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Abstract

In this work, we introduce EyeDentify, a dataset specif-
ically designed for pupil diameter estimation based on we-
bcam images. EyeDentify addresses the lack of available
datasets for pupil diameter estimation, a crucial domain
for understanding physiological and psychological states
traditionally dominated by highly specialized sensor systems
such as Tobii. Unlike these advanced sensor systems and
associated costs, webcam images are more commonly found
in practice. Yet, deep learning models that can estimate
pupil diameters using standard webcam data are scarce. By
providing a dataset of cropped eye images alongside corre-
sponding pupil diameter information, EyeDentify enables the
development and refinement of models designed specifically
for less-equipped environments, democratizing pupil diam-
eter estimation by making it more accessible and broadly
applicable, which in turn contributes to multiple domains
of understanding human activity and supporting healthcare.
Our dataset is available at LINK WILL BE IN THE FINAL
VERSION.

1. Introduction

The cognitive state of humans is closely linked to features
observable through their eyes. Fortunately, the accessibil-
ity of eye monitoring in everyday life is rapidly increas-
ing, exemplified by recent advancements such as Apple’s
incorporation of camera-based eye tracking features [3, 14].
However, research in this domain primarily targets blink de-
tection [17] and gaze estimation [36, 51], employing various
methodologies, including the use of biomarkers [28], in-
frared spectrum reflected from the eyes [12], or image-based
techniques [16]. In comparison, fewer explore pupil diame-
ter estimation [5,42], which also plays an undeniably crucial
role in determining various physiological and psychological
states. This oversight highlights a critical gap in the field,
underscoring the need for more comprehensive approaches
to fully leverage eye monitoring for cognitive state analysis
for many reasons:

Previous studies show that the analysis of pupil diameter
serves as an indicator of stress [37], attention [29, 45], or
cognitive work loads [21, 25, 38]. In addition, the diameter
of the pupil is also closely linked to the activity of the lo-
cus coeruleus [20, 34], a brain region critical for managing
both short-term and long-term memory functions [21, 26].
Pupil diameter is also used for health check purposes, such
as checking pupillary light reflex of patients with intracra-
nial lesions in an intensive care unit [24]. Accurate pupil
diameter estimation is thus fundamental to enhancing the
capabilities of image-based eye tracking.

However, we identify three significant challenges in ad-
vancing the field of image-based pupil diameter estimation,
which we want to address. The first challenge lies in collect-
ing ground truth data. Previous works relied on capturing
pupil images and subsequently measuring the diameter in
pixels, a time-consuming process that is complicated by in-
creasing participant numbers [5,42]. We overcome this issue
by applying a sensor substitution approach using Tobii eye-
tracker with Tobii Pro SDK [1] as a reliable ground truth
sensor. This approach allows for efficient data collection by
acquiring ground truth diameter values from the eye-tracker
and facial recordings via webcam.

The second challenge concerns data diversity. Previous
studies have varied pupil diameter in participants by altering
illumination displays [43]. We apply a similar approach,
changing the computer display’s color during our data col-
lection. Unlike previous work [5, 42, 43], we impose fewer
constraints, allowing them to choose their seating position
and distance from the screen. This approach enables us to
collect data under more natural, “in the wild” conditions,
potentially enhancing the empirical validity of findings.

The third challenge is the prediction of pupil diameter
itself. Previous studies [4, 22, 52] have highlighted that esti-
mating gaze coordinates with a camera involves analyzing
images of approximately 60× 36 pixels [53]. The scale of
our images will be smaller for pupil diameter estimation,
necessitating analysis at an even finer resolution. This makes
accurately predicting pupil diameters more complex than
gaze estimation and presents a challenging task.
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Table 1. Comparison of related datasets for eye monitoring. While most datasets have gaze coordinates [9, 17, 18, 22, 52, 53], there is a
significant gap in pupil diameter informed [5, 40] datasets.

