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I. INTRODUCTION

Motivation

Recent interest in the control of underactuated robots has

surged significantly due to the impressive athletic behaviors

shown by robots developed by e.g. Boston Dynamics4,

Agility Robotics5 and MIT [1]. This gives rise to the need for

canonical robotic hardware setups for studying underactua-

tion and comparing learning and control algorithms for their

performance and robustness. Similar to OpenAIGym [2] and

Stable Baselines [3] which provide simulated benchmark-

ing environments and baselines for reinforcement learning

algorithms, there is a need for benchmarking learning and

control methods on real canonical hardware setups. To en-

courage reproducibility in robotics and artificial intelligence

research, these hardware setups should be affordable, easy to

manufacture with off-the-shelf components and the accompa-

nying software should be open-source. Acrobot and pendubot

are classical textbook examples for canonical underactuated

systems with strong non-linear dynamics and their swing-

up and upright balancing is considered a challenging control

problem, especially on real hardware.

This paper presents an open-source and low-cost test

bench for validating, comparing and benchmarking the per-

formance of control algorithms for underactuated robots

with strong non-linear dynamics. It introduces a double

pendulum platform built using two off-the-shelf quasi-direct

drives (QDDs). Due to low friction and high mechanical

transparency offered by QDDs, one of the actuators can be

kept passive and be used as an encoder, so that the system can

be operated as a double pendulum, a pendubot or an acrobot

without changing the hardware. Using the proposed platform,

trajectory optimization and control algorithms for the swing-

up and upright stabilization of the acrobot and pendubot
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Fig. 1: Double pendulum test bench. (a) shows the hardware

setup, (b) shows a long exposure shot of the free falling

double pendulum, (c)-(e) illustrate how the usage as a fully

actuated double pendulum, an acrobot or a pendubot by

selectively activating only the needed motor(s) (colored in

red).

systems are compared and benchmarked. We show that, by

considering simple variations of the design, the difficulty of

the control problem can be varied giving researchers oppor-

tunity for showing the robustness of their control algorithms.

We demonstrate the transfer of one examplary controller

from the simulation to the real hardware with successful

swing-ups on pendubot and acrobot.

Related Work

Acrobot is an underactuated robotic system inspired by a

Gymnastic Acrobat and was first introduced in [4]. Following

this, a large body of research on the dynamics and control

of such systems was carried out. However, over the years,

the work carried out experimentally has been few and far in

between in comparison to the theoretical work demonstrated

only in simulation. The earliest work on balancing an exper-

imental acrobot at the top-most position and other unstable

equilibrium points can be seen in [5] where a (single in-

put) pseudolinearizing controller was used for the balancing

task. Along with this, a region of attraction (RoA) analysis

was performed for the given controller. The initial problem



of swing-up and balance for the acrobot was formulated

and demonstrated on a real system in [6] where partial

feedback linearization and energy-based control was used

to perform the swing-up while linear quadratic regulation

(LQR) was used to balance at the top. A first comparative

study on the balancing controllers was carried out in [7] with

both theoretical RoA analysis and experimental validation

along with introducing an additional balancing controller.

Following this, an energy-based swing-up designed using

Lyapunov stability theory with LQR for top stabilization

was showcased in experiments in [8]. In recent works,

Sums-of-Squares based methods have been used to synthe-

size robust controllers for swing-up trajectory tracking and

top-balancing [9]. Furthermore, online-trajectory planning

for the swing-up and balance task using model predictive

control with particle swarm optimization was demonstrated

on a physical system in [10]. Recently for the first time,

both swing-up and balancing were achieved with a single

controller using the stable manifold approach [11]. It is

interesting to note that all experimental implementations

of the acrobot mount the actuator at the base link and a

transmission is used for actuating the second joint in order

to minimize moving inertia. For the Pendubot system, which

in contrast to the Acrobot, has the first joint actuated, a larger

body of research can be found for experimental results (e.g.

[12], [13]). Due to mechanical design and control complexity,

all reported platforms in the literature were constructed for

a single purpose, either the Pendubot or the Acrobot. Only

a recent parallel development showed a system that could

potentially be used as a testbed for both Pendubot and

Acrobot [14]. The system is provided with open source

MATLAB code. However, the system is complex to construct

due to the use of belt transmissions and the provided software

requires a MATLAB license which increases the accessibility

barrier. Until now, a fully open-source test platform for

acrobot/pendubot type system with direct joint actuation is

not available.

