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Abstract. Microscopic imaging plays a pivotal role in various fields of
science and medicine, offering invaluable insights into the intricate world
of cellular biology. At the heart of this endeavor lies the need for accu-
rate identification and characterization of individual cells within these
images. Deep learning-based cell segmentation, which involves delineat-
ing cells from complex microscopic images, is pivotal for cell analysis.
It serves as the foundation for extracting meaningful information about
cell morphology, spatial organization, and interactions. However, tradi-
tional deep-learning models for cell segmentation require extensive and
expensive annotation masks for each cell in the image, posing a significant
challenge. To address this issue, this study introduces CellBoxify, a novel
pipeline that streamlines cell instance segmentation. Unlike traditional
methods, CellBoxify operates solely on bounding box annotations, mak-
ing it approximately seven times faster than manual segmentation mask
annotation for each cell. The proposed approach’s effectiveness is evi-
dent in its performance on the LIVECell dataset, a well-known resource
for cell segmentation research. Achieving 83.40% of the fully supervised
performance on this dataset demonstrates the efficacy of the proposed
method.

Keywords: cell segmentation · weakly supervised · medical imaging ·
deep learning · bounding box annotations.
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1 Introduction

In microscopic analysis, cells are crucial for understanding biology and diseases,
guiding advancements in medicine. Cell segmentation is crucial for disease diag-
nosis, research, and drug discovery, aiding in identifying abnormal phenotypes
and studying dynamics. However, deep learning methods [3,8–10,17,18] typically
demand extensive fully annotated data, making the process time-consuming and
costly, leading to a need for weakly supervised approaches.
The LIVECell dataset [3] is pivotal in cell biology research, boasting over 1.6 mil-
lion cells with an unparalleled density averaging 313 cells per image, a significant
leap from datasets like EVICAN [17]. Annotation of cells in microscopic images
presents distinct challenges due to their small scale, complexity, variability, and
noise, unlike natural images. Dense cell cultures like BV2 and morphologically
intricate types such as SH-SY5Y further complicate manual annotation, impact-
ing accurate annotation. Additionally, the task is compounded by the dataset’s
high cell volume, with an average annotation time of 46 seconds per cell in the
LIVECell dataset.
In cell biology, the absence of annotated data limits the application of su-

(a) Full Supervised (b) Weak Supervised [7, 11] (c) CellBoxify

Fig. 1: Full supervised (a) vs. Weak supervised (b) vs. CellBoxify (c) in-
put training samples. The fully supervised method requires a full mask, whereas
the weakly supervised approaches, Point2Mask [11] and PACE [7], need bound-
ing box and point annotations. The blue and red points represent whether the
point lies on the cell or outside, respectively. The proposed approach, CellBoxify,
requires only the bounding box for training.

pervised deep-learning models for precise cell segmentation. Annotating cellular
data demands substantial resources and expertise, leading to a scarcity of labeled
datasets. Consequently, much available cellular data remains unannotated, re-
stricting opportunities to enhance segmentation algorithms. To overcome these
challenges, this study introduces CellBoxify, a deep learning-based pipeline for
cell instance segmentation utilizing only bounding boxes for training. Figure 1
illustrates the disparity in annotation requirements between the fully supervised
method (Figure 1a), the other weakly supervised methods [7, 11] (Figure 1b),
and the proposed weakly supervised approach Figure (1c), CellBoxify. Previous
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Fig. 2: Annotation times per cell for three approaches: Full Supervised (M),
Weak Supervised (B+N (6)), and CellBoxify (B). M is for fully supervised Mask
supervision, N represents Point supervision, and B represents Box supervision.
CellBoxify, using only bounding box annotation, reduces annotation time by
over 6.5 times compared to fully supervised.

weakly supervised approaches for cell segmentation, such as Point2Mask [11]
and PACE [7], involve a two-step annotation process. Initially, annotators draw
bounding boxes for each cell, followed by the automated generation of points
within these boxes. These points are then automatically assigned labels based
on the available segmentation mask for each cell, determining their classification
as foreground (cell) or background. However, this approach faces challenges in
distinguishing points accurately in scenarios with densely clustered cells, lead-
ing to potential labeling errors and increased annotation time. While the an-
notation times per cell for different approaches are compared in Figure 2, it’s
essential to note that the automated labeling process may not accurately repli-
cate real-world scenarios where manual decisions are required. Particularly in
practical situations with densely clustered cells, accurately annotating points
can be challenging and may result in increased annotation time. In contrast, the
proposed CellBoxify approach streamlines the annotation process by requiring
only single-stage annotations, specifically bounding box annotations, which take
approximately 7 seconds per cell. By eliminating the need to annotate individ-
ual points within bounding boxes, CellBoxify simplifies the workflow, reduces
annotation overhead, and offers a more efficient solution for weakly supervised
cell segmentation. The main contributions of this study are as follows:
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1. This study introduces CellBoxify, a deep learning pipeline for cell instance
segmentation using only bounding box supervision in microscopic images
leveraging Mask R-CNN [5], Feature pyramid Network with ResNet-50 [6],
along with point-based unary and distance-based pairwise losses to optimize
instance segmentation polygon predictions [19].

