
Model predictive control based reference generation for optimal
proportional integral derivative control

Fatos Gashi1, Khalil Abuibaid2, Martin Ruskowski1,2, and Achim Wagner1

Abstract— We introduce an alternative approach towards
optimal proportional integral derivative (PID) control, con-
sisting of model predictive control (MPC) based reference
generation. To this end, we have integrated the reference as
part of optimization variables of the resulting problem, where
a deliberate sequence of errors is induced to obtain an optimal
PID control action. In addition, the desired behavior of the PID
controller is achieved without the need for internal modification
of the PID gains. To better highlight the ability of coping with
poor PID tuning, several test cases consisting of progressively
degraded PID gains are presented. Validation of the proposed
strategy is displayed by comprehensive simulations using two
different plants.

I. INTRODUCTION

Proportional integral derivative (PID) controllers are ubiq-
uitous in various control structures. The main reason comes
from their simplicity, ease of implementation, and robustness.
Although many other controllers outperform PID, due to
the low computational effort, they remain the most common
controller used to control a plant or a process, particularly
on field controllers or other embedded devices.

The major drawback of PID controllers comes from
performance. Apart from the inability to deliver optimal
results, tuning them is not a straightforward process. On
the other hand, usage of optimal controllers, e.g., model
predictive control (MPC) based controllers is very com-
pelling, in particular for control of industrial processes [1].
However, deployment of the latter controller also poses some
limitations, notably in a hard real-time setup. One of the
fundamental restrictions of MPC controllers comes from high
computational efforts. It is not very infrequent to encounter
control structures with limited access on the controller, in
particular with industrial robots. Usually, the user provides
only the reference, or rather the desired points, which then
are modified into a suitable reference and fed to the low-
level controller, commonly a PID type. To ensure smooth
motions, a typical approach is trajectory approximation using
polynomials of certain order [2], e.g., quintic polynomial
approximation. To better emphasize the proposed control
strategy, in the remainder of the paper it is assumed that
no additional interpolation or approximation of the reference
takes place, unless it is stated otherwise. With the purpose
of maximizing PID performance, several approaches were
developed, in particular the ones integrating PID controller

1The author is with the German Research Center for Artificial Intelli-
gence (DFKI), Kaiserslautern, D-67663, Germany

2The author is with the Chair of Machine Tools and Control Systems,
Department of Mechanical and Process Engineering, RPTU Kaiserslautern-
Landau, Kaiserslautern, D-67663, Germany

in an MPC framework. In [3], PID parameters are con-
tinuously tuned using the recursive least square method.
Another interesting method is introduced in [4], where PID
parameters are calculated at each sampling time. By doing
so, PID parameters are treated as decision variables in the
overall optimization problem. In addition to this, a correction
term is added. Similarly, [5] treats the PID parameters as
decision variables for the resulting MPC problem. Both
of these methods update PID parameters using Levenberg-
Marquardt algorithm, and also both cases result in an in-
crease of problem dimensions. Another method examining
MPC-based auto-tuning of PID gains is presented in [6].
In [7], a stochastic system is controlled by a PID controller
where its performance index is based on survival information
potential. Unsurprisingly, methods where PID gains were
included as decision variables (e.g., [4] and [5]) delivered
the best performance in terms of error rates. Nevertheless,
these methods are the most difficult ones to implement in
standard field controllers.

Although in a quite different context and setup, it is
noteworthy the idea of adjusting reference presented in
[8]. The methods that exploit modification of reference to
achieve certain system behavior, particularly in the presence
of state and control constraints, are known as reference
governors (RG). Since RG methods are capable of dealing
with constraints, they are commonly deployed either as a
substitution for MPC [9]-[11], or embedded within the MPC
formulation [12]-[17]. All of these methods pose similar
limitation on the reference dynamics, which ultimately might
affect the optimality of PID controller.

In contrast, this work takes a slightly different path and
addresses the possibilities for an alternative approach towards
obtaining optimal PID control action by intentionally causing
a specific error such that PID controller, which is an error-
based method, delivers optimal results. At the same time, it
is an effort to improve the overall monolithic architecture of
a PID controlled plant where a desired behavior of PID is
achieved without direct intervention within the PID itself.

The rest of the paper is organized as follows. The PID
model alongside with the used plant models are introduced
in section II. The MPC formulation setups are thoroughly
described in III. Simulation results are presented in section
IV. Last but not least, in section V conclusions are briefly
summarised.