II. MECHATRONICS SYSTEM DESIGN

This section presents the mechatronic system design of the

dual purpose acrobot-pendubot hardware.

Fig. 2: Mechatronic system design of dual purpose double

pendulum.

A. Mechanical Design

The mechanical design (see Fig. 1) consists of a shoulder

motor mounting bracket made of folded aluminum, and two

light-weight links which are made of laser cut 1 mm thick

sandwich aluminum plates with a laminate of 15 mm PVC

rigid foam board (Airex) in between. By using sandwich

materials, the weight of the pendulum arms can be kept very

low in relation to the drives and the end effector weight.

The end of the first link contains the elbow motor housing

and the end of second link mounts the weight of 0.5 kg.

Two variations of both links (0.2m and 0.3m long) are

manufactured which allows changing the complexity of the

control problem. Since, the used motors do not provide a

hollow shaft, a cabling guide is mounted to the first link in

the opposite direction to prevent windup of cables.

B. Electronics & Processing Architecture

Both shoulder and elbow actuators consist of off-the-shelf

AK80-6 QDDs from T-Motors6 with a gear ratio of 6:1, max-

imum speed of 38.22 rad s−1, maximum continuous torque

of 6Nm and peak torque of 12Nm. The low friction offered

by these motors enable chaotic dynamics in the system

which is interesting for control purposes (see Fig. 1(b) for

its freefall). The two motors communicate with a standard

Intel Core-i7 PC via a CAN-USB/2 interface from ESD.

The setup allows a real-time position, velocity and torque

control with a control frequency of 1 kHz with Python on a

standard PC. The power supply used is EA-PS 9032-40 from

Elektro-Automatik which can provide a maximum voltage

of 36V and 48A current. A capacitor bank of ten single

2.7V/400F capacitor cells connected in series resulting a

total capacity of 40F is wired in parallel to the motor to

protect the power supply from back EMF. An emergency

stop button which disconnects the actuator from the power

supply and capacitor is also integrated as an additional safety

measure. A schematic of the electronial setup can be found

in Fig. 2.

III. METHODOLOGY

This section gives an overview over the mathematical

modeling of the double pendulum, the identification of

the dynamic parameters, as well as the methods used for

controlling the double pendulum as acrobot and pendubot.

A. Dynamics

We model the dynamics of the double pendulum with 15

parameters which include 8 link parameters namely masses

(m1,m2), lengths (l1, l2), center of masses (r1, r2), inertias

(I1, I2) for the two links, and 6 actuator parameters namely

motor inertia (Ir), gear ratio gr, coulomb friction (cf1, cf2),
viscous friction (b1, b2) for the two joints7 and gravity (g).
The generalized coordinates q = (q1, q2)

T are the joint

angles measured from the free hanging position. The state

6https://store.tmotor.com/goods.php?id=981
7We found that the friction parameters for two actuators of the same type

can be different due to manufacturing differences.



vector of the system contains the coordinates and their

time derivatives: x = (q, q̇)T . The torques applied by the

actuators are u = (u1, u2). The equations of motion of a

dynamical system can be written as

ẋ = f(x,u) (1)

=

[

q̇

M−1(q)(Du−C(q, q̇)q̇ +G(q)− F (q̇))

]

(2)

The dynamic matrices M ,C,G,F and D that we used to

describe our double pendulum test bench can be found in

the supplementary material.

B. System Identification

For the identification of the 15 model parameters, we

fix the natural, provided and easily measurable parameters

g, gr, l1 and l2. The equations of motion are then linear in

the following (composed) model parameters:

m1r1, m2r2, m2, I1, I2, Ir, b1, b2, cf1, cf2. (3)

By executing excitation trajectories on the real hardware,

data tuples of the form (q, q̇, q̈,u) can be recorded. For

finding the best system parameters, one can make use of

the fact that the dynamic matrices M ,C,G and F are

linear in the parameters in (3) and perform a least squares

optimization for the equations of motion on the recorded

data.

