
MMQP: A Lightweight, Secure and Scalable IoT
Communication Protocol

Franc Pouhela˚, Sogo Pierre Sanon˚, Dennis Krummacker˚, Hans D. Schotten˚:

˚German Research Center for Artificial Intelligence (DFKI GmbH), Kaiserslautern Germany
Email: {franc.pouhela; sogo pierre.sanon; dennis.krummacker; hans dieter.schotten}@dfki.de

:University of Kaiserslautern (RPTU), Germany
Email: {schotten}@rptu.de

Abstract—The ever-evolving Internet of Things (IoT) land-
scape necessitates continuous advancements in communication
protocols to meet evolving requirements. In response, this paper
introduces the Middleware Message Queuing Protocol (MMQP),
an advance, binary, lightweight and secure IoT and Machine-to-
Machine (M2M) communication protocol aimed at addressing the
limitations of the Message Queuing Telemetry Transport (MQTT)
protocol. We present the design principles, core features, and
unique advantages of MMQP in comparison to MQTT. Through
practical analysis, we demonstrate MMQP’s potential to enhance
IoT and M2M communication.

Index Terms—IoT, Protocol, Security, End-to-End, 6G

I. INTRODUCTION

There is an ever-growing demand for efficient and contin-
uous data collection and processing in distributed systems,
notably in mobile communications networks such as 5G or the
future 6G. A significant catalyst for this shift is the widespread
integration of Artificial Intelligence (AI) in network operation.

A potential avenue with the keys to addressing these require-
ments could be a Context Management System (CoMaS) [1].
A CoMaS is a framework adept at harnessing the network
context data to gain new insights into network states (context)
through diverse AI algorithms. The newly gained knowledge
is then leveraged to improve and optimize network operation.
The efficacy of such a system hinges on its seamless and
efficient acquisition and distribution of contextual data, a task
exacerbated by the proliferation of IoT devices. The need for
flexible, scalable and efficient communication solution arises.

MQTT, renowned as a lightweight messaging protocol,
finds extensive application in both IoT and M2M scenarios
where scalability and efficiency are required. Indeed, MQTT
presently stands as the de facto protocol for IoT commu-
nication. However, upon closer examination of MQTT, we
identified areas with potential for improvement, spanning
various levels of the protocol. These shortcomings manifest in
aspects such as packet structure, topic management, delivery
patterns, security measures, efficiency etc.

To overcome these limitations, we designed MMQP, a
similar protocol that enhances efficiency, scalability, security,
and flexibility. Similar to MQTT, MMQP is a lightweight,
binary protocol for IoT and M2M communication, which also
follows the publisher-subscriber communication model. Our
goal in this paper is to provide a clear understanding of the

design principles, core features, and unique advantages of
MMQP in comparison to MQTT.

The remainder of this paper is structured as follows: Sec-
tion II presents a short review of related works. Section III
introduces MQTT and outlines its limitations. Following this,
Section IV introduces MMQP, detailing its components and
features. Lastly, Section V concludes the study with a look at
the potential future work.

II. RELATED WORK

Various research efforts [2], [3], [4] have focused on ad-
dressing the limitations of MQTT and exploring alternative
solutions. For instance, [5] conducted a comprehensive sur-
vey on IoT messaging protocols, where they highlighted the
strengths and weaknesses of MQTT and compared it with
other protocols such as Advanced Message Queuing Protocol
(AMQP) and Constrained Application Protocol (CoAP), etc.

In a prior study detailed in [6], we demonstrated the advan-
tages in terms of power efficiency gained by adopting Entity-
Component-System (ECS) as the underlying architecture for
implementing the broker application.

Most of the efforts invested in improving MQTT was mainly
focused on security and less on performance. [7] thoroughly
evaluates MQTT’s security, highlighting the limitations in term
of performance and scalability and [8], [9] addresses these
limitations using respectively ARIA Cipher 256 Algorithm
Cryptography and Elliptic Curve Cryptography.

III. MQTT OVERVIEW AND LIMITATIONS

Developed in the late 1990s, MQTT [10] has since gained
widespread adoption, becoming a cornerstone in the imple-
mentation of IoT applications. At its core, MQTT operates on
a publish-subscribe messaging model, offering a decoupled,
asynchronous, event-driven approach to message exchange. In
this communication approach, participants play two distinct
roles: publishers and subscribers. Publishers are responsible
for generating messages and spreading them to designated
topics, while subscribers express interest in specific topics and
receive relevant messages in a seamless and decoupled manner.

