. FLOPs do not count
for the sampling or for the nearest neighbor search.

Sampling
Kp

FT3Ds [62] KITTIs[26]
Technique EPE3D Acc3DR EPE3D Acc3DR FLOPs

[m] [%] [m] [%] [G]

FPS

8 0.035 97.70 0.043 95.38 17.16

12 0.031 98.04 0.031 97.54 23.55

16 0.029 98.09 0.030 97.63 29.93

20 0.029 98.07 0.029 97.56 36.32

RS
16 0.034 97.50 0.047 94.21 29.93

20 0.033 97.51 0.035 96.53 36.32

Table 7: We evaluate the generalization of each
sampling technique to the other on FT3Ds and
KITTIs. Training with RS can generalize very well
when evaluated with FPS.

Train⧹Test

FPS RS
FT3Ds [62] KITTIs [26] FT3Ds [62] KITTIs [26]
Acc3DR Acc3DR Acc3DR Acc3DR

[%] [%] [%] [%]

FPS 98.09 97.63 85.73 84.53

RS 98.10 97.67 97.51 96.53

19

improve the overall results on both data sets and
provide the best generalization from synthetic to
real scenes.

4.8 Limitations

In terms of accuracy, there are three major lim-
itations: 1) Any errors at the coarsest level can
accumulate in the higher resolution layers, degrad-
ing the overall accuracy. 2) Our one-to-one bidi-
rectional matching at the coarsest resolution can
lead to mismatches if the scene contains repetitive
patterns (e.g., along road pillars or traffic bar-
riers). 3) Areas of homogeneous geometry (e.g.,
road surfaces or grass along the road) pose a
challenge to our model, especially when RS is
used (cf. Fig. 10). The error increases significantly
when these untextured objects are represented
or scanned by high-density points, as shown in
Fig. 11. In terms of efficiency, two major limita-
tions remain: 1) To maintain accuracy at higher
input densities, it is necessary to increase the res-
olution rates in the downsampling layers, which
increases the runtime and memory requirements
(cf. Fig. 7). 2) The KNN search dominates the
computational complexity as the input density
increases.

5 Conclusion

In this paper, we propose RMS-FlowNet++ – an
efficient and fully supervised network for multi-
scale scene flow estimation in high-density point
clouds. By using Random-Sampling (RS) dur-
ing feature extraction, we are able to boost the
runtime and memory footprint for an efficient
processing of point clouds with an unmatched
maximum density. The novel Flow-Embedding
module (called Patch-to-Dilated-Patch), resolves
the prominent challenges in using RS for scene
flow estimation. Compared to our preliminary
work [27], we reduce the operations in our network

Table 8: We study the effect of augmentation on
FT3Ds and KITTIs. To speed up the experiments,
we train and evaluate using FPS.

Spatial Geometry
FT3Ds [62] KITTIs [26]

EPE3D Acc3DR EPE3D Acc3DR

[m] [%] [m] [%]

✗ ✗ 0.032 97.87 0.067 87.23

✓ ✗ 0.033 97.63 0.044 93.67

✗ ✓ 0.035 97.85 0.031 97.57

✓ ✓ 0.029 98.08 0.030 97.63

and improve the accuracy. We demonstrate the
advantages of RS over FPS on high-density point
clouds and its ability to generalize to FPS dur-
ing inference. We provide an intensive benchmark,
in which our RMS-FlowNet++ achieves the best
results in terms of accuracy, generalization, and
runtime compared to the previous state-of-the-art.
We also investigate the robustness of our network
to occlusions and explore its ability to operate on
long-range point clouds (i.e., up to 210 meters).

In the future, we would like to improve our
model by fusing the 3D information of point clouds
with textural 2D information captured by RGB
cameras. We also plan to add ego-motion estima-
tion to our model to avoid inaccuracies in static,
homogeneous areas such as the road surface.

Declarations

This version of the article has been accepted
for publication, after peer review but is not the
Version of Record and does not reflect post-
acceptance improvements, or any corrections. The
Version of Record is available online at: https:
//doi.org/10.1007/s11263-024-02093-9.

Funding. This work was partially funded by the
Federal Ministry of Education and Research Ger-
many under the project DECODE (01IW21001),
partially in the funding program Photonics
Research Germany under the project FUMOS
(13N16302) and partially by EU Horizon Europe
Framework Program under the grant agreement
101092889 (SHARESPACE).