C. Balancing with LQR

The linear quadratic regulator (LQR) controller is a well

established and widespread optimal controller which acts on

a linear system ẋ = Ax + Bu and an objective which is

specified by a quadratic, instantaneous cost function J =
xTQx + uTRu with the symmetric and positive definite

matrices Q = QT ⪰ 0 and R = RT ≻ 0. This allows

for reducing the Hamilton-Jacobi-Bellman equation to the

algebraic Riccati equation for which good numerical solvers

exist. Its solution is the optimal cost-to-go matrix S, from

which the optimal policy can be inferred:

u(x) = −R−1BTSx = −Kx. (4)

In order to use an LQR controller for stabilizing the double

pendulum on the top, the dynamics have to be linearized

around the top position xd = [π, 0, 0, 0] and ud = [0, 0],
and the state and actuation have to be expressed in relative

coordinates x̃ = x− xd, ũ = u− ud.

For the double pendulum with LQR control xd represents

a stable fixpoint and the region of attraction (RoA) B around

that fixpoint describes the set of initial states for which x →
xd as t → ∞. Direct computation of this set is often not

possible. However, it can be estimated by considering the

sublevel set of a Lyapunov function V (x). When using LQR

to stabilize the system around x⋆, the cost-to-go can serve

as a quadratic Lyapunov function. In this case, the estimated

RoA can be written as: Best =
{

x|xTSx ≤ ρ
}

, where ρ is

a scalar that can be estimated using either probabilistic or

optimization based methods.

D. Trajectory Optimization with iLQR

Iterative LQR (iLQR) [15] is an extension of LQR to non-

linear dynamics. The LQR uses the fixed point linearised

dynamics for the entire state space and hence is only useful

as long as the linearization error is small. In contrast to LQR,

iLQR linearises the dynamics for every given state at each

time step and can deal with nonlinear dynamics at the cost

of being only able to optimize over a finite time horizon.

As a trajectory optimization method, iLQR solves the

following optimization problem:

min
u0,u1,...,uN−1

xT
NQfxN +

N−1
∑

i=0

(xT
i Qxi + uT

i Rui) (5)

subject to : xi+1 = fdiscrete(xi,ui)

where a start state x0 is set beforehand. Qf , Q and R

are cost matrices penalizing the final state, intermediate

states and the control input respectively. fdiscrete is the

discretization of the system dynamics in (1). Again, x and

u can also be expressed in relative coordinates x̃, ũ.

E. Trajectory Stabilization Controllers

1) TVLQR: Time-Varying LQR (TVLQR) is another ex-

tension to the regular LQR algorithm and can be used to

stabilize a nominal trajectory (xd(t),ud(t)). For this, the

LQR formalization is used for time-varying linear dynamics

ẋ = A(t)(x− xd(t)) +B(t)(u− ud(t)) (6)

which requires to linearise (1) at all steps around

(xd(t),ud(t)). This results in the optimal policy at time t

u(x, t) = ud −K(t)(x− xd(t)). (7)

2) iLQR with Riccati Gains: During the iLQR opti-

mization process the trajectory is altered with Riccati gain

matrices. During the execution these Riccati gains can be

used to stabilize the trajectory as discussed in [16].

3) iLQR MPC Stabilization: iLQR is a shooting method

and as such has the property that all trajectories during the

optimization process are physically feasible. So even when

stopped before convergence, the solution is not inconsistent.

This has the advantage that iLQR can be used in a Model

Predictive Control (MPC) ansatz. For this the optimization

is performed online and at every time step the first control

input u0 is executed. For the next time step the previous

solution is used to warm start the next optimization step.

For stabilizing a nominal trajectory, the iLQR optimization

problem (5) is solved with time varying desired states xd =
xd(t) and inputs ud = ud(t).

F. Policy-based Controllers

1) iLQR MPC (free): The iLQR MPC method can also

solve the full optimization problem online without a nominal

trajectory. For this the optimization problem is solved with

a fixed goal state xd.



Fig. 3: RoA volume as a function of design parameters l1
and l2 (left) and associated RoA projections of two design

variations D1 (blue) and D2 (red) (right).

2) Partial Feedback Linearization: Partial Feedback Lin-

earization (PFL) [6] is a classical method from control

theory. With PFL it is possible to provoke a linear response

in both joints of the double pendulum even if operated as

a pendubot or acrobot. For an intuition of its functionality

consider the lower part of (2) for the acrobot (u1 ≡ 0). The

unactuated upper part of the vector equation can be solved

for the acceleration q̈1 and then plugged into the lower part

of the equation. The control input u2 can now be designed

as PD control with an energy term

u2(x) = −kp(q2 − qd2)− kdq̇2 + ke(E − Ed)q̇1 (8)

with the desired configuration qd2 of the second link, the

total energy E, the desired total energy Ed and the gain

parameters kp, kd and ke. The above described method

is called collocated PFL. Similarly, it is also possible to

eliminate q̈2 instead of q̈1 from the equations which is than

called non-collocated PFL. Partial feedback linearization for

the pendubot can be done in the same way. The collocated

control law in this case reads

u1(x) = −kp(q1 − qd1)− kdq̇1 + ke(E − Ed)q̇2. (9)

IV. CONTROLLER COMPARISON

This section explains how the design parameters were cho-

sen, states the results from the dynamic system identification,

introduces the controller robustness criteria and presents the

results of the controller comparison.