Dataset Participants Amount of data [frame] Public Gaze Coordinates Pupil Diameter

MAEB [17] 20 1,440 ✗ ✓ ✗

MPIIFaceGaze [53] 15 213,659 ✓ ✓ ✗

Dembinsky et al. [9] 19 648,000 ✓ ✓ ✗

Gaze360 [22] 238 172,000 ✓ ✓ ✗

ETH-XGaze [52] 110 1,083,492 ✓ ✓ ✗

VideoGazeSpeech [18] unknown 35,231 ✓ ✓ ✗

Ricciuti et al. [40] 17 20,400 ✗ ✓ ✓

Caya et al. [5] 16 unknown ✗ ✓ ✓

EyeDentify (ours) 51 212,073 ✓ ✓ ✓

In conclusion, we contribute to the image-based pupil
diameter estimation field as follows:

1. Creation of the Pupil Diameter Dataset EyeDentify:
We use the Tobii eye-tracker to collect accurate ground
truth pupil diameter measurements. Concurrently, we
captured facial video recordings with a built-in webcam.
In total, data from 51 participants were gathered, com-
prising 212,073 images (i.e., blinking eyes removed
from the initial 226,912 images).

2. Data-Collecting Application ChameleonView: Our
own implemented web application called Chameleon-
View captures various pupil diameters. It displays vari-
ous screen colors during webcam recordings to ensure
a diversity of pupil diameters. Moreover, it captures the
timestamp and records videos while participants look
at the display.

3. Initial Pupil Diameter Estimations: We evaluated
several regression-based models to estimate pupil di-
ameter sizes for both left and right eyes in a 5-fold
cross-validation manner. For this, we tested ResNet-18
and ResNet-50, with ResNet-18 emerging as the most
accurate, achieving a mean absolute error of 0.1340 ±
0.0196 and 0.1403 ± 0.0328 for the left and right eye,
respectively.

2. Related Work
This section will examine existing datasets for eye moni-

toring, including gaze estimation and blink detection (Sec-
tion 2.1). Furthermore, it surveys datasets for pupil diameter
estimation (Section 2.2), as well as methods to estimate pupil
diameters (Section 2.3). Table 1 compares all datasets ap-
pearing in eye monitoring publications, and we will compare
our dataset EyeDentify with them.

2.1. Gaze Estimation and Blink Detection Datasets

Various gaze estimation, blink detection, and facial im-
age data have been collected under different conditions,
which we want to examine in the following. For instance,
MAEB [17] has collected 20 subjects’ images from nine dif-
ferent angles for robust image-based blink detection pur-
poses. The study aims to complement the open-source
dataset HUST-LEBW [19] with additional comparisons. An-
other example is MPIIFaceGaze [53], which has collected
a daily life gaze coordinates dataset from 15 subjects. The
strength of this dataset is that it has different illumination
conditions and a collection of various day conditions, rang-
ing from nine days to three months. Another dataset is pre-
sented by Dembinsky et al. [9], which collected a 360-minute
dataset of 19 subjects with their corresponding gaze coordi-
nates while speaking and/or listening. Thus, it incorporates
different cognitive activities during recording. An alterna-
tive data collection setting is presented by Gaze360 [22],
which contains 238 subjects with 172,000 frame images.
The distinguishing feature of this dataset is that it also con-
tains outdoor data. Moreover, the camera used during data
collection captured 360-degree view recordings, thus includ-
ing the subjects’ environment. Another varying axis during
dataset collection is proposed by ETH-XGaze [52], which
collected data from 110 subjects with 1,083,492 images un-
der various hardware settings. More specifically, they used
18 high-resolution Canon 250D digital SLR cameras and
four Walimex Daylight 250 light boxes. Lastly, VideoGaze-
Speech [18] collected 35,231 frames from 29 videos. As
a result, they extracted eye gaze data from existing videos;
hence, the feature extraction approach varies from that of
other studies.

Most mentioned datasets focus on enhancing gaze esti-
mation and blink detection through diverse and complex
recording conditions, but none incorporate pupil diameters.
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2.2. Pupil Diameter Datasets

To the best of our knowledge, two data datasets have
been used in publications for pupil diameter estimation that
employ diverse approaches for data collection. For instance,
Ricciuti et al. recruited 17 subjects ranging in age from 15
to 74 years and collected 20-second RGB video recordings
under varying light intensities using a GoPro Hero 6 camera
at a frame rate of 30fps [40]. Similarly, Caya et al. gathered
data from 16 subjects aged 20 to 40 years, employing a
camera mounted 10 cm from the subject’s face in a controlled
setting. Their study quantified a pupil diameter of 20 pixels
as equivalent to 5 mm [5].