2. Evaluation of the proposed approach using the LIVECell dataset. Achieved
83.40% of the fully supervised performance using CellBoxify with a signifi-
cant reduction in the time required for data annotation.

3. Further evaluation conducted on a per cell culture basis to identify challenges
associated with specific morphological characteristics and their impact on
segmentation performance.

2 Related Work

2.1 Fully Supervised Cell Segmentation

In the past decade, there has been remarkable progress in fully supervised deep
learning-based cell analysis, particularly utilizing segmentation masks for each
cell. A significant milestone occurred with the introduction of the U-net archi-
tecture by Ronneberger et al. in 2015 [16]. Despite being trained on only 35
images, the U-net model outperformed all competitors in the 2015 ISBI cell
tracking and segmentation challenge. This breakthrough not only demonstrated
the efficacy of deep learning in cell segmentation but also catalyzed a series of
significant advancements in image-based cellular research. Subsequent to U-net,
pioneering algorithms such as CellPose [18], DeepCeNS [9], DeepCIS [10], and
DeepMuCS [8] emerged, further pushing the boundaries of fully supervised cell
segmentation techniques.

2.2 Weakly Supervised Cell Segmentation

Acquiring the annotations required for training fully supervised deep learning
models poses a significant challenge due to its laborious and intricate nature.
In response, researchers have proposed weakly supervised or semi-supervised
learning approaches to alleviate the annotation burden. Weakly supervised tech-
niques, such as image tags [21] and point annotations [7,11] have been explored in
the realm of cell segmentation. Notably, Khalid et al. introduced Point2Mask [11]
and PACE [7] as methods for weakly supervised cell segmentation, which uti-
lize multiple points along with a bounding box for each cell. These approaches
achieved remarkable performance, attaining 99.2% and 99.8% accuracy com-
pared to fully supervised methods, using 6- and 8-point labels and bounding
boxes, respectively. However, these methods entail a two-step annotation pro-
cess for cell segmentation. Initially, annotators delineate bounding boxes for each
cell, followed by the automatic generation of points within these boxes. Subse-
quently, points are automatically labeled based on the available segmentation
mask, determining whether they belong to the foreground (cell) or background.
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One notable challenge associated with this approach is the difficulty in distin-
guishing points in scenarios where cells are densely clustered together. This can
lead to errors in labeling and potentially increase the annotation time. Fur-
thermore, it’s essential to acknowledge that the annotation time reported for
these approaches may not accurately reflect real-world scenarios. The automatic
labeling of points as belonging to the foreground or background relies on the seg-
mentation mask available for each cell. In practical settings, where the segmen-
tation mask is not readily available, experts must manually determine whether
a point lies inside or outside the cell. This manual decision-making process can
be particularly challenging, especially when cells are densely clustered together,
potentially resulting in increased annotation time and inaccuracies.

3 CellBoxify: The Proposed Approach

Figure 3 illustrates the system overview of the proposed pipeline for bounding
box-based cell instance segmentation, CellBoxify. The proposed method is com-
posed of Mask R-CNN [5], Feature Pyramid Network (FPN) with ResNet-50 [6],
along with point-based unary and distance-based pairwise losses to optimize
instance segmentation polygon predictions [19]. The proposed pipeline is com-
posed of three main modules: Backbone Network, Region Proposal Network, and
Prediction Head.