Availability of data and materials. The data
sets analyzed in the current study are available at
the following links:

� KITTI data set: [https://www.cvlibs.net/
datasets/kitti/eval scene flow.php]

� FlyingThings3D and FlyingThings3D sub-
set data sets: [https://academictorrents.
com/userdetails.php?id=9551], [https:
//lmb.informatik.uni-freiburg.de/resources/
datasets/SceneFlowDatasets.en.html]

Other repository names of the established prepro-
cessing scripts for the data sets with the persistent
web links are available in the manuscript.

20

https://doi.org/10.1007/s11263-024-02093-9
https://doi.org/10.1007/s11263-024-02093-9
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
https://academictorrents.com/userdetails.php?id=9551
https://academictorrents.com/userdetails.php?id=9551
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html

Example 1 Example 2 Example 3
S
ce
n
e

E
rr
o
r
(3
5
m
)

Fig. 11: Three examples from the non-occluded versions of FT3Ds show the failure cases of our
RMS-FlowNet++ with high point densities using RS. The scene of each example (first row) visualizes P t

as green color. The error map of each scene (second row) shows the end-point error in meters according
to the color map shown in the last row.

References

[1] Franke, U.; Rabe, C.; Badino, H.; Gehrig, S.
6D-Vision: Fusion of Stereo and Motion for
Robust Environment Perception. Joint Pat-
tern Recognition Symposium. 2005.

[2] Huguet, F.; Devernay, F. A Variational
Method for Scene Flow Estimation from
Stereo Sequences. IEEE International Con-
ference on Computer Vision (ICCV). 2007.

[3] Wedel, A.; Rabe, C.; Vaudrey, T.; Brox, T.;
Franke, U.; Cremers, D. Efficient Dense Scene
Flow from Sparse or Dense Stereo Data.
European Conference on Computer Vision
(ECCV). 2008.

[4] Ilg, E.; Saikia, T.; Keuper, M.; Brox, T.
Occlusions, Motion and Depth Boundaries
with a Generic Network for Disparity, Opti-
cal Flow or Scene Flow Estimation. European
Conference on Computer Vision (ECCV).
2018.

[5] Chen, Y.; Gool, L. V.; Schmid, C.; Sminchis-
escu, C. Consistency Guided Scene Flow Esti-
mation. European Conference on Computer
Vision (ECCV). 2020.

[6] Schuster, R.; Wasenmüller, O.; Unger, C.;
Kuschk, G.; Stricker, D. SceneFlowFields++:
Multi-frame Matching, Visibility Prediction,
and Robust Interpolation for Scene Flow
Estimation. International Journal of Com-
puter Vision (IJCV) 2020,

[7] Schuster, R.; Wasenmüller, O.; Kuschk, G.;
Bailer, C.; Stricker, D. SceneFlowFields:
Dense Interpolation of Sparse Scene Flow
Correspondences. IEEE Winter Confer-
ence on Applications of Computer Vision
(WACV). 2018.

[8] Saxena, R.; Schuster, R.; Wasenmüller, O.;
Stricker, D. PWOC-3D: Deep Occlusion-
Aware End-to-End Scene Flow Estimation.
IEEE International Conference on Intelligent
Vehicles Symposium (IV) 2019,

[9] Gu, X.; Wang, Y.; Wu, C.; Lee, Y. J.;
Wang, P. HPLFlowNet: Hierarchical Permu-
tohedral Lattice FlowNet for Scene Flow
Estimation on Large-scale Point Clouds.
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2019.

[10] Jampani, V.; Kiefel, M.; Gehler, P. V. Learn-
ing Sparse High Dimensional Filters: Image

21

Filtering, Dense CRFs and Bilateral Neural
Networks. IEEE International Conference on
Computer Vision and Pattern Recognition
(CVPR). 2016.

[11] Gojcic, Z.; Litany, O.; Wieser, A.;
Guibas, L. J.; Birdal, T. Weakly Super-
vised Learning of Rigid 3D Scene Flow.
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2021.

[12] Li, B.; Zheng, C.; Giancola, S.; Ghanem, B.
SCTN: Sparse Convolution-Transformer Net-
work for Scene Flow Estimation. Proceedings
of the AAAI Conference on Artificial Intelli-
gence (AAAI). 2022.