Despite these efforts, the mentioned works have not made
their datasets publicly available. In contrast, our work and
its dataset EyeDentify is not only inspired by their effort of
collecting the necessary data for pupil diameter estimation
but also presents the largest publicly accessible dataset for
pupil diameter estimation from RGB images, significantly
contributing to the broader field of eye monitoring.

2.3. Pupil Diameter Estimation Approaches

The estimation of pupil diameters has been done in var-
ious research studies. For instance, Ni et al. proposed a
pupil diameter estimation method called BINOMAP [35].
Their approach uses master and slave cameras as a binoc-
ular geometric constraint for the input gaze images. The
estimation model they implement is based on Zhang’s algo-
rithm [54], which achieved 0.022±0.017mm mean absolute
error. Similar to our work, Caya et al. uses their own data
recording platform for data collection [5]. They captured
the participant’s facial images with a fixed camera distance
of 10cm from the face. Then, the facial image is sent to
Raspberry Pi for the pupil diameter estimation process. This
estimation includes a RGB to grayscale conversion, contrast
and brightness adjustment, image reshaping, and applying
the Tiny-YOLO algorithm [23]. They achieved pupil mea-
surements with a percent difference of 0.58% for the left eye
and 0.48% for the right eye.

In summary, previous works have strong limitations in
condition dependencies, such as having two cameras or keep-
ing the face at a constant and fixed distance from the camera.
Also, the data collection and evaluation must consider vari-
ous pupil diameter sizes. We aim to address these limitations
with the presented work.

3. Methodology

In this section, we describe the hardware (Section 3.1)
and application we used for data collection (Section 3.2), the
procedure for collecting the data (Section 3.3), as well as
how we processed the raw recordings (Section 3.4).

3.1. Data Recording Hardware

The ground truth data for our pupil diameters is captured
using the Tobii eye-tracker [1], a remote device capable
of recording gaze coordinates and pupil diameters at 90Hz.
It separately measures the diameters of the left and right
pupils in millimeters with six-decimal precision. For camera-
based recordings of the face and eyes, we utilize the built-in
webcam of the Microsoft Surface Studio 1, which offers a
screen resolution of 1280× 720 pixels and a frame rate of
30.0 frames per second.

3.2. Data Collection Application

A distinctive aspect of our data collection methodology
is using an application developed explicitly for EyeDentify.
We implemented a web application called ChameleonView 1,
which we used for our webcam data collection. The web
application shows a button in the center of the screen that,
when clicked by subjects, triggers a three-second webcam
video recording. Additionally, we capture timestamps mark-
ing the start and end of each recording. These timestamps are
crucial as they ensure synchronization between the webcam
video and the Tobii eye-tracker data, as shown in Figure 1.
During one data collection period, the subjects were asked
to repeat this button-clicking process 50 times, resulting in
50 sessions for each participant.

To collect diverse pupil diameter sizes, we changed the
computer screen background color [39, 49]. Thus, the 50
recordings had the following background color conditions
(with corresponding HEX codes): the first ten recordings had
a white display color (#ffffff), and the remaining 40 record-
ings were: black (#000000), red (#ff0000), blue (#0000ff),
yellow (#ffff00), green (#008000), and gray (#808080), each
in turn, five times displayed and a final display of white
(#ffffff) for the last ten recordings again.

3.3. Data Collection Procedure

In this study, subjects began by completing a consent form
and providing statistical information. Following this initial
step, they proceeded to calibrate the Tobii eye-tracker. After
calibration, the subjects started using the data collection
application outlined in Section 3.2.

Upon completion of the experiment, the data from the
Tobii, webcam video recordings, and corresponding times-
tamps were consolidated.