3.1 Backbone Network

The purpose of this block is to extract feature maps from the input image at
different scales. The feature extraction module of the proposed methodology
is composed of Feature Pyramid Network [12] along with ResNet-50 [6]. FPN
employs a pyramid scheme to extract features from images, utilizing deep con-
volutional networks (CNNs) for this purpose. It combines lower resolution, but
semantically strong features with higher resolution, yet semantically weak fea-
tures. This is achieved through a multi-step process involving a bottom-up path-
way, a top-down pathway, and lateral connections. In the bottom-up pathway,
a standard feed-forward CNN architecture is employed to compute a hierarchy
of features, generating feature maps at various scales. These feature maps serve
as the basis for subsequent operations. The top-down pathway utilizes the out-
put of each convolutional layer from the ResNet-50 network, integrating them
via lateral connections to construct higher-resolution layers from the semanti-
cally rich layers. To address aliasing effects resulting from upsampling, a 3x3
convolution operation is applied to each merged map as part of the final stage
of FPN. This operation helps refine the feature maps, ensuring that the final
output accurately captures the essential characteristics of the input image.

3.2 Region Proposal Network

After extracting multi-scale features from the backbone network, the next step
involves passing these features through a Regional Proposal Network (RPN),
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Fig. 3: System overview of the CellBoxify. Multiscale features are extracted
from the input image by a backbone network. A box predictor is attached to
these features to obtain bounding boxes. The polygon head predicts the polygon
for each box, which is trained with box annotation only.

as proposed by Ren et al. [15]. The primary objective of the RPN is to iden-
tify regions within the image that potentially contain objects and align them
with ground truth annotations. This process begins by generating anchor boxes
across the input image, which are then matched to ground truth annotations
using the Intersection over Union (IoU) metric. Anchors with an IoU greater
than a predefined threshold (typically 0.7) are linked to ground truth boxes and
classified as foreground objects. Those with an IoU between 0.3 and 0.7 are con-
sidered background, while those with an IoU below 0.3 are ignored. However,
the default anchor strides and aspect ratio parameters designed for detecting
and segmenting objects in datasets like MS-COCO [13] often overlook small cell
instances present in datasets like LIVECell [3]. Extensive experimentation led
to the selection of anchor sizes and aspect ratios tailored to this specific task.
Unlike MS-COCO and other standard image datasets, the LIVECell dataset
features exceedingly small cells, particularly in BV-2 cell cultures. The optimal
anchor parameters, detailed in Section 5, were carefully chosen to suit this task.
After assigning anchor boxes that match the shapes of ground truth boxes, the
next step involves calculating anchor deltas, which denote the distance between
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ground truth and anchors. In the final stage of the RPN, 3,000 region proposal
boxes are selected from the predicted boxes using non-maximum suppression [1].

3.3 Prediction Head

Following the feature extraction and region proposal stages, the prediction head
in the CellBoxify pipeline is tasked with generating accurate polygonal masks
for each detected object. Unlike traditional methods that rely on handcrafted
energy functions, the proposed approach leverages deep learning techniques to
accomplish polygon-based instance segmentation with only bounding box super-
vision.

Point-based Unary Loss To ensure that all vertices of the predicted poly-
gon fall within the ground-truth bounding box, a point-based unary loss is in-
troduced. This loss function minimizes the discrepancy between the predicted
bounding box and the ground truth using the complete intersection over union
metric:

Lu = 1− CIoU(bc, b)

where CIoU(·, ·) represents the complete intersection over union [20].

Distance-aware Pairwise Loss While the point-based unary loss ensures tight
bounding box alignment, it may fail to accurately fit object boundaries. There-
fore, a distance-aware pairwise loss is proposed, consisting of both local and
global terms.

Local Pairwise Term Object boundaries often exhibit local color variation in
images [4]. To enforce local consistency, a local pairwise loss based on windows is
introduced. By reformulating the polygon prediction as a classification problem,
the predicted polygon is encouraged to align with image edges within a local
region.

E =
∑

(p,q)∈Ω̂k(i,j)

w[(i, j), (p, q)] · |U ′
C(i, j)− U ′

C(p, q)|

where Ω̂k(i, j) denotes the adjacent pixels within a k × k window at position
(i, j), and w[(i, j), (p, q)] measures the affinity of two pixels by color distance.

Global Pairwise Term To mitigate the influence of local noise, a global pair-
wise loss is introduced. This loss encourages homogeneous color regions within
and outside the predicted polygon, resulting in smoother and more accurate
segmentation boundaries [2].

Lgp =
∑

(x,y)∈Ω

∥I(x, y)− uin∥2 ·U ′
C(x, y)+

∑
(x,y)∈Ω

∥I(x, y)− uout∥2 ·(1−U ′
C(x, y))

where uin and uout indicate the average image color inside and outside the
predicted polygon, respectively.
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Clipping Strategy To manage memory constraints during training, a clipping
strategy is employed. This strategy involves resizing the predicted polygon to a
fixed size using bilinear interpolation and using RoIAlign [5] to crop and resize
the image based on the coordinates of the ground-truth box. By reducing memory
requirements, this strategy enhances the practicality of CellBoxify for users with
limited computational resources.