A. MQTT Communication Pattern

This paper primarily focuses on the lates version of MQTT
version 5. Figure 1 shows MQTT’s flow of interactions.
Initially, the publisher establishes a connection with the broker
by sending a CONNECT packet, to which the broker responds
with a CONNACK packet acknowledging the successful con-
nection. Subsequently, the subscriber subscribes to a specific
topic using the SUBSCRIBE packet. Meanwhile, the publisher
sends a message to the broker using a PUBLISH packet,
which can be queued for further processing depending on
the Quality of Service (QoS). The broker then forwards the
relevant message to the subscriber.

] Publisher + Broker � Subscriber

CONNECT

CONNACK

SUBSCRIBE

SUBACK

PUBLISH

PUBLISH

PUBACK

Fig. 1. MQTT Message Exchange

B. MQTT Control Packets

The table in Figure 2 displays all MQTT control packets.
Generally, these packets consist of three primary components:
a fixed header, a variable header, and the payload.

Fig. 2. MQTT Control Packets

MQTT’s capacity to include additional packet types is
constrained due to its allocation of all available bits for control
packet types. As illustrated in Figure 3, MQTT assigns 4 bits
in the control byte, to represent packet type. Expanding the
packet types would require significant protocol modifications,
potentially disrupting current implementations.

1) MQTT Fixed Header: Each control packet has a fixed
header (Figure 3). The packet type is represented using the
four first bits of the packet’s first byte. The subsequent four
bits are used for various flags, depending on the packet type.
The following byte(s) represent the packet’s remaining length,
which varies according to the packet size.

Fig. 3. MQTT Packet Fixed Header

MQTT uses the Variable Length Encoding (VLE) algorithm
to the packet’s remaining length. This technique represents
a variable-length value using a series of bytes, where each
byte uses 7-bits to represent data and the eight bit serves as a
continuation flag. The algorithm is as follows:

Encoded Bytei “

#

Bytei & 127 if Bytei`1 exists

Bytei if Bytei`1 does not exist

Packets with a remaining length between 0 and 127 bytes
will use one byte to encode the length. Similarly, packets with
a remaining length between 128 and 16383 bytes will use two
bytes, etc. The maximum size that can be encoded in MQTT
using VLE depends on the number of bytes used for encoding
and follows the formula: Lr “

řn
i“0 127 ˆ 128i Where n is

the number of bytes used for encoding. In practice, 4 bytes
are generally used to encode the size in MQTT, making the
maximum size limited to around 254MB.

While VLE offers benefits such as minimizing overhead
for smaller packet lengths, it also introduces some downsides.
Implementing variable length encoding introduces complexity
in encoding and decoding logic, potentially increasing com-
putational overhead, particularly in resource-constrained en-
vironments. This complexity extends to error handling, where
incorrect byte sequences or buffer overflows may occur, neces-
sitating robust error detection and recovery mechanisms. Fur-
thermore, ensuring interoperability with other MQTT clients
and brokers becomes crucial, as any deviations in encoding
or decoding logic can lead to communication issues and
interoperability challenges.

2) Variable Header: Some MQTT packets have a variable
header which resides between the fixed header and the pay-
load. The content of this variable header varies depending on
the packet type. For instance, the PUBLISH packet can contain
a packet identifier for acknowledgement.

Figure 4 describes a PUBLISH packet. In MQTT. The two
packet flags, DUP and RET, respectively stand for DUPLI-

Fig. 4. PUBLISH Control Packet

CATE and RETAIN. The DUPLICATE flag informs the broker
that the currently sent packet is a duplicate. This can occur
when the broker fails to acknowledge a packet sent by the
publisher. The RETAIN flag instructs the broker to retain the
last message sent on a particular topic and deliver it to any
new subscribers immediately upon connection.

The retain feature lacks fine-grained control. Firstly, it’s
not possible to specify retention properties on a per-topic
basis such as a message expiry duration. This limitation can
be problematic in applications where message freshness is
critical, as retained messages may become outdated over time.
Additionally, MQTT lacks retain modes for scenarios requiring
the retention of multiple messages using First-In-First-Out
(FIFO) or Last-In-First-Out (LIFO) patterns. These modes
could provide additional flexibility in delivering retained mes-
sages on specific topics.