II. SYSTEM MODEL

Apart from assisting to illustrate the idea, we opted to
simulate both a linear and a nonlinear system with the sole



MPC PID Plant

yayaya

y∗ upidyd

Fig. 1. Schematic illustration of common deployment of MPC controller
in conjunction with a PID one. MPC block receives as input the desired set-
point yd for which the optimization takes place, then optimal reference y∗

of measured variable is forwarded to the PID controller. The corresponding
output of PID block takes into consideration difference between actual
value of measured variable ya and inputted reference y∗, value of which is
ultimately used to control the plant.

purpose of exposing the performance of suggested method
in models where state variables have a simpler relationship,
i.e., linear time-invariant (LTI), followed by one with a more
complex relationship, often present in real-world scenarios.

A. PID Controller

An ordinary structure, surely with some level of abstrac-
tion, that makes use of MPC is illustrated in Fig. 1. The
optimal output sequence of the MPC block, namely y∗, is
exploited by PID in the form of a reference, based on which
it will try to drive the system towards the desired point. In
this configuration, MPC could be thought of as a higher layer
of control, whereas PID is the lower one [3].

The underlying control law of a PID controller is described
by [19]

upid(t) = u0 +Kpe(t) +Ki

∫ t

0

e(t̃)dt̃+Kdė(t), (1)

where u0 is a constant, and Kp, Ki, Kd are the proportional,
integral and derivative parameters of PID, respectively. More-
over, the error is defined as the difference between reference
and measured process variable, in our case the actual output
of the system, namely

e(t) = r(t)− ya(t). (2)

By using trapezoidal method for integration [19], the
discrete-time version of (1) becomes

upid(k) = u(k−1)+K1e(k)+K2e(k−1)+K3e(k−2), (3)

with

K1 = Kp +
KiTs

2
+

Kd

Ts
, K2 = −Kp +

KiTs

2
− 2Kd

Ts
,

(4)

and K3 =
Kd

Ts
.

In (4), sampling time Ts is the only varying parameter
affecting error gains of (3). Since the focus of our approach
is not on the possibility to dynamically reconfigure these
parameters, they will remain fixed, value of which is found
by any of the well-known methods of PID tuning [18].

In consideration of the foregoing, control input is highly
dependent on actual error and its delayed versions, in this

MPC PID Plant

u∗

yayaya

r∗yd upid

Fig. 2. Abstracted representation of the proposed method. Instead of MPC
block providing optimal reference y∗ for PID controller, it issues optimal
reference r∗ which will modify the error such that the equivalency between
u∗ and upid is enforced.

case up to the order of two (3). Thus, if one feeds an optimal
reference for the controlled variable, most likely the PID
controller will fail to deliver an optimal input sequence. Plain
speaking, for the optimal output y∗ there is a corresponding
optimal input sequence u∗, which differs from upid.

To overcome such limitations, it is useful to include the
dynamical constraints of PID controller (3) in the overall
optimisation scheme. One of the possibilities would be to
incorporate PID parameters as decision variables. Certainly,
in a MPC framework this contradicts the above stated
constraint on the inability to dynamically reconfigure PID
parameters.

Alternatively, the only degree of freedom left on (3) is the
reference r(k). In order to obtain an optimal input sequence,
the reference can be used as optimization variable, in other
words, optimality is achieved by purposely inducing an error
sequence such that the controlled process variable is driven to
the desired point. By doing so, the optimal control sequence
u∗ is equal with the PID controller input, i.e., (3).

To further elaborate, the discrete time version of (2), which
is a casual sequence, contains optimization variables r(k),
i.e.,

e(k) = r(k)− ya(k), (5)

and by substituting (5) into (3) we get the dependency
between PID input and reference r(k). With the proposed
method, the analogous structure of Fig. 1 is shown in Fig. 2.
The gray dashed branch is presented only to show equiva-
lency between optimal control sequence u∗ with upid.

B. LTI System - an academic example

The state evolution of discrete time (LTI) system under
consideration is described by the following set of equations
[19]

x(k + 1) = Ax(k) +Bu(k), (6)

with

A =

[
0 1

−0.74119 1.724

]
and B =

[
0
1

]
, (7)

where the former one represents the state transition matrix
and the later one the input matrix. Moreover, x ∈ R2 and
u ∈ R.