3.4. Data Preprocessing

After recording the raw webcam images alongside the
measurements of the eye features, we merge them together
for the final dataset EyeDentify. This involves two phases:
Aligning the recordings (Section 3.4.1) and cropping the
eyes (Section 3.4.2).

1https://chameleon-view.netlify.app/
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Figure 1. Data recording flow. Tobii eye-tracker records pupil
diameter, and ChameleonView captures facial recordings using a
webcam. Facial recordings start when the participant clicks on the
button in the center. The start and end timestamp of the recording
is collected in order to synchronize the data with an eye-tracker.

3.4.1 Aligning the Recordings

As mentioned in Section 3.2, we first synchronized the data
collected from the Tobii eye-tracker with the webcam record-
ings for each participant, as shown in Figure 1.

We utilized a CSV file generated by the eye-tracker, which
records various metrics, including the diameters of the right
and left pupils, the average diameter of both pupils, and coor-
dinates for both the left and right gaze positions. A separate
timestamp CSV file also captured the start and end times for
each participant’s webcam recordings. The synchronization
involves iterating through these timestamps and selecting
all corresponding rows from the Tobii CSV file that match
the start and end times specified for each recording segment.
Each recording in our data collection app lasts three seconds,
corresponding to three distinct timestamps per recording.

Since the video recording frame rate is 30 frames per
second, this results in 90 frames per recording from our data
collection application ChameleonView. Additionally, the
Tobii eye-tracker operates at a frequency of 90Hz, providing
90 data points per second, resulting in 270 data points for
each three-second recording.

To synchronize the 90 frames with the 270 Tobii-captured
data points effectively, we concatenate each metric column
separately across the 90 data points from the three unique
timestamps (horizontally) in the Tobii-captured CSV file and
compute a row-wise mean. This process is repeated for each
recording. The first timestamp of the trio is designated as the
primary timestamp for that recording, ensuring consistency
in data alignment. Subsequently, we extract frames from the
video recordings, yielding 90 images - aligned with 90 data
points from the Tobii-eye tracker. This procedure is meticu-

Figure 2. Data alignment flow of a single recording. To synchronize
the 90 frames with the 270 Tobii-captured data points, each met-
ric column is concatenated horizontally across the 90 data points
from the three unique timestamps in the Tobii-captured CSV file,
followed by computing a row-wise mean.

lously repeated for each participant to ensure uniformity and
precision in the dataset preparation process. The entire data
alignment flow is illustrated in Figure 2.

3.4.2 Cropping the Eyes

Once the frames are aligned with the Tobii eye-tracker data,
the subsequent step involves cropping the eyes from each
extracted frame. We used Mediapipe [30] for its robust face
and eye detection capabilities. This tool not only identifies
faces within the frames but also precisely locates facial land-
marks, including the eyes, nose, iris, eyebrows, and mouth.
For our purposes, we specifically utilize Mediapipe to crop
the left and right eyes.

We utilize Mediapipe’s face landmark detection bundle
[2], which includes a series of models designed for face
detection and the precise mapping of facial landmarks. The
face mesh model identifies 478 distinct facial landmarks
and accurately determines the coordinates for the left and
right eyes and irises. Given the variability in image intensity
and participants’ distance from the webcam, the regions
defined by these coordinates may vary in size, leading to
inconsistencies in the dimensions of the cropped regions for
each eye and iris.

To standardize our data, we crop a region around each
eye by centering on the detected eye region and fixing the
dimensions to 32 pixels in width and 16 in height. This
method preserves the natural shape and scale of the eye,
avoiding distortions that could result from resizing.

To improve the quality of the set of cropped images, we
excluded frames where participants were blinking. For this
reason, we first calculated the Eye Aspect Ratio (EAR), a
concept adapted from Soukupova et al. [44] and tailored to
suit the coordinates provided by Mediapipe’s landmark de-
tection outputs. This adaptation ensures the precise detection
of blinks using the specific facial landmarks identified by
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Figure 3. Pipeline of our data preprocessing. For face detection and landmark localization, we used Mediapipe to extract the respective
cropped eye images (32x16), left and right, separately. Next, we applied blink detection on the cropped eyes using the Eye Aspect Ratio
(EAR) and a pre-trained vision transformer for blink detection. Cropped eye images are then saved based on the EAR threshold and model
confidence score.