C. Quality of Service Levels

MQTT supports three levels of QoS for message delivery.
QoS 0 (At most once): Also known as best effort delivery,

ensures the delivery without any acknowledgment.
QoS 1 (At least once): Here, the sender publishes the

message, and the receiver acknowledges its receipt. If the
acknowledgment is not received, the publisher may resend the
message. (see Figure 1).

QoS 2 (Exactly once): This QoS level guarantees that
the message is delivered exactly once. It involves a two-step
process as depicted in Figure 5.

] Publisher + Broker � Subscriber

PUBLISH

PUBREC

PUBLISH

PUBREL

PUBCOMP

Fig. 5. Publishing with QoS level 2

D. Topic Management

In MQTT, topics serve as crucial identifiers for organiz-
ing and disseminating messages. Managed hierarchically by
brokers, topics are represented as strings with multiple levels
separated by forward slashes ”/”. When a client publishes a
message, the broker evaluates the topic hierarchy to deter-
mine relevant subscribers. The broker forwards the message
to subscribers interested in topics matching the published
topic or its parent levels. For instance, publishing a message
on home/room1/light triggers the broker to also deliver the
message to subscribers interested in home/room1, or home.

One drawback of MQTT is its limited support for topic
manipulation. It primarily relies on SUBSCRIBE and UN-
SUBSCRIBE packets for topic requests, lacking a direct mech-
anism for adding additional topic requests. This limitation can
affect the flexibility and dynamism of MQTT-based systems,
particularly in scenarios requiring dynamic topic management
based on changing requirements. For instance, in scenarios
where a publisher desires more control over message forward-
ing or retention on specific topics, etc.

1) Topic Alias: In MQTT v5.0, the Topic Alias feature
optimizes bandwidth usage and reduces the size of published
messages by substituting commonly used topics with shorter
aliases. Clients negotiate topic aliases with the broker during
connection establishment, specifying a maximum alias they
intend to use. The broker responds with its own maximum,
which may differ. Adhering to the broker’s maximum is crucial
to avoid issues. When publishing a message for the first time
on a topic, the client includes both the alias and the topic
string. Upon receiving this initial message, the broker maps
the alias to the corresponding topic. Subsequently, the client
can use the alias alone, omitting the topic string.

� Client + Broker

CONNECT (max-topic-alias = 3456)

CONNACK (max-topic-alias = 2333)

PUBLISH alias=1, topic=”room1/light”

PUBLISH alias=1, payload = ”hello!”

Fig. 6. Topic Alias Negotiation

A topic such as Germany/Kaiserslautern/BismarckStreet/-
TrafficLight2 has 51 characters. In contrast, using a 4-bytes
topic alias means that 47 extra bytes are wasted when using
the topic string. Considering a scenario with 10,000 devices
exchanging messages at a rate of 10Hz, the total extra bytes
used would be approximately 5 MB/s, equivalent to around 13
terabytes in a month. The plot depicted in Figure 7 provides
a visual representation.

Topic aliases offer significant improvements in bandwidth
efficiency, yet certain limitations warrant attention. Firstly, the

20 40 60 80
100

50

100

0

5

¨104

z “ 10Hz ˚ y ˚ px ´ 4q

topic length (x)
clients (y)

ex
tr

a
by

te
s

(z
)

Fig. 7. Topic’s extra bandwidth usage

client must negotiate the topic alias range during connection
handshake. The client must adhere to the range provided by
the broker, which may not align with its preferences and the
client’s use of topic aliases is restricted by the maximum
alias provided by the broker. Secondly, the variable nature of
the topic alias range complicates the implementation of client
applications. Given the benefits of topic alias, addressing these
limitations should be a priority in protocol design.

E. Topic Wildcards

In MQTT, topic wildcards, such as ”+” (single-level)
and ”#” (multi-level), enable subscribers to efficiently sub-
scribe to multiple topics simultaneously. The ”+” wildcard
matches any single level in a topic hierarchy, while the
”#” wildcard matches all levels. For instance, subscribing to
home/+/light means we will receive messages published on
home/room1/light, home/room2/light, etc. Respectively, sub-
scribing to home/# means we will receive messages published
on home, home/room1/light etc.

F. Last Will Testament

The Last Will Testament (LWT) allows a client to specify
a message that will be published by the broker on its behalf
when the client unexpectedly disconnects. during the connec-
tion handshake using the CONNECT packet (see Figure 8),
the client can specify a last will message along with a topic
and QoS level to publish it.