The output of the system is defined by

y(k) = Cx(k), C =

[
0.041
0.0453

]
, (8)

where C is the so-called output matrix.

C. Nonlinear system - Robotino

Robotino is a three-wheeled omnidirectional robot. From
[20], the kinematic relationship between wheel angular ve-
locities and global velocities is described byẋ(t)ẏ(t)

θ̇(t)

 = g R(θ) T−1(βi)

ω1(t)
ω2(t)
ω3(t)

 , (9)

where xT (t) =
[
ẋ(t) ẏ(t) θ̇(t)

]
is the robot’s

global velocity vector, g is the wheel radius, ωT =[
ω1(t) ω2(t) ω3(t)

]
is a vector containing angular wheel

velocities, βi are the constant angles between wheels axis of
rotations and i ∈ {1, 2, 3} indicates the corresponding motor.
The rotation matrix R(θ) expresses orientation of the local
frame with respect to global one, and is defined as

R(θ(t)) =

cos(θ(t)) − sin(θ(t)) 0
sin(θ(t) cos(θ(t)) 0

0 0 1

 . (10)

Similarly, the constant transformation from each wheel to the
local frame is expressed by

T(βi) =

− sin(β1) cos(β1) L
− sin(β2) cos(β2) L
− sin(β3) cos(β3) L

 , (11)

with L being the distance from each wheel and robot center.
The dynamic model of direct current (DC) motors used to

drive the Robotino wheels is given by [21]
ċ1(t)
ċ2(t)
ċ3(t)
ω̇1(t)
ω̇2(t)
ω̇3(t)

=


−R
L 0 0 −km

L 0 0

0 −R
L 0 0 −km

L 0

0 0 −R
L 0 0 −km

L
kt

J 0 0 − b
J 0 0

0 kt

J 0 0 − b
J 0

0 0 kt

J 0 0 − b
J




c1(t)
c2(t)
c3(t)
ω1(t)
ω2(t)
ω3(t)



+



1
L 0 0
0 1

L 0
0 0 1

L
0 0 0
0 0 0
0 0 0


u1(t)
u2(t)
u3(t)

 ,

(12)

where c1(t), c2(t), and c3(t) are the respective motor cur-
rents, R is the resistance, L is the inductance, km is back
electromotive force constant, kt torque constant, and b vis-
cosity friction coefficient. Moreover, the voltages (u1, u2, u3)
applied to DC motors are the means through which Robotino
is being controlled.

The discrete counterpart of (12) is obtained by using
truncated discretization method [22] of second degree (j=2),

Ad =

j∑
i=0

T i
s

i!
Ai, and Bd =

j−1∑
i=0

T i+1
s

i!
AiB, (13)

with Ad and Bd being the discrete state transition matrix and
input matrix, respectively. For the kinematic equations (9),
the well-known explicit Runge-Kutta method [23] of fourth
order is used.

III. MPC FORMULATION

For the sake of simplicity we shall make use of the LTI
system model, and the objective is to drive the systems
output (8) to follow a given reference. The corresponding
optimization problem can be formulated as

min
u,r

N∑
k=1

∥y(k)− yd(k)∥2 (14)

s.t. x(k + 1) = Ax(k) +Bu(k) (14a)

x0 = x(0) (14b)

y(k) = g(x(k), u(k)) (14c)
u(k) = u(k − 1) +K1e(k) +K2e(k − 1)

+K3e(k − 2) (14d)
x ≤ x(k) ≤ x̄ (14e)

u ≤ u(k) ≤ ū, (14f)

where k ∈ {0, . . . , N − 1} is the iteration index, N the pre-
diction horizon, vectors u =

[
u(0) u(1) . . . u(N − 1)

]
and rT =

[
r(0) r(1) . . . r(N)

]
contain the corre-

sponding decision variables, and lastly, yd is the desired
output. Though not explicitly shown, the decision variables
of vector r are integrated in (14d). In addition, limits of
state variables and control input are confined within (14e)
and (14f), respectively.

In order to have better insight of the proposed method, in
particular for comparison purposes, we have added two more
existing approaches inspired from the work of [4] and [5],
which will be presented in the sequel.