Mediapipe and is described by

eyes ratio =
EARleft + EARright

2
.

The EAR for the left and right eye is defined as

EARleft =
∥Vl1 − Vl2∥
∥Hl1 −Hl2∥

and EARright =
∥Vr1 − Vr2∥
∥Hr1 −Hr2∥

,

where ∥ · ∥ denotes the Euclidean distance between the spec-
ified points, Vr1, Vr2 and Vl1, Vl2 are the vertical landmarks
of the right and left eyes, respectively, and Hr1, Hr2 and
Hl1, Hl2 are the horizontal landmarks of the right and left
eyes, respectively.

Using the EAR, we categorize frames as follows: frames
with an EAR of 0.22 or lower are classified as ’blink detected’
(indicating closed eyes), while those with an EAR above 0.25
are classified as ’blink not detected’ (indicating open eyes).
Frames with EAR values between 0.22 and 0.25 fall into a
gray area, where classification is influenced by individual
differences in eye structure. To enhance accuracy in this
gray area and minimize both false positives and negatives in
our blink detection, we use a pre-trained Vision Transformer
(ViT) model [10] for open or closed-eye detection, trained
on the MRLeyes dataset [13]. If the ViT model predicts
closed eyes with a confidence score of 0.50 or higher, we
classify the eyes as blinked and discard the frame; otherwise,
we save it. This dual-measure approach ensures robust blink
detection. Figure 3 shows the entire pipeline, including face
detection, eye localization, cropping, and blink detection.

In humans, the complete blink process generally takes
between 250 to 400 milliseconds [46], with the ”blackout
duration,” when the upper lid covers the pupil, lasting from
40 to 200 milliseconds [11, 46, 47]. Given that our blink
detection system identifies blinks based on the closing and
opening of eyelids using EAR thresholds, we estimate a blink
to last about 200 milliseconds. With a video capture rate of

30 frames per second, this translates to roughly 6 frames per
blink. Detecting and excluding frames with blinks is crucial
due to the frequency of blinks throughout the recording
sessions. Figure 4 shows the pruning results for a particular
participant across all sessions. The blue line indicates the
total number of frames per session, while the orange line
shows the frames retained after blink detection and removal.

4. Result

In this section, we describe the results of our dataset col-
lection by describing the statistics of the participants (Sec-
tion 4.1), the dataset distribution (Section 4.2), and first pupil
diameter estimation results (Section 4.3). We use one com-
mon participant (number 6) to exemplify all visualizations
in the following.

4.1. Dataset Statistics

In this study, we recruited 51 participants, including 39
males, 11 females, and 1 individual who preferred not to
disclose their gender, all of whom consented to make their
eye-cropped data public. The participants’ ages ranged from
21 to 44 years (M=27.58). They were predominantly work-
ers or university students residing in Germany with origin
nationalities in Eastern Europe, South Asia, Southeast Asia,
North Africa, and North America. We obtained informed
consent from all participants prior to the experiment to en-
sure compliance with the General Data Protection Regulation
(GDPR). Additionally, participants were informed that they
could opt out of the experiment at any time.

From an initial total of 226,912 image frames, our final
dataset (after preprocessing described in Section 3.4) con-
sists of 212,073 images of left and right eyes, curated from
51 participants after removing frames where blinks were
detected. We meticulously organize each participant’s left
and right eye images into separate directories. Additionally,
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Figure 4. Visualization of total frames vs. frames after pruning due to blink detection for one participant in all recording sessions (50 in
total) as outlined in Section 3.4. Note that each recording takes a total of three seconds, which is why the impact of a blink and the amount
of blinks can vary significantly (around 40 - 200 ms per blink).
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Figure 5. Pupil diameter distribution of one participant during the recordings. A set of different pupil diameter measurements and webcam
images were captured during the different three-second long sessions (in total, 50 sessions). The colors of the boxes indicate the display
color used during the recordings (white, black, red, blue, yellow, green, gray, and white again).

we include a CSV file for each session. This file precisely
documents the timestamp, session ID, gaze data, pupil data,
and the path for each frame retained in that session, ensuring
a comprehensive record of the eye-tracking data post-blink-
filtering. This structured approach facilitates easy access and
analysis of the dataset.