A. System Design

Our double pendulum setup allows to use different link

lengths l1 and l2. Under the assumption, that acrobot and

pendubot each benefit of different ratios of link lengths, we

aimed to find two designs, one tailored to the acrobot and

the other to the pendubot configuration. In the following, we

consider the closed loop dynamics of the system under LQR

control and focus on the volume of the RoA associated to the

fixed point of the upright pose. Link lengths l1 and l2 have

been determined by employing a design optimization similar

to the one introduced in [17] with the only difference, that

the RoA estimation was carried out using Sums-of-Squares

(SOS) optimization.

During the optimization, the masses were kept constant

(m1 = m2 = 0.6m) and we assumed point masses (r1 =
l1, r2 = l2, I1 = m1l

2
1, I2 = m2l

2
2). The LQR control

weights, the Q and R matrices, were set to unit matrices.

We searched for lengths between 0.2m and 0.3m to ensure

that we can actually construct and operate the hardware.

The optimizations resulted in two designs D1 and D2.

Design D1 was optimized for the pendubot and features a

longer first link (l1 = 0.3m, l2 = 0.2m), while D2 was

optimized for the acrobot and has switched link lengths (l1 =
0.2m, l2 = 0.3m). The left-hand side of Fig. 3 shows the

volume of Best for acrobot (top) and pendubot (bottom) as

a function of the design variables l1 and l2. The right-hand

side shows slices of the estimated RoA of each model in

the q1 vs. q2 plane (for q̇1 = q̇2 = 0) for acrobot (top) and

pendubot (bottom). Recall, that every initial state that lies

inside the ellipse belongs to the estimated RoA, for which

the closed loop dynamics will bring the system back to the

upright pose. Hence, a larger (projected) RoA is associated to

greater robustness with respect to off-nominal initial states.

One can see on the right-hand side of Fig. 3 that the

volume of the estimated RoA of the closed loop dynamics

of the top LQR Best of D2 is larger than that of D1 for the

acrobot configuration (1.2 vs. 2.3 ·10−4), while the converse

holds for the pendubot (0.014 vs. 0.037). Note that, even

though the RoA of the D2 acrobot is larger than that of the

D1 pendubot, the estimated RoA of the latter has a larger

minor axis (0.014 vs. 0.021), which allows more evenly

distributed perturbations around the fixpoint.

B. System Identification

For the system identification, we recorded the data of

multiple excitation trajectories with a combined length of

about four minutes on both designs of the real double

pendulum hardware. We identified the parameters in Table I

with a least-squares optimization with a root mean squared

error of ∆τrmse ≈ 0.2Nm in (2) over all data points for

both models. The viscous and coulomb friction parameters

of the motors were determined by separate measurements

with the individual motors. We set r1 = l1 after identifying

the parameters to list separate values for m1 and r1.

C. Robustness Criteria

When transferring controllers from simulation to real

hardware many effects that are not present in simulation may

influence the behavior. Often it is the case that controllers

are tuned in simulation and are capable of high quality



TABLE I: Model parameters

Parameter Model M1 Model M2

mass m [kg] (0.55, 0.60) (0.64, 0.56)
length l [m] (0.3, 0.2) (0.2, 0.3)
center of mass r [m] (0.3, 0.183) (0.2, 0.32)
inertia I [kg m2] (0.053, 0.024) (0.027, 0.054)
motor inertia Ir [kg m2] 6.29 · 10−5 9.94 · 10−5

gear ratio gr 6 6

gravity g [m s−2] 9.81 9.81
viscous friction b [kg m/s] (0.001, 0.001) (0.001, 0.001)
coulomb friction cf [N m] (0.093, 0.077) (0.093, 0.077)

performances while in real system experiments they fail to

achieve the desired results. This phenomenon is commonly

referred to as simulation-reality gap. In order to study the

transferability of controllers, we conduct robustness tests

in simulation. The robustness tests quantify how well the

controllers perform under the following conditions:

1) Model inaccuracies: The model parameters, that have

been determined with system identification as de-

scribed in Section III-B, will never be perfectly ac-

curate. To asses inaccuracies in these parameters, we

vary the independent model parameters from (3) one

at the time in the simulator while using the original

model parameters in the controller. The parameters

m1r1, m2r2, m2, I1, I2 are varied between 75% and

125% of their identified values, viscous frictions are

varied between −0.1 and 0.1 kg m/s, coulomb friction

between −0.2 and 0.2N m and motor inertia between

0 and 10−4 kg m2.