A. PID with fixed (optimal) gains during prediction horizon

Aside from classical methods of tuning parameters, there
are existing strategies with PID parameters being varied over
the time, i.e., auto tuning. From the perspective of MPC, this
means that although Kp, Ki and Kd are held fix within the
prediction horizon N , they are still part of decision variables,
in other words the optimization problem (14) becomes

min
z∈Z

J(z) (15)

where Z is a feasible nonempty set conform all of the
constraints (14a)−(14d). Despite the fact that the objective
function remains the same as in (14), the vector containing
all decision variables, excluding r, is appended with three
more elements, namely

zT =
[
u x Kp Ki Kd.

]
, (16)



−4

−2
0

2

4

y
(t
)

yIII-A yd

−2

0

2

y
(t
)

yIII-B yd

0 2 4 6 8
−4

−2

0

2

Time (s)

y
(t
)

yr∗ yd

Fig. 3. LTI system outputs y for given desired reference yd. The two
upper plots correspond to formulation III-A and III-B, whereas the bottom
plot corresponds to the proposed method. Length of the prediction horizon
is N=100, sampling time is 0.1 s. PID gains obtained for III-A and III-Bn
are part of the optimization problem, whereas for the proposed method the
used PID gains are Kp = 10.45, Ki = 10 and Kd = 10.

B. PID parameters as optimization variables

In contrast to the previous section, the PID parameters are
varied along prediction horizon, in a similar fashion as u.
The resulting vector containing all decision variables is

zT =
[
u x Kp Ki Kd

]
, (17)

with

KT
p =

[
Kp(0) Kp(1) . . . Kp(N − 1)

]
KT

i =
[
Ki (0) Ki(1) . . . Ki (N − 1)

]
(18)

KT
d =

[
Kd(0) Kd(1) . . . Kd(N − 1)

]
.

By introducing PID parameters as decision variables during
each time step within the receding horizon, the overall space
of the feasible solution is increased due to added degrees
of freedom coming from such parameters. Evidently, this
requires fast dynamic reconfiguration of PID parameters,
therefore it shall be used only to compare with the proposed
approach. The rest of the optimisation problem remains the
same as in (14).

IV. SIMULATION RESULTS

In order to test the versatility and complexity reduction of
the proposed method, we have devised several simulations.
Due to poor performance, the formulation of III-A is not
carried out for the Robotino case. Indeed there is room
for improvement for this approach which may come from
fine tuning, or slightly changing the formulation, however is
not part of the scope for this work. Therefore, for the two
simulated systems the emphasis will be on direct comparison
of our proposed approach versus formulation from section
III-B, with main focus on quality of solution (error rates),
solving times, and complexity. To gain better insight on how
increase of dimensions affects solving times, the simulations

−6

−4

−2
0

2

e(
t)

eIII-A

−6

−4

−2
0

2

e(
t)

eIII-B

0 2 4 6 8
−6

−4

−2
0

2

Time (s)

e(
t)

er∗

Fig. 4. Error e for the simulated LTI system. The top plot, which represents
formulation III-A, is the one with worst performance, mainly due to the
largest error values and inability to converge to zero. The middle and bottom
plot manifest very similar behaviour in terms of reference following.

are carried out for prediction horizons of N = 50 up to
N = 250, with increments of 25.

The MPC algorthitms are implementation in Python using
CasADi framework [24], whereas the resulting optimization
problems are solved using interior point optimizer (IPOPT)
[25], with MA-57 from [26] as linear solver. The simulations
are carried out on a standard Thinkpad machine with Intel
Core i7-12800H processor, running on Ubuntu 22.04.3 LTS.

A. LTI System Results

The reference signal which is to be followed by LTI system
output is of the form

yd(t) = −3 sgn(t− t0), t ≥ 0, (19)

where t0 is the nearest integer of the half of signal duration.
Sampling time is Ts = 0.1 seconds and all of the initial
conditions are zero, namely

xT
0 =

[
0 0

]
. (20)

The systems output is illustrated in Fig. 3 where the upper
plot corresponds to III-A formulation, the middle plot to
the formulation of III-B, and the bottom plot is formulated
conform proposed method. The mismatches between desired
systems output y and desired trajectory yd around time t =
5 s are present in all plots of Fig. 3. As pointed out previously,
the performance of III-A doesn’t deliver satisfactory results.
In terms of reference following, III-B and proposed method
offer quite similar performance, depicted on the middle and
bottom plot of Fig. 3.