[13] Choy, C.; Gwak, J.; Savarese, S. 4D Spatio-
Temporal ConvNets: Minkowski Convolu-
tional Neural Networks. IEEE/CVF Con-
ference on Computer Vision and Pattern
Recognition (CVPR). 2019.

[14] Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep
Convolutional Networks on 3D Point Clouds.
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2019.

[15] Qi, C. R.; Yi, L.; Su, H.; Guibas, L. J. Point-
Net++: Deep hierarchical feature learning on
point sets in a metric space. Advances in Neu-
ral Information Processing Systems (NIPS).
2017.

[16] Liu, X.; Qi, C. R.; Guibas, L. J. FlowNet3D:
Learning Scene Flow in 3D Point Clouds.
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2019.

[17] Wei, Y.; Wang, Z.; Rao, Y.; Lu, J.; Zhou, J.
PV-RAFT: Point-Voxel Correlation Fields
for Scene Flow Estimation of Point Clouds.
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2021.

[18] Wu, W.; Wang, Z. Y.; Li, Z.; Liu, W.;
Fuxin, L. PointPWC-Net: Cost Volume on
Point Clouds for (Self-) Supervised Scene
Flow Estimation. European Conference on
Computer Vision (ECCV). 2020.

[19] Kittenplon, Y.; Eldar, Y. C.; Raviv, D. Flow-
Step3D: Model Unrolling for Self-Supervised
Scene Flow Estimation. IEEE/CVF Confer-
ence on Computer Vision and Pattern Recog-
nition (CVPR). 2021.

[20] Wang, G.; Wu, X.; Liu, Z.; Wang, H. Hierar-
chical Attention Learning of Scene Flow in 3D
Point Clouds. IEEE Transactions on Image
Processing (TIP) 2021,

[21] Gu, X.; Tang, C.; Yuan, W.; Dai, Z.; Zhu, S.;
Tan, P. RCP: Recurrent Closest Point for
Scene Flow Estimation on 3D Point Clouds.
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2022.

[22] Wang, G.; Hu, Y.; Wu, X.; Wang, H. Resid-
ual 3D Scene Flow Learning with Context-
Aware Feature Extraction. IEEE Transac-
tions on Instrumentation and Measurement
(TIM) 2022,

[23] Wang, G.; Hu, Y.; Liu, Z.; Zhou, Y.;
Tomizuka, M.; Zhan, W.; Wang, H. What
Matters for 3D Scene Flow Network.
European Conference on Computer Vision
(ECCV). 2022.

[24] Cheng, W.; Ko, J. H. Bi-PointFlowNet: Bidi-
rectional Learning for Point Cloud Based
Scene Flow Estimation. European Conference
on Computer Vision (ECCV). 2022.

[25] Cho, K.; Van Merriënboer, B.; Gulcehre, C.;
Bahdanau, D.; Bougares, F.; Schwenk, H.;
Bengio, Y. Learning Phrase Representa-
tions using RNN Encoder–Decoder for Sta-
tistical Machine Translation. arXiv preprint
arXiv:1406.1078 2014,

[26] Menze, M.; Geiger, A. Object Scene Flow
for Autonomous Vehicles. IEEE International
Conference on Computer Vision and Pattern
Recognition (CVPR). 2015.

[27] Battrawy, R.; Schuster, R.; Mahani, M.-
A. N.; Stricker, D. RMS-FlowNet: Efficient
and Robust Multi-Scale Scene Flow Esti-
mation for Large-Scale Point Clouds. IEEE
International Conference on Robotics and
Automation (ICRA). 2022.

22

[28] Hu, Q.; Yang, B.; Xie, L.; Rosa, S.;
Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A.
RandLA-Net: Efficient Semantic Segmenta-
tion of Large-Scale Point Clouds. IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR). 2020.

[29] Vedula, S.; Baker, S.; Rander, P.; Collins, R.;
Kanade, T. Three-Dimensional Scene Flow.
IEEE International Conference on Computer
Vision (ICCV). 1999.

[30] Hadfield, S.; Bowden, R. Kinecting the dots:
Particle Based Scene Flow From Depth Sen-
sors. IEEE International Conference on Com-
puter Vision (ICCV). 2011.

[31] Hornacek, M.; Fitzgibbon, A.; Rother, C.
SphereFlow: 6 DoF Scene Flow from RGB-
D Pairs. IEEE International Conference on
Computer Vision and Pattern Recognition
(CVPR). 2014.