There are some potential downsides to point out regarding
the CONNECT packet. Firstly, the utilization of connect flags
could be optimized for greater efficiency. Currently, more bits
are allocated than necessary for the LWT. Streamlining this
process to use only one bit would reduce overhead and enhance
protocol efficiency, while also potentially enabling Initial
Will Message (IWM) support. Introducing IWM functionality,
where a device transmits its online status to the broker upon
connection or resumption, could significantly improve func-
tionality, particularly in request/response scenarios requiring
knowledge of a responder’s online status.

Fig. 8. CONNECT Packet Layout

G. Session Keep Alive

The Keep Alive feature in MQTT ensures the health and
availability of clients by enabling them to periodically com-
municate with the broker. It involves a time-based mechanism
where the client and broker exchange control packets at regular
intervals known as the Keep Alive Interval. This ensures
that both parties remain aware of each other’s connectivity
status. The keep alive interval is provided to the broker
via the CONNECT packet (see Figure 8) during connection
establishment, which is a time duration in seconds.

This interval indicates how often the client will send a
ping request, PINGREQ to the broker to signal its continued
presence. Upon receiving this packet, the broker must respond
with a ping response PINGRESP. This is only done if no prior
activity between the client and the broker has been registered.
If the broker fails to respond to the ping request of the client,
this last can assume connection loss and take specific actions.

In a traditional client-server mindset, the server is the one
providing services to clients. Having the broker initiate the
Keep Alive handshake makes the implementation of the client
less complex. Clients can focus on consuming desire messages
and handling data without needing to manage the connection
state. This simplification streamlines client development and
reduces the risk of implementation errors.

H. Request/Response Pattern

MQTT was not made to support request/response pattern.
This feature was later added in version 5. This involves a client
subscribed to a response topic sending a request and waiting
for a corresponding response from another client subscribed
to that request topic. The sequence diagram depicted in Fig-
ure 9 illustrates how this typically works in MQTT. Both the
Requester and Responder initiate connection by assigning the
request/response information identifier within the CONNECT
packet. This helps the client to solicit the server to include
response information in the CONNACK packet. This response
information serves as a distinct segment of the response topic,
facilitating the server’s permission verification process.

The requester and the responder proceeds by respectively
subscribing to the desired response/request topic resp-topic,

req-topic. The requester proceeds by sending a request mes-
sage to the broker on the request topic. Upon receiving the
request, the Broker forwards it to the Responder by publishing
the message to the request topic. The responder processes the
request and publishes its response back to the broker using the
response topic. Finally, the broker then forwards the response
message to the requester using the response topic.

� Requester + Broker á Responder

CONNECT (Req/Resp)

CONNACK (Req/Resp)

CONNECT (Req/Resp)

CONNACK (Req/Resp)

SUBSCRIBE (resp-topic)

SUBACK

SUBSCRIBE (req-topic)

SUBACK

PUBLISH (request)

PUBLISH (request)

PUBLISH (response)

PUBLISH (response)

Fig. 9. MQTT Request/Response Exchange

While the MQTT’s request/response pattern provides a
means for applications with such requirement to achieve
their purposes, it also has several drawbacks that cannot be
neglected. First, the negotiation process and the need for the
requester to subscribe to a response topic before sending a
request is not the most flexible approach. As the number
of clients and the frequency of request/response interactions
increase, the broker may experience scalability challenges.
Managing numerous topics for requests and responses, along
with the associated message handling overhead, can strain
broker resources and impact system performance. Best-effort
message delivery model means that there are no guarantees
of message delivery or order of arrival. In request/response
scenarios where reliability is crucial, additional mechanisms
such as QoS levels and message acknowledgment may be
necessary to ensure message delivery and integrity.

Another limitation is that MQTT brokers usually restrict the
topics that clients can publish and subscribe to. The requester
can specify a random response topic, but cannot guarantee
that it has permission to subscribe to that topic, nor can
it guarantee that the responder has permission to publish
messages on it. Finally, Implementing the request/response
pattern of MQTT requires additional logic to manage topics for
requests and responses, as well as mechanisms for correlating

requests with their corresponding responses. This complexity
can lead to more intricate client and broker implementations
and potentially increase the risk of failures.