Likewise, error plots of Fig. 4 offer similar insight, where
most noticeable error is from the upper plot, which corre-
sponds to III-A. Not only that it has larger values, but also
the error fails to converge to zero on the steady state. The
middle and bottom plot of Fig. 4 have similar performance



−4

−2

0

2

r∗
(m

)

case 1

−5

0

5

r∗
(m

)

case 2

−50

0

50

r∗
(m

)

case 3

0 2 4 6 8

−500

0

500

Time (s)

r∗
(m

)

case 4

Fig. 5. Plots of optimal reference r∗ for different for different PID gains,
with horizon N = 100, sampling time Ts = 0.1. Each case corresponds
to the PID gain values from Table I. Fast and high variations in the optimal
reference can be an indication of ill-suited PID gain values.

TABLE I
PID GAINS.

Case Kp Ki Kd solving time (s)

1 100 100 100 0.004094387
2 0 0 1 0.003565975
3 1 0 0 0.003360563
4 0 1 100 0.005328638

and both of them peak around time t = 5 s, which is the
time that desired reference changes sign instantly.

With the intention of testing the robustness of our method
with respect to PID gain variations, four cases are arranged.
The exact values of PID gains are presented in Table I, with
the respective plots of optimal reference displayed in Fig 5.
Generally speaking, the cases where PID gains were nonzero
resulted with smoother performance. Fluctuations of optimal
reference increase drastically from case 1 up to case 4, with
the latter one being the less suitable for real world systems.
Judging by solving times for each of the cases, no specific
comments can be made as all of them are more or less in
the same order, thus no particular difficulty is manifested by
the solver throughout the presented cases.

Another aspect to be considered is the computation time.
In Table II are displayed computation times for both ap-
proaches and also for the same desired output as in (19).
It is obvious the increase of computation time with in-
crease of horizon length, however the increasing rate for
III-B approach is higher than the proposed one. The ratio
between computation times of III-B and proposed method
are presented in the last column of Table II. For N = 50, the
proposed method is approximately ten times (11.4) faster

−1

−0.5

0

e r
∗
(m

)

0 2 4 6 8 10 12

−1

0

1

Time (s)

x
(m

)

x xd

Fig. 6. Robotino trajectory along x-axis using the proposed approach, with
prediction horizon N = 250 and PID gains K =

[
10.45 10 2.5

]
.

Roughly, after a second the actual position of Robotino converges to the
desired one.

TABLE II
LTI SYSTEM COMPUTATION TIMES.

Horizon (N) Proposed method III-B Ratio

50 0.00270 (s) 0.03084 (s) 11.3937
75 0.00331 (s) 0.08040 (s) 24.2501
100 0.00404 (s) 0.16759 (s) 41.3868
125 0.00466 (s) 0.18969 (s) 40.6310
150 0.00525 (s) 0.35107 (s) 66.8326
175 0.00581 (s) 0.46025 (s) 79.1474
200 0.00529 (s) 0.64701 (s) 122.182
225 0.00715 (s) 0.50439 (s) 70.5418
250 0.00765 (s) 0.99705 (s) 130.208

than III-B, whereas for N = 250 this rate is approximately
130. This decrease in computation times can be attributed to
the reduction of problem size. For LTI system, the reduction
in the number of decision variables of proposed method in
comparison to III-B, is approximately ∝ (2× (N − 1)).

In an MPC framework it is essential to have short solving
times, in particular if it is intended for real-time control
applications. If we consider the LTI system from II-B with
sampling time Ts = 0.1 s, based on solving times from
Table II only first two prediction horizons (50, 100) are
feasible within an MPC setup as the solving times are less
than sampling time Ts. On the contrary, all of the simulated
prediction horizons of the proposed method from Table II are
suitable for MPC setup as none of the solving times exceeds
sampling time Ts.

B. Robotino simulation results

The aim is to make Robotino follow the desired trajectory
which is given in the Euclidean space, and in our case is only
along x-axis. The simulation setup consists of sampling time
Ts = 0.05, and desired trajectory

xd = A sin(2πf0(Tsk)), k ∈ {0, 1, . . . }, (21)

with A = 1 and frequency f0 = 1
400 Hz. Further, Robotino’s

initial condition are all zero and together with above men-
tioned parameters, are kept unchanged throughout the entire
simulations. In addition, the objective function is scaled



0

0.5

1

·10−6

∆
x
(m

)

−2

0

2

4

·10−5

∆
u
1
(V

)

0 1 2 3 4 5 6 7 8

−2

−1

0

Time (s)

∆
r 1

(r
p
m
)

Fig. 7. Trajectory differences between proposed approach and III-B,
with plots of ∆x along x-axis and input values ∆u1. The plot of ∆r1
corresponds to the difference between optimal reference ω∗

r1
and optimal

rotational speed of first motor ω∗
1 .