4.2. Dataset Distribution

Figure 5 shows the distribution of pupil diameters using
a boxplot visualization. An in-depth look at the individual
pupil diameters within one recording is shown in Figure 6

for white and black display colors. For the same partici-
pant, Figure 7 shows exemplary the corresponding webcam
recording images for both eyes (cropped). As explained in
Section 3.2, each session shows varied display colors. The
ChameleonView web application captures a three-second
webcam video recording for each session, synchronized with
the pupil diameter data collected by the eye-tracker over
the same duration. Since the eye-tracker records data at
90Hz, each session generates 270 data points. The mean and
variance depicted in the boxplots are computed from these
recordings.

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

WACV
#205

WACV
#205

WACV 2025 Submission #205. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6. Two rug plot distributions of one participant with white display color (left) with pupil diameters ranging from 2.16mm to 2.28mm,
and black display color (right) with pupil diameters ranging from 2.45mm to 2.80mm.

... ...
first frame

last frame
...

Figure 7. Example webcam recording images (first and last frame)
of both eyes of one participant (same as in Figure 6) with white
display color (left) and black display color (right).

4.3. Pupil Diameter Estimation Result

Table 2 shows initial 5-fold cross-validation results on
EyeDentify with the CNN models ResNet-18 and ResNet-
50 [15]. For the left eye, the ResNet-18 model outperformed
ResNet-50 with a lower MAE in both validation (0.0837 vs.
0.1001) and testing phases (0.1340 vs. 0.1426). Similarly,
ResNet-18 again showed better performance for the right
eye with a validation MAE of 0.1054 compared to ResNet-
50’s 0.1089 and a test MAE of 0.1403 versus 0.1588 for
ResNet-50. The results indicate that ResNet-18 consistently
yields lower error rates than ResNet-50 across both eyes and
both evaluation phases. The uncertainties represented by the
standard deviations suggest some variability in the model
performances across different subsets of the data, where
ResNet-50 seems to be more consistent on the respective test
partitions.

Figure 8 shows the class activation map (CAM) [55] of
the last convolution layer of ResNet18 and ResNet50 respec-
tively. The figure illustrates that ResNet18 primarily focuses
on the external regions of the eyes, capturing environmental
and skin color variations, with minimal attention (left eye)
to no attention (right eye) given to the iris. For the left eye,
ResNet50 also tends to focus strongly on the outer regions
of the eye and mostly outside the iris, attempting to learn

Eye Model Validation Test
MAE ↓ MAE ↓

Left ResNet-18 0.0837 ± 0.0135 0.1340 ± 0.0196
ResNet-50 0.1001 ± 0.0197 0.1426 ± 0.0167

Right ResNet-18 0.1054 ± 0.0173 0.1403 ± 0.0328
ResNet-50 0.1089 ± 0.0204 0.1588 ± 0.0203

Table 2. 5-fold cross-validation of ResNet-18 and ResNet-50 [15],
evaluated separately for left and right eyes. Each group contains 10
randomly selected participants: 5 for validation and 5 for testing.
The remaining participants were used to train the models. ResNet-
18 performs the best for the pupil diameter estimation regarding
mean values on the test partitions, whereas ResNet-50 shows a
lower standard deviation, indicating more robustness for varied test
partitions.

color intensities rather than concentrating on the iris or pupil.
And, for the right eye, ResNet50 primarily focuses on the
inner regions of the eye but neglects the surrounding color
variations. These observations indicate that while focusing
on the iris is crucial for accurately estimating pupil diam-
eter, accounting for environmental variations can enhance
performance and make the model more consistent.

5. Limitations
EyeDentify substantially contributes to the eye monitor-

ing research community. Nonetheless, it is important to
acknowledge some limitations of our work to guide future
research and application.