I. Security/Privacy

MQTT provides some security features to protect the confi-
dentiality, integrity, and availability of data transmitted over
the network. The main security mechanisms in MQTT in-
clude: Access Control Lists (ACLs): Brokers can implement
ACLs to enforce fine-grained access control policies. ACLs
allow brokers to specify which clients are allowed to publish
or subscribe to specific topics. Authentication: MQTT can
supports various authentication methods, including username/-
password and client certificate. Transport Layer Security
(TLS): MQTT supports TLS encryption, which encrypts the
communication channel between clients and brokers to prevent
eavesdropping and tampering by malicious actors.

One major drawback of TLS is its heaviness in terms of
computation. TLS encryption involves complex cryptographic
algorithms and computations that makes it difficult and almost
impossible for resource constraint devices to use it for encryp-
tion. Moreover, TLS’s encryption capabilities primarily focus
on securing the communication channel between clients and
brokers. MQTT therefore does not natively support end-to-end
encryption, which means that messages may be decrypted by
the broker before being forwarded to subscribers, potentially
exposing them to insider threats.

IV. INTRODUCING MMQP

As depicted in Figure 10, MMQP adheres to the same com-
munication model as MQTT. The only notable difference thus
far lies in the nomenclature of the packets. The SUBSCRIBE
packet for topic subscription is replaced by a more versatile
packet called TOPREQ (topic request), facilitating a broader
spectrum of potential topic requests. This will be further
elucidated as we delve into topic management in MMQP.

] Publisher + Broker � Subscriber

CONREQ

CONACK

TOPREQ

TOPACK

PUBREQ

PUBREQ

PUBACK

CONEND

Fig. 10. MMQP Communication Pattern

A. MMQP Control Packets

The table shown in Figure 11 outlines all control packets
of MMQP. Notably, there are only 10 such packets. This
marks an improvement over the limitation highlighted in the
MQTT section, where it was observed that MQTT exhausts all
available bits for packet representation. These 10 packets are
sufficient to provide the same features with more flexibility.
By reorganizing the packets and their layout effectively, we
managed to decrease the number of packets necessary to sup-
port all features and QoS levels of MQTT. Further elucidation
on this optimization will become evident as we proceed.

Fig. 11. MMQP Control Packets

B. MMQP Packets Format

Similar to MQTT, MMQP’s control packets consist of a
fixed header, an optional variable header, and payload. The
fixed header, depicted in Figure 12, entails the control byte and
the encoded remaining length. The notable distinction lies in
the encoding of the remaining length. Within the control byte,
2-bits are allocated to represent the remaining length interval
or size, these 2-bits are referred to as the Remaining Length
Flags (RLF). For a packet with a remaining length value using
only 1-byte such as 120 or in general with a value within [0,
255]. The RLF would be set to 00 and a remaining length
within [256, 65535] (2 bytes), the RLF would be 01 etc.

Fig. 12. MMQP Fixed Header

This remaining length encoding approach is straightforward
and doesn’t necessitate extensive computation. By just looking
at the RLF, we can promptly determine the precise number of
bytes used to encode the remaining length. Additionally, the
remaining length can go up to 4GB, making room for a wider
range of possible use cases for this protocol.

C. Connection Establishment

The connection establishment starts with the client sending
a CONREQ packet to the broker (see Figure 10). This packet’s
format is illustrated in Figure 13. Notably, it bears resemblance
to MQTT’s CONNECT control packet depicted in Figure 8.
However, the disparity lies in the utilization of the session flags
also known as ”Connect Flags” in MQTT. Instead of allocating
most bits to represent various properties of the LWT, each bit
now represents a properties category.

Fig. 13. CONREQ Control Packet

1) Resume Flags: The resume session control flags RES
informs the broker about a previously existing session that
may have been interrupted due to a connection loss or store
intentionally using the persistent flag. When this flag is set
in the CONREQ packet, the broker will resume the session
using the stored properties and send any retained messages if
the session was still active.

2) Session Flags: The CONREQ packet uses the session
flags (Byte 9 of Figure 13) to optionally provide additional
session properties such as session settings, authentication data,
etc. Following are the descriptions of each session flag:

a) Authentication Flag: The authentication property flag
AUTH allows the client to provide an authentication method
along with its associated data to the broker, thereby enabling
authentication between both parties (see Figure 14).