TABLE III
NLP SOLVING TIMES.

Horizon (N) Proposed method (r∗) III-B Ratio

50 0.0258 (s) 8.7922 (s) 340.783
75 0.0407 (s) 5.5750 (s) 136.977
100 0.0474 (s) 1.6440 (s) 34.683
125 0.0633 (s) 10.984 (s) 173.523
150 0.0792 (s) 8.9174 (s) 112.593
175 0.1000 (s) 5.7260 (s) 57.2600
200 0.1110 (s) 20.895 (s) 188.243
250 0.1350 (s) 30.013 (s) 222.318

with the matrix Q = diag([100, 10, 10]) and PID gains
K =

[
10.45 2.5 1.43

]
.

As depicted by Fig. 6, after nearly a second the error er∗(t)
converges to zero. Due to physical constraints, some time
is required for Robotino to reach the desired reference. In
regard to reference following, both approaches deliver almost
the same results, which is better illustrated in the plots of
Fig. 7. The difference between trajectories along x axis is
very small (of the order 10−6), and after one second ∆x goes
to zero. Similarly, differences on input ∆u1 experience small
fluctuations, which are irrelevant due to small values (of
order 10−5). The bottom plot of Fig. 7 contains the difference
between optimal reference and optimal rotation speed of
first motor, namely ∆r = ω∗

r1 − ω∗
1 . While approaching

to the end of simulation time, ∆r as well approaches to
zero. For this case also, values of ∆r tend to be quite
smooth, which is an indication of suitable PID gain values.
Because of local frame choice, i.e., (11), and also desired
path along x-axis, there is a symmetry between ω1 and ω3,
thus only one of them is displayed. In regard to solving
times, the same picture doesn’t hold. Exhibited in Table III
are solving times of the resultant nonlinear programming

problem (NLP) with the same initial guess. While for the
proposed method the solving time increases with the increase
of horizon N , the same consistency isn’t maintained in
formulation III-B. Nonetheless, the proposed method resulted
with shorter solving times in comparison to formulation III-
B, as indicated by the last column of Table III which contains
the solving time ratio between III-B and proposed method.

V. CONCLUSION AND FUTURE WORK

We present an alternative approach towards obtaining an
optimal PID controller. For the proposed method, reference
is incorporated in the optimization variables of the given
optimal path following problem. The proposed controller
is tested for two different systems, and compared against
existing contemporary approaches. The simulations demon-
strated a similar performance of the proposed approach
in the context of path following problem, whilst reducing
the solving times. A very compelling direction for future
extensions would be further improvement of solving times
so that validation of the presented approach takes place in a
real plant.

ACKNOWLEDGMENT

This work was supported by the EU project EVENFLOW
under Horizon Europe agreement No. 10107043, and also
by the Federal Ministry for Economic Affairs and Climate
Action (BMWK) of Germany within the scope of project
TWIN4TRUCKS (FKZ: 13IK010F).

REFERENCES

[1] Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L. & Norambuena,
M. Model Predictive Control for Power Converters and Drives: Ad-
vances and Trends. IEEE Transactions On Industrial Electronics. 64,
935-947 (2017)

[2] A. Tika, F. Gashi and N. Bajcinca, ”Robot Online Task and Trajectory
Planning using Mixed-Integer Model Predictive Control,” 2022 Euro-
pean Control Conference (ECC), London, United Kingdom, 2022, pp.
2005-2011.

[3] Abdelrauf, A., Abdel-Geliel, M. & Zakzouk, E. Adaptive PID con-
troller based on model predictive control. 2016 European Control
Conference (ECC). pp. 746-751 (2016)

[4] Hong, X., Iplikci, S., Chen, S. & Warwick, K. B-Spline Neural
Networks Based PID Controller for Hammerstein Systems. Emerging
Intelligent Computing Technology And Applications. pp. 38-46 (2012)

[5] Cetin, M. & Iplikci, S. A novel auto-tuning PID control mechanism
for nonlinear systems. ISA Transactions. 58 pp. 292-308 (2015).