[32] Quiroga, J.; Brox, T.; Devernay, F.; Crow-
ley, J. Dense Semi-rigid Scene Flow Estima-
tion from RGBD Images. European Confer-
ence on Computer Vision (ECCV). 2014.

[33] Jaimez, M.; Souiai, M.; Gonzalez-Jimenez, J.;
Cremers, D. A Primal-Dual Framework for
Real-Time Dense RGB-D Scene Flow. IEEE
International Conference on Robotics and
Automation (ICRA). 2015.

[34] Jaimez, M.; Souiai, M.; Stückler, J.;
Gonzalez-Jimenez, J.; Cremers, D. Motion
Cooperation: Smooth Piece-Wise Rigid Scene
Flow from RGB-D Images. International
Conference on 3D Vision (3DV). 2015.

[35] Sun, D.; Sudderth, E. B.; Pfister, H. Layered
RGBD Scene Flow Estimation. IEEE Inter-
national Conference on Computer Vision and
Pattern Recognition (CVPR). 2015.

[36] Shao, L.; Shah, P.; Dwaracherla, V.; Bohg, J.
Motion-based Object Segmentation based on
Dense RGB-D Scene Flow. IEEE Robotics
and Automation Letters (RA-L) 2018,

[37] Teed, Z.; Deng, J. RAFT-3D: Scene Flow
using Rigid-Motion Embeddings. IEEE/CVF

Conference on Computer Vision and Pattern
Recognition (CVPR). 2021.

[38] Jiang, H.; Sun, D.; Jampani, V.; Lv, Z.;
Learned-Miller, E.; Kautz, J. SENSE: a
Shared Encoder Network for Scene-flow Esti-
mation. IEEE/CVF International Conference
on Computer Vision (ICCV). 2019.

[39] Ma, W.-C.; Wang, S.; Hu, R.; Xiong, Y.;
Urtasun, R. Deep Rigid Instance Scene Flow.
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2019.

[40] Dewan, A.; Caselitz, T.; Tipaldi, G. D.; Bur-
gard, W. Rigid Scene Flow for 3D LiDAR
Scans. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).
2016.

[41] Ushani, A. K.; Wolcott, R. W.; Walls, J. M.;
Eustice, R. M. A Learning Approach for Real-
Time Temporal Scene Flow Estimation from
LIDAR Data. IEEE International Conference
on Robotics and Automation (ICRA). 2017.

[42] Qi, C. R.; Su, H.; Mo, K.; Guibas, L. J. Point-
Net: Deep Learning on Point Sets for 3D
Classification and Segmentation. IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR). 2017.

[43] Su, H.; Jampani, V.; Sun, D.; Maji, S.;
Kalogerakis, E.; Yang, M.-H.; Kautz, J.
SPLATNet: Sparse Lattice Networks for
Point Cloud Processing. IEEE International
Conference on Computer Vision and Pattern
Recognition (CVPR). 2018.

[44] Ushani, A. K.; Eustice, R. M. Feature Learn-
ing for Scene Flow Estimation from LIDAR.
Conference on Robot Learning (CoRL). 2018.

[45] Wang, S.; Suo, S.; Ma, W.-C.; Pokrovsky, A.;
Urtasun, R. Deep Parametric Continuous
Convolutional Neural Networks. IEEE Inter-
national Conference on Computer Vision and
Pattern Recognition (CVPR). 2018.

[46] Behl, A.; Paschalidou, D.; Donné, S.;
Geiger, A. PointFlowNet: Learning Repre-
sentations for Rigid Motion Estimation from

23

Point Clouds. IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(CVPR). 2019.

[47] Puy, G.; Boulch, A.; Marlet, R. FLOT: Scene
Flow on Point Clouds Guided by Optimal
Transport. European Conference on Com-
puter Vision (ECCV). 2020.

[48] Li, R.; Lin, G.; He, T.; Liu, F.; Shen, C.
HCRF-Flow: Scene Flow from Point Clouds
with Continuous High-order CRFs and
Position-aware Flow Embedding. IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR). 2021.

[49] Wang, H.; Pang, J.; Lodhi, M. A.; Tian, Y.;
Tian, D. FESTA: Flow Estimation via
Spatial-Temporal Attention for Scene Point
Clouds. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
2021.