Fig. 14. Authentication properties

b) Session Settings Flag: The session settings flag SET
tells the broker about the presence of session settings (see

Figure 15) in the payload. Among these settings are the Keep-
Alive Interval, the Session Expiry Interval as well as the
persistent flag. The persistent flag PER instructs the broker
to store all session properties, such as Topics, IWM, and
Last Will Message (LWM) persistently. This allows the client
to quickly resume its session by simply sending its client
identifier in subsequent connections. The expiry interval is
used to specify how long the session should remain active
when the client unexpectedly lost its connection.

Fig. 15. Session properties

c) Initial/Last Will Flags: Clients can use these flags to
send their IWM, IWM to the broker so that this last can
properly publish them when required (see Figure 16). The
retain flag RET tells the broker to retain the will message
for later coming subscribers. The will message can also have
a publish delay. This delay instructs the broker on how long
to wait before publishing the will message. The client also has
the option of providing an expiry of the will message using
the expiry flag EXP.

Fig. 16. Will Message Properties

Upon receipt of the CONREQ packet, the broker responds
with a CONACK packet to acknowledge the request success
or failure by providing a reason code. Figure 17 displays the
format of the CONACK packet. In scenarios where authen-
tication is required, both parties may authenticate themselves
using the authentication packet AUTHEN.

d) Topic Request Flag: This flag can be utilized to
provide a list of topic requests to the broker within the

Fig. 17. CONACK Control Packet

CONREQ packet. Using this, the client can directly subscribe
or register topics during the connection handshake without
having to send a separate TOPREQ packet. Topic requests
are discusses in Section IV-F.

D. Session Keep Alive

The session is maintained alive using the CONSYN control
packet (see Figure 18). If the client remains inactive within
the keep-alive interval, the broker initiates the handshake by
sending the CONSYN packet, which the client is also required
to respond to using the same packet.

Fig. 18. CONSYN Control Packet

E. Disconnection

To terminate the connection, the client or the broker can
utilize the CONEND packet by specifying a reason code.
The broker can close a client connection without sending a
CONEND if disclosing the reason could compromise security.

Fig. 19. CONEND Control Packet

F. Topic Management

MMQP consolidates all topic requests inside of the
TOPREQ packet (Figure 10). It supports three types of re-
quests: SUBSCRIBE, REGISTER and UNSUBSCRIBE.

The new REGISTER request allows publishers to register
topics they wish to publish messages on by instructing the
broker on how (OVERRIDE, FIFO, LIFO) and for how long
messages should be retained. It also includes a packet identifier
for proper acknowledgment using the TOPACK control packet
(see Figure 21).

Clients are required to subscribe/register all topics they wish
to respectively receive and send messages on. These can also
be done using wildcards (#, +) as described in Section III-E.

Fig. 20. TOPREQ Control Packet

Fig. 21. TOPACK Control Packet

In that case the topic alias is set to zero as no specific topic
string is provided in the request. This gives the broker prior
knowledge about which client will be publishing on specific
topics which can enhance access management and security.

1) Topic Requests: Each topic request contains a request
flags which is use to identify its properties such as the type,
the QoS level, etc. (see Figures: 22,23,24) Each request also
includes a topic alias and may optionally include the topic
string. The topic string is necessary only during the first
request, subsequent requests require only the topic alias. This
simplification is crucial, especially for scenarios requiring re-
subscription to adjust the QoS level.

a) Subscribe Request: Figure 22 depicts the layout of a
subscribe request. The flag GRP indicates to the broker that
the client wishes to share this subscription with other clients
found in the group called groupName. This can be useful in
scenarios where multiple clients subscribe to the same topic,
but only one should receive and process the message.

Fig. 22. Subscribe Request

The request flag REQ is used to informs the broker that
this topic support request/response, meaning the subscriber is
allowing the broker to forward requests from publishers. The

QoS levels (0, 1, 2) instruct the broker on how to forward
messages to the subscriber. In case of a subscription using
wildcards, the broker will provide both the topic string and
the topic alias in the first PUBREQ packet publish on one of
the subtopics forwarded to the subscriber (see Section IV-G).
The topic flag TOP helps communicate this. The first byte of
a topic request describes the request flags. The first two bits
of this byte represent the request type.

b) Register Request: Similar to the subscribe request, the
register request (see Figure 23) also includes a QoS, indicating
to the broker how to retain messages published on the topic.
QoS 0 is the default retain mode, where only the lastest
published message is retained. QoS 1 instructs the broker to
retain messages using the FIFO pattern, ensuring messages are
delivered in the order of arrival. QoS 2 instructs the broker to
retain messages using the LIFO pattern, where the most recent
message sent is the first to be delivered. Note that only packets
published with QoS levels 1 and 2 can be retained.