[6] Na, M. Auto-tuned PID controller using a model predictive control
method for the steam generator water level. IEEE Transactions On
Nuclear Science. 48, 1664-1671 (2001)

[7] Zhang, J., Pu, J., Yin, X. & Ning, M. An improved approach to
tuning MPC-PID controller parameters for non-Gaussian systems.
2017 Chinese Automation Congress (CAC). pp. 7040-7045 (2017)

[8] H. Hjalmarsson, M. Gevers, S. Gunnarsson and O. Lequin, ”Iter-
ative feedback tuning: theory and applications,” in IEEE Control
Systems Magazine, vol. 18, no. 4, pp. 26-41, Aug. 1998, doi:
10.1109/37.710876 .

[9] Bemporad, A. Reference governor for constrained nonlinear systems.
IEEE Transactions On Automatic Control. 43, 415-419 (1998)

[10] Gilbert, E., Kolmanovsky, I. & Tan, K. Nonlinear control of discrete-
time linear systems with state and control constraints: a reference
governor with global convergence properties. Proceedings Of 1994
33rd IEEE Conference On Decision And Control. 1 pp. 144-149 vol.1
(1994)

[11] Kolmanovsky, I., Garone, E. & Di Cairano, S. Reference and command
governors: A tutorial on their theory and automotive applications. 2014
American Control Conference. pp. 226-241 (2014)



[12] Bemporad, A., Casavola, A. & Mosca, E. Nonlinear control of
constrained linear systems via predictive reference management. IEEE
Transactions On Automatic Control. 42, 340-349 (1997)

[13] Weiss, A., Baldwin, M., Erwin, R. & Kolmanovsky, I. Model Predic-
tive Control for Spacecraft Rendezvous and Docking: Strategies for
Handling Constraints and Case Studies. IEEE Transactions On Control
Systems Technology. 23, 1638-1647 (2015)

[14] Gupta, R., Kalabić, U., Di Cairano, S., Bloch, A. & Kolmanovsky, I.
Constrained spacecraft attitude control on SO(3) using fast nonlinear
model predictive control. 2015 American Control Conference (ACC).
pp. 2980-2986 (2015)

[15] Leung, J., Permenter, F. & Kolmanovsky, I. A Computational Governor
for Maintaining Feasibility and Low Computational Cost in Model
Predictive Control. IEEE Transactions On Automatic Control. 69,
2791-2806 (2024)

[16] Vrlić, M., Ritzberger, D. & Jakubek, S. Model-Predictive-Control-
Based Reference Governor for Fuel Cells in Automotive Application
Compared with Performance from a Real Vehicle. Energies. 14 pp.
2206 (2021,4)

[17] İşleyen, A., Wouw, N. & Arslan, Ö. From Low to High Order
Motion Planners: Safe Robot Navigation Using Motion Prediction and
Reference Governor. IEEE Robotics And Automation Letters. 7, 9715-
9722 (2022)

[18] Åström, K. & Hägglund, T. PID control. IEEE Control Systems
Magazine. 1066 (2006)

[19] Kuo, B. Digital Control Systems. (Holt, Rinehart,1980)
[20] Eberhard, P. & Tang, Q. Sensor Data Fusion for the Localization

and Position Control of One Kind of Omnidirectional Mobile Robots.
Multibody System Dynamics, Robotics And Control. pp. 45-73 (2013)

[21] Tang, Q. & Eberhard, P. Cooperative Search by Combining Simulated
and Real Robots in a Swarm under the View of Multibody System
Dynamics. Advances In Mechanical Engineering. 2013 (2015,1)

[22] Rodrı́guez-Millán, J., Patete, A. & González, C. Picard Discretization
of Nonlinear Systems: Symbolic or Numeric Implementation?. Com-
puter Aided Systems Theory – EUROCAST 2007. pp. 121-129 (2007)

[23] Betts, J. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, Second Edition. (Society for Industrial,2010)

[24] Andersson, J., Gillis, J., Horn, G., Rawlings, J. & Diehl, M. CasADi –
A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation. 11, 1-36 (2019)

[25] Wächter, A. & Biegler, L. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming. 106, 25-57 (2006)

[26] Hopper, M. Harwell Subroutine Library. A Catalogue of Subroutines
(1973). Supplement Number 2 (1973)