Joint Loss Function Finally, the proposed approach integrates the point-based
unary loss (Lu) and the distance-aware pairwise loss (Llp and Lgp) into a joint
loss function:

Lpolygon = αLu + βLlp + γLgp

where α, β, and γ are the modulated weights for each loss term. During training,
this loss function guides the network to predict accurate object polygons with
only bounding box supervision. The joint loss function enables the network to
effectively learn from bounding box annotations and generate precise polygonal
masks, facilitating high-quality instance segmentation without the need for pixel-
level supervision.

4 Dataset

In cell biology research, the LIVECell dataset, outlined by Edlund et al. (2021)
[3], is an invaluable resource. This dataset boasts 1.6 million cells across 5,239
meticulously chosen images, featuring eight distinct cell cultures and an impres-
sive average of 313 cells per image. Notably, its high cell density exceeds that
of comparable datasets like EVICAN (Schwendy et al., 2020) [17]. Despite its
complexity, LIVECell offers researchers a unique opportunity to explore densely
populated cellular environments, reflecting real-world conditions. For this study,
only bounding box annotations are used for training, streamlining the anno-
tation process, and maximizing the dataset’s utility for comprehensive cellular
analysis.

5 Experimental Setup

Two distinct experimental setups were devised to assess the efficacy of the Cell-
Boxify pipeline for weakly supervised cell segmentation. The first setup, termed
”Comparative Analysis of Supervision Methods: LIVECell,” compares CellBox-
ify, Point2Mask, and a Fully Supervised method using various annotation strate-
gies on the LIVECell dataset. The second setup, titled ”Comparative Analysis of
Supervision Methods: Per Cell Culture,” evaluates how different training super-
visions impact performance across individual cell cultures. Models trained in the
first setup are then evaluated on test sets corresponding to specific cell cultures
to assess their performance.
Compared to natural scene images, microscopic images often suffer from low
contrast, which presents challenges in accurately distinguishing cells from the
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background. In low-contrast scenarios, cell boundaries become unclear, posing
challenges for edge identification and local pairwise loss computation critical
for the optimization of the proposed approach. As a result, predicted polygons
struggle to capture precise cell boundaries, hindering effective vertex coordi-
nate optimization. To mitigate this, a preprocessing step using Contrast Limited
Adaptive Histogram Equalization (CLAHE) [14] is applied to enhance image con-
trast in the LIVECell dataset during CellBoxify training. CLAHE redistributes
pixel intensities to improve visual clarity while preserving overall image appear-
ance, preventing over-enhancement common in traditional histogram equaliza-
tion methods.
All training scenarios, including CellBoxify, Point2Mask, and Fully Supervised
approaches, utilized Mask R-CNN [5] with ResNet-50 [6] as the underlying frame-
work. Training for CellBoxify employed the ADAM solver with a base learning
rate of 0.0001 and a momentum of 0.9. Anchor sizes and aspect ratios were care-
fully configured based on the pixel area of cells in the images, with sizes set to
8, 16, 32, 64, 128, and aspect ratios to 0.5, 1, 2, 3, 4 across all experimental set-
tings to ensure adaptability to diverse cell sizes and shapes. Data augmentation
included random horizontal flipping to mitigate overfitting, and multi-scale data
augmentation, where image sizes were randomly adjusted to promote robustness
and generalization. Specifically, image sizes were resized to one of the following
lengths: 440, 480, 520, 580, or 620 pixels, ensuring exposure to various scales
during training.
The performance of the proposed and other training supervision methods was
evaluated following the standard COCO evaluation protocol [13], with adjust-
ments specified in [3] regarding the maximum number of detections and area
ranges. Evaluation checkpoints were selected based on higher validation average
precision.