Fig. 23. Retain request

Additionally, the expiry flag EXP is used to manage the
life cycle of the retained packets. This enhanced control is
one of the key strengths of MMQP and represents a signif-
icant improvement over the basic control offered by MQTT.
Moreover, the request also includes a topic alias which allows
the broker to refer back to the client using the alias in case
of failure. The client can subsequently publish messages using
this topic alias without including the topic string in the packet,
enhancing efficiency.

c) Unsubscribe Request: The unsubscribe request (see
Figure 24) includes the topic alias, as a client must be sub-
scribed to the topic in order to unsubscribe. A topic string can
only be present if using wildcard (”#”, ”+”) unsubscription, in
this case, the topic alias is set to zero.

G. Message Publishing

Clients can publish messages in MMQP using the PUBREQ
control packet (see Figure 25). The packet’s control byte
provides the type of publish request using the Packet Control
Flags (PCF). Three publish request types exist: PUBLISH (00)
found in MQTT, REQUEST (01), and RESPONSE (10).

Each PUBREQ packet includes a packet identifier and a
topic alias. The only time a PUBREQ packet is allowed to

Fig. 24. Unsubscribe request

Fig. 25. PUBREQ Control Packet

provide a topic string is when the topic was registered using
wildcards. Upon receipt, the broker will forward the message
to the subscriber(s) accordingly.

H. Publish QoS Levels

Similar to MQTT, MMQP also supports three levels of
QoS. QoS 0 is for best effort delivery. QoS 1 requires an
acknowledgement using the PUBACK (Figure 26) packet.

Fig. 26. PUBACK Control Packet

QoS level 2 involves a two way hand shake using the
PUBSYN control packet (see Figures: 27, 28).

I. Request/Response

Employing the PUBREQ packet for request/response ex-
changes (see Figure 29) offers the advantage of maintaining
support for all QoS levels. This also takes away the need to
negotiate these features during the connection establishment
because both parties have a concrete way of discerning a
request/response packets from regular publish packets.

Fig. 27. PUBSYN Control Packet

] Publisher + Broker � Subscriber

PUBREQ (2)

PUBSYN

PUBREQ (1)

PUBACK

PUBSYN

PUBACK

Fig. 28. Publishing with QoS level 2

� Requester + Broker á Responder

REQUEST

REQUEST

RESPONSE

RESPONSE

Fig. 29. Request/Response Exchange

J. Security/Privacy

MMQP introduces a lightweight and robust end-to-end
encryption mechanism to safeguard data exchange between
clients (see Figure 30). One of the primary objectives of the
security architecture is to protect the privacy of communication
and ensure that the Broker cannot access or intercept sensitive
data, exchanged between clients. An Admin is introduced to
play a crucial role in key generation and management.

a) Key Generation: The Admin securely generates sym-
metric keys for each topic. These keys are used for encryption
and decryption of messages published and subscribed to that
specific topic.

b) Key Delegation: When a client wishes to participate
in a specific topic, they securely communicate with the Admin.
The Admin verifies their credentials and then shares the
corresponding symmetric key for that topic.

Fig. 30. End-to-End Encryption Model

1) ASCON Cryptosystem: ASCON [11] is a symmetric
cryptosystem optimized for resource-constrained devices. It
offers efficient encryption, decryption, and additional function-
alities like, integrity checking, hashing, all while maintaining
strong security against known attacks [12].

As of February 2023, it has been selected by the National
Institute of Standards and Technology (NIST) for future stan-
dardization in lightweight cryptography. This recognition fur-
ther validates ASCON’s robustness and suitability for securing
communication in resource-constrained environments.

MMQP utilizes the ASCON cryptosystem for encrypted
communication. ASCON is chosen for its efficiency, security,
and suitability for IoT environments, providing a reliable
method for securing data exchanges.

a) Publisher Encrypts: Before publishing a message to
a topic, the publisher encrypts the message content using the
shared symmetric key received from the Admin. This ensures
that only authorized clients with the same key can decrypt it.

b) Broker Acts as Relay: The encrypted message is then
sent to the Broker. However, due to the encryption, the Broker
cannot decipher the message content. It simply acts as a relay,
forwarding the message to all subscribed devices. ASCON
offers authenticated encryption with associated data (AEAD),
which is a variant of encryption that allows for the inclusion of
“associated data” (AD) alongside the encrypted message. AD
refers to additional non-confidential information, also known
as “additional authenticated data” (AAD). This means that
while the content of the topics in MMQP can be encrypted
to ensure confidentiality and integrity, the topic itself can be
kept in plaintext, allowing for efficient routing and processing
of messages without compromising security.

c) Subscriber Decrypts: Upon receiving the encrypted
message, authorized subscribers who possess the same sym-
metric key can decrypt the message content.