2) Measurement noise: The controllers’ outputs depend

on the measured system state. In the case of the QDDs,

the online velocity measurements are noisy. Hence, it

is important for the transferability that a controller can

handle at least this amount of noise in the measured

data. For testing the robustness, Gaussian noise with

standard deviations between 0.0 and 0.5m/s is added to

the velocity measurements. The controllers are tested

with and without a low-pass noise filter.

3) Torque noise: Not only the measurements are noisy, but

also the torque that the controller outputs is not always

exactly the desired value. During this test Gaussian

noise with standard deviations in the range from 0.0
to 2.0N m is added to the applied motor torque.

4) Torque response: The requested torque of the controller

will in general not be constant but change during the

execution. The motor, however, is sometimes not able

to react immediately to large torque changes and will

instead overshoot or undershoot the desired value. This

behavior is modelled by applying the torque τ =
τt−1+kresp(τdes− τt−1) instead of the desired torque

τdes. Here, τt−1 is the applied motor torque from the

last time step and kresp is the factor which scales the

responsiveness. For the tests kresp is varied between

0.1 and 2.0.

5) Time delay: When operating on a real system there

will always be time delays due to communication and

reaction times. For the evaluation, the measurement

results are artificially delayed for 0.0 to 0.04 s.

For all above comparisons, the parameters are varied in

N = 21 steps and for each case it is tested whether the

controller is still able to perform a swing-up and reach the

final state with an accuracy of ϵ = (0.1, 0.1, 0.5, 0.5) in

the four state dimensions. For the non-deterministic noise

tests, ten simulations were conducted for each parameter and

the controller has to have at least a 50% success rate to be

considered successful. The ranges of the friction parameters

b1, b2, cf1 and cf2 extend to negative values because during

real system experiments we use friction compensation on

both motors. A negative value tests the situation where the

friction is overcompensated.

D. Controller Setup

We tested the following controllers for pendubot and

acrobot: 1. TVLQR, 2. iLQR MPC (trajectory stabilization),

3. iLQR with Riccati gains, 4. iLQR MPC (free) and 5.

Collocated PFL.

For the trajectory stabilization methods the nominal tra-

jectory was computed with iLQR. The trajectory consists of

N = 6000 time steps with a step size of δt = 0.001. As we

intend to compensate the friction in the motors during the

experiments, the friction coefficients were set to 0 for the

trajectory optimization. The cost parameters for the trajectory

optimization as well as all parameters of the controllers can

be found in the supplementary material. The parameters for

the LQR and PFL controllers as well as the iLQR trajectory

optimization for the acrobot have been obtained with a CMA-

ES [18] parameter search with objective to reach the upright

position as close as possible. The swing-up trajectory with

iLQR computed for the acrobot is visualized in Fig. 4. As the

PFL controller is not able to stabilize the double pendulum, it

is combined with an LQR controller, which takes over when

the cost-to-go falls below a specified value of 15.

E. Robustness Results

We conducted robustness tests for all controllers on both

system designs for acrobot and pendubot. All results are

listed in Table II, where the listed numbers are the number

of successful swing-up attempts out of 21 variations in

each category. From the swingup attempts in each category,

we computed a success score, which is the percentage of

successful swing-up motions of all tested error variations.

Fig. 6 visualizes the success scores for both acrobot and

pendubot results and for both models in histograms.

As an example, the results for the robustness of the iLQR

MPC (trajectory stabilization) controller for the acrobot

swing-up with model M1 are visualized in Fig. 5. In addition

to the boolean success criterion, the figure shows the relative

Fig. 4: Swingup trajectory for the acrobot.



Fig. 5: Robustness to model errors, noise, responsiveness and delay for the iLQR MPC (trajectory stabilization) controller on

the acrobot with model M1 and the trajectory from Fig. 4. The dashed grey lines in