5.1 Experimental Setting 1: Comparative Analysis of Supervision
Methods: LIVECell

In Experimental Setting 1, the performance of three different supervision meth-
ods: Full Mask, Point2Mask, and the proposed weakly supervised method Cell-
Boxify are evaluated. Each method is trained on the LIVECell training data
using distinct annotation strategies: Full Mask involves training with segmenta-
tion masks for each cell, Point2Mask is trained using both bounding boxes and
points (6 in this case), while CellBoxify relies solely on bounding box supervi-
sion.
Table 1 presents a comprehensive overview of the performance of each method on
the complete LIVECell test set. The Full Mask (N ) and Point2Mask (B+ N (6))
trained models achieve segmentation AP scores of 43.90% and 43.53%, respec-
tively. In contrast, CellBoxify (B) achieves a segmentation AP score of 36.61%,
which corresponds to 83.40% of the performance of the Full Mask trained model.
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Table 1: Segmentation Performance Comparison on the LIVECell Test Set: Full
Mask vs. Point2Mask vs. CellBoxify

Train
Supervision

AP AP50 AP75 APs APm APl
Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.

Full Mask
(M)

43.12 43.90 78.94 78.07 43.26 45.75 44.31 42.30 43.01 43.33 47.01 51.92

Point2Mask
(B + N (6))

43.32 43.53 79.69 78.18 43.31 44.93 44.54 42.06 43.31 43.31 46.97 51.52

CellBoxify
(B) 40.16 36.61 77.12 72.59 38.92 34.93 41.49 36.67 39.29 33.93 41.90 41.90

5.2 Experimental Setting 2: Comparative Analysis of Supervision
Methods: Per Cell Culture

In this experimental setting, the primary objective is to explore the correlation
between the morphological characteristics of different cell cultures and their seg-
mentation performance under various supervisions. The aim is to identify the
specific attributes of individual cell cultures that contribute to segmentation
challenges or facilitate easier segmentation across the three different training
strategies.
Figure 4 showcases the segmentation outcomes obtained for each cell culture,
presenting a comparative analysis of the performance achieved by the Full Mask,
Point2Mask, and CellBoxify approaches. Among the results, CellBoxify demon-
strates its best performance with the SkBr3 (59.90%) and BV-2 (47.74%) cell
cultures, closely matching the performance of models trained with Full Mask and
Point2Mask methods. Conversely, CellBoxify exhibits lower performance with
the SH-SY5Y cell culture, displaying a segmentation performance gap of 11.5%
and 11.3% compared to the Full Mask and Point2Mask methods, respectively.

6 Analysis and Discussion

This section provides a comprehensive analysis of the findings obtained from
the two experimental setups, shedding light on their broader implications. In
the first experimental setting, ”Comparative Analysis of Supervision Methods:
LIVECell,” the results of employing three different annotation supervision tech-
niques on the complete LIVECell test set are presented. The results from Table
1 demonstrate that, despite being trained solely with bounding box supervision
rather than using full masks or a combination of bounding boxes and points,
the proposed approach, CellBoxify, achieves an impressive 83.40% of the per-
formance obtained by models trained with full masks. This signifies the efficacy
of CellBoxify in achieving competitive segmentation results while significantly
reducing the annotation overhead.
The outcomes of the second experimental setting, namely ”Comparative Analy-
sis of Supervision Methods: Per Cell Culture,” explore the correlation between
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Fig. 4: Segmentation Performance Comparison Across Cell Cultures: Full Mask
vs. Point2Mask vs. CellBoxify

the morphological characteristics of different cell cultures and their segmenta-
tion performance under various supervision methods. Specifically, the results
from this setting provide insights into the areas for improvement in the current
pipeline for weakly supervised cell segmentation. From Figure 4, it is evident
that the best performance is observed for cell cultures with cells in small area
ranges, such as BV-2 and SkBr3. Conversely, the worst performance is observed
across the SH-SY5Y cell culture, characterized by its neuronal cells with unique
morphologies compared to other cell types. Neuronal cells often exhibit highly
asymmetric and concave shapes due to their branching neurites, posing chal-
lenges for conventional cell segmentation models [18]. The neuronal structure of
cells results in lower contrast, making it more difficult to delineate cell bound-
aries, especially when using weakly supervised approaches for training. These
findings suggest a potential direction for future research, where targeted prepro-
cessing techniques could be applied to enhance the performance of cell cultures
with complex morphologies, such as those containing neuronal cells.
Figure 5 illustrates the inference results on various samples using models trained
on Full Mask (purple column), Point2Mask (blue column), and the proposed ap-
proach CellBoxify (green column). The solid yellow lines represent the ground
truth masks for each cell, while the dotted red lines depict the model predictions.
Each row demonstrates the qualitative performance of different training super-
visions on identical images from distinct cell cultures for comparative analysis.
The segmentation average precision score at the IoU threshold of 0.5 (AP50)
is indicated above every prediction sub-image. The best-performing method for
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Full Mask
Point2Mask