Firstly, the data was recorded using a single camera
model, limiting the diversity in recording devices. Given that
webcams vary widely in resolution and optical characteris-
tics, we recommend future studies to validate and possibly
enhance our initial pupil diameter estimation models across
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Figure 8. ResNet18 ad ResNet50 test samples - CAM (class acti-
vation map) [55] visualizations with red display color. True and
Predicted values show the original and estimated pupil diameter of
the left and right eye in millimeters.

multiple camera types to ensure robustness.
Secondly, our EyeDentify primarily consists of partici-

pants without eyeglasses to maintain consistent conditions
across all data. This exclusion limits the applicability of
our findings to the general population, as eyeglass wearers
comprise a significant demographic. Future work should con-
sider this when they train models on EyeDentify for practical
applications where users with eyeglasses are possible.

Lastly, EyeDentify does not account for personal eye char-
acteristics that might influence measurements, such as eye
color or health conditions. While we avoided collecting de-
tailed personal meta eye data due to privacy concerns and the
complexities of accurately self-reporting eye conditions, this
omission can affect the applicability of our findings. Collab-
orating with ophthalmologists could enhance the collection
process, ensuring accurate and privacy-sensitive inclusion of
such data in future studies.

6. Future Work

Future work includes leveraging super-resolution models
to enhance image quality, thereby providing more detailed
features for deeper and more complex neural networks [32,
33]. For instance, face restoration or enhancement models
such as GFPGAN [48] and CodeFormer [56], which have
pre-learned facial features, can be particularly beneficial.
Additionally, other state-of-the-art super-resolution models
like regression-based transformed (SwinIR [27] or HAT [6])
or generative diffusion models (SR3 [41] or YODA [31])
can improve the resolution of webcam-captured eye images.
These models can upscale images by factors of 2x, 3x, or
4x, facilitating the training of models on high-resolution
images to estimate pupil diameter accurately, similar to gaze
estimation using super-resolution [36, 51].

Furthermore, the features learned by models trained on
high-resolution eye images for tasks such as gaze estimation
(e.g., Appearance-based Gaze Estimation [7] and Super-
Resolution for Appearance-Based Gaze Estimation [36]),

blink detection (e.g., Real-Time Eye Gaze and Blink Esti-
mation in Natural Environments [8]), or segmentation of
eye parts and regions (e.g., Iris Segmentation Model [50])
can be employed for transfer learning. This approach can
be applied to the readily available low-resolution images
or the high-resolution images generated by super-resolution
models, enhancing pupil detection’s overall performance and
accuracy.

7. Societal Impact
We focus on publishing a dataset of everyday webcam

images, which we hope will advance research about various
fundamental physiological and psychological states and con-
tribute to multiple human activity and healthcare domains.
As such, these images and their associated pupil diame-
ter information pose no immediate threat to individuals or
organizations. The images were properly anonymized (by
providing only cropped eyes). They do not depict any human
or personal data that can be associated with any particular
person due to the insufficient resolution of eye images for
identification. As discussed in the limitations, EyeDentify
may introduce biases inherent in the training data, i.e., miss-
ing nationalities or no eyeglasses. These biases could affect
the quality and fairness of the pupil diameter estimations,
particularly in diverse or underrepresented populations. Fu-
ture work should aim to mitigate these biases and ensure
that pupil diameter estimation technologies are equitable and
inclusive.

8. Conclusion
We introduced EyeDentify, a novel dataset aimed at sig-

nificantly enhancing eye monitoring research by enabling the
development of models that estimate pupil diameter using
standard webcam images. Such advancements are critical
for understanding various physiological and psychological
states through non-invasive methods, broadening the scope
of applications in human-computer interaction, behavioral
studies, and health diagnostics.

Moreover, EyeDentify represents a significant advance-
ment by addressing the scarcity of publicly available datasets
that combine eye images with precise pupil diameter an-
notations. By focusing on standard webcam recordings,
EyeDentify democratizes access to pupil-related research,
potentially expanding its applicability in low-resource set-
tings and everyday computing environments. Furthermore,
our findings demonstrate that models trained on EyeDentify,
particularly the ResNet-18 architecture, achieve promising
results in estimating pupil diameters with a high degree of
accuracy.
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