With end-to-end encryption, only authorized devices can
access the message content, protecting sensitive information
from unauthorized parties, including the Broker. The approach

is also scalable. The key delegation approach allows for
efficient key management with a large number of devices. In
addition, the lightweight nature of ASCON makes it suitable
for resource-constrained IoT devices.

V. CONCLUSION AND FUTURE WORK

In conclusion, MMQP provides significant improvements to
the limitations present in MQTT. It offers increased flexibility
in terms of number of packets, their structure, and format,
along with extended features for topic management and fine-
grained control down to the topic level. Additionally, MMQP
introduces a more scalable and efficient request/response pat-
tern, as well as a lightweight encryption solution that enables
secure communication even on resource-constrained devices.

Potential future work includes evaluating Key Performance
Indicatorss (KPIs) such as latency across diverse scenarios.
This analysis could encompass examining latency under vary-
ing network conditions, different message payload sizes, and
during peak usage periods, etc.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Ger-
man Federal Ministry for Education and Research (BMBF)
within the project Open6GHub {16KISK003K}.

REFERENCES

1 Pouhela, F., Krummacker, D., and Schotten, H. D., “Towards 6G Net-
works,” in A Context Management Architecture for Decoupled Acquisition
and Distribution of Information in Next-Generation Mobile Networks, ser.
ITG, vol. 157, VDE. IEEE, 5 2023.

2 Fischer, M., Fischer, M., Kumper, D., Kumper, D., Tönjes, R., and
Tönjes, R., “Towards improving the privacy in the mqtt protocol,” Global
Internet of Things Summit, 2019.

3 Marra, A. and al., “Improving mqtt by inclusion of usage control,” Inter-
national Conference on Security, Privacy, and Anonymity in Computation,
Communication, and Storage, 2017.

4 Luzuriaga, J. E. and al, “Improving mqtt data delivery in mobile scenarios:
Results from a realistic testbed,” Mobile Information Systems, 2016.

5 Jaloudi, S., “Communication protocols of an industrial internet of things
environment: A comparative study,” Future Internet, vol. 11, 03 2019.

6 Pouhela, F., Krummacker, D., and Schotten, H. D., “Entity component
system architecture for scalable, modular, and power-efficient iot-brokers,”
in 2023 IEEE 21st International Conference on Industrial Informatics
(INDIN), 2023, pp. 1–6.

7 Al-Ani, A., Shen, W. K., Al-Ani, A. K., Laghari, S. A., and Elejla, O. E.,
“Evaluating security of mqtt protocol in internet of things,” in 2023 IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE),
2023, pp. 502–509.

8 Iqbal, M., Ari Laksmono, A. M., Prihatno, A. T., Pratama, D., Jeong, B.,
and Kim, H., “Enhancing iot security: Integrating mqtt with aria cipher
256 algorithm cryptography and mbedtls,” in 2023 International Confer-
ence on Platform Technology and Service (PlatCon), 2023, pp. 91–96.

9 Yusoff, Z. Y. M., Ishak, M. K., Rahim, L. A. B., and Ali, O., “Elliptic
curve cryptography based security on mqtt system for smart home applica-
tion,” in 2022 19th International Conference on Electrical Engineering/-
Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), 2022, pp. 1–4.

10 OASIS. Mqtt version 5.0, oasis standard. [Online]. Available: https:
//docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

11 Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer, M., “Ascon
v1. 2: Lightweight authenticated encryption and hashing,” Journal of
Cryptology, vol. 34, pp. 1–42, 2021.

12 Turan, M. S., Turan, M. S., McKay, K., Chang, D., Bassham, L. E.,
Kang, J., Waller, N. D., Kelsey, J. M., and Hong, D., Status report
on the final round of the NIST lightweight cryptography standardization
process. US Department of Commerce, National Institute of Standards
and Technology, 2023.