[50] Dong, G.; Zhang, Y.; Li, H.; Sun, X.;
Xiong, Z. Exploiting Rigidity Constraints for
LiDAR Scene Flow Estimation. IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR). 2022.

[51] Kiefel, M.; Jampani, V.; Gehler, P. V. Per-
mutohedral Lattice CNNs. arXiv preprint
arXiv:1412.6618 2014,

[52] Li, Y.; Tofighi, M.; Monga, V.; Eldar, Y. C.
AN ALGORITHM UNROLLING
APPROACH TO DEEP IMAGE DEBLUR-
RING. IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP). 2019.

[53] Monga, V.; Li, Y.; Eldar, Y. C. Algo-
rithm Unrolling: Interpretable, Efficient Deep
Learning for Signal and Image Processing.
IEEE Signal Processing Magazine 2021,

[54] Teed, Z.; Deng, J. RAFT: Recurrent All-Pairs
Field Transforms for Optical Flow. European
Conference on Computer Vision (ECCV).
2020.

[55] Titouan, V.; Courty, N.; Tavenard, R.; Fla-
mary, R. Optimal Transport for structured

data with application on graphs. Interna-
tional Conference on Machine Learning. 2019.

[56] Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.;
Dosovitskiy, A.; Brox, T. FlowNet 2.0: Evo-
lution of Optical Flow Estimation with Deep
Networks. IEEE International Conference on
Computer Vision and Pattern Recognition
(CVPR). 2017.

[57] Sun, D.; Yang, X.; Liu, M.-Y.; Kautz, J.
PWC-Net: CNNs for Optical Flow Using
Pyramid, Warping, and Cost Volume. IEEE
International Conference on Computer
Vision and Pattern Recognition (CVPR).
2018.

[58] Blanco, J. L.; Rai, P. K. nanoflann: a C++
header-only fork of FLANN, a library for
Nearest Neighbor (NN) with KD-trees. https:
//github.com/jlblancoc/nanoflann, 2014.

[59] Yang, B.; Wang, S.; Markham, A.; Trigoni, N.
Robust Attentional Aggregation of Deep Fea-
ture Sets for Multi-view 3D Reconstruction.
International Journal of Computer Vision
(IJCV) 2020,

[60] Zhang, W.; Xiao, C. PCAN: 3D Attention
Map Learning Using Contextual Information
for Point Cloud Based Retrieval. IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR). 2019.

[61] Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.;
Bronstein, M. M.; Solomon, J. M. Dynamic
Graph CNN for Learning on Point Clouds.
ACM Transactions on Graphics (ToG) 2019,

[62] Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.;
Cremers, D.; Dosovitskiy, A.; Brox, T. A
Large Dataset to Train Convolutional Net-
works for Disparity, Optical Flow, and Scene
Flow Estimation. IEEE International Con-
ference on Computer Vision and Pattern
Recognition (CVPR). 2016.

[63] Battrawy, R.; Schuster, R.; Wasenmüller, O.;
Rao, Q.; Stricker, D. LiDAR-Flow: Dense
Scene Flow Estimation from Sparse LiDAR
and Stereo Images. IEEE/RSJ International

24

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann

Conference on Intelligent Robots and Sys-
tems (IROS). 2019.

[64] Rishav, R.; Battrawy, R.; Schuster, R.;
Wasenmüller, O.; Stricker, D. DeepLi-
DARFlow: A Deep Learning Architecture
For Scene Flow Estimation Using Monocular
Camera and Sparse LiDAR. IEEE/RSJ Inter-
national Conference on Intelligent Robots
and Systems (IROS). 2020.

[65] Ouyang, B.; Raviv, D. Occlusion Guided
Scene Flow Estimation on 3D Point Clouds.
IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR)
Workshops. 2021.

[66] Ouyang, B.; Raviv, D. Occlusion Guided Self-
supervised Scene Flow Estimation on 3D
Point Clouds. International Conference on 3D
Vision (3DV). 2021.

25

	Introduction
	Related Work
	Network Design
	Feature Extraction Module
	Flow Embedding
	Multi-Scale Scene Flow Estimation
	Loss Function

	Experiments
	Evaluation Metrics
	Data Sets and Preprocessing
	Implementation, Training and Augmentation
	Comparison to State-of-the-Art
	Varying Point Densities
	Varying Depth Ranges
	Ablation Study
	Limitations

	Conclusion
	Funding
	Availability of data and materials