N = 6 CellBoxify

AP50 = 94.95 AP50 = 93.83 AP50 = 96.83

AP50 = 99.90 AP50 = 99.92 AP50 = 99.93

AP50 = 99.01 AP50 = 99.92 AP50 = 99.95

BV-2

A172

SkBr3

Cell PredictionCell Groundtruth

Fig. 5: Comparison of Adequate Segmentation Results Using Different Training
Methods: Full Mask (purple), Point2Mask (blue), and CellBoxify (green) illus-
trate ground truth masks (solid yellow) and model predictions (dotted red), with
AP50 scores above each prediction sub-image. The best-performing method is
highlighted with a green glow.

each image is highlighted with a green glow around the resulting image. For the
A172 image, CellBoxify achieves the highest AP50 score of 96.83%, compared
to 94.95% and 93.83% for the Full Mask and Point2Mask methods, respectively.
Similar performance can be observed for the BV-2 and SkBr3 images, where the
proposed approach achieves AP50 scores of 99.93% and 99.95% for segmenta-
tion. Figure 6 showcases inadequate inference results on various samples using
the three different training supervisions. For the BT-474 image, the AP50 perfor-
mance gap between CellBoxify and the Full Mask is 6.79%, with the Full Mask
performing better. For the SH-SY5Y image, the performance gap increases to
23.74%, indicating that CellBoxify struggles to perform well on the SH-SY5Y
cell culture. However, for the SkBr3 image, CellBoxify outperforms both the Full
Mask and Point2Mask, achieving an AP50 score of 51.93%.
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Full Mask
Point2Mask

N = 6 CellBoxify

AP50 = 62.49 AP50 = 61.24 AP50 = 55.7

AP50 = 51.09 AP50 = 53.26 AP50 = 27.35

AP50 = 51.17 AP50 = 51.28 AP50 = 51.93

SHSY5Y

BT474

SkBr3

Cell PredictionCell Groundtruth

Fig. 6: Comparison of Inadequate Segmentation Results Using Different Training
Methods: Full Mask (purple), Point2Mask (blue), and CellBoxify (green) illus-
trate ground truth masks (solid yellow) and model predictions (dotted red), with
AP50 scores above each prediction sub-image. The best-performing method is
highlighted with a green glow.

The introduction of CellBoxify represents a breakthrough in microscopic im-
age analysis. The other weakly supervised approaches like Point2Mask [11] and
PACE [7] adopt a two-step annotation process, necessitating both bounding box
annotations and point annotations. However, in scenarios where cells are densely
clustered together, this approach can become intricate, potentially leading to la-
beling errors and increased annotation time. By employing bounding box-based
segmentation, CellBoxify streamlines the annotation process, saving up to 85%
of annotation time while maintaining commendable performance. This paradigm
shift accelerates research progress and facilitates deeper exploration of complex
cellular processes. CellBoxify offers a practical solution for large-scale image anal-
ysis tasks, balancing segmentation accuracy with annotation efficiency. Beyond
its time-saving advantages, CellBoxify’s versatility lies in its ability to accu-
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rately segment cells using only bounding box annotations. This feature makes it
ideal for scenarios where obtaining precise segmentation masks is challenging or
resource-intensive.

7 Conclusion

CellBoxify introduces a groundbreaking approach to cell segmentation, utilizing
only bounding box annotations for network training. Achieving 83.40% of the
Full Mask training supervision’s performance, CellBoxify demonstrates its effi-
cacy while saving approximately 85% of the time typically spent on annotating
masks. This innovative method not only streamlines the annotation process but
also enhances efficiency and scalability in biomedical image analysis. The findings
of this study have significant implications for biologists and medical profession-
als, offering a potential time-saving solution in data labeling processes that could
greatly expedite advancements in medicine and disease diagnosis. By showcasing
the efficacy of the proposed weakly supervised approach, this research not only
addresses the challenge of annotation time and costs but also alleviates the ex-
pertise burden on biologists required for manual cell boundary delineation. With
a wealth of unlabeled image-based cellular data available, the application of the
proposed pipeline for semi-automated annotation holds promise for efficiently
annotating large datasets for further analysis and research in cell segmentation.
Looking forward, there is potential for further advancements by refining pre-
processing techniques tailored to specific cell types or imaging conditions. Such
efforts could optimize segmentation performance and unlock new possibilities for
comprehensive cell analysis in biomedical research and beyond.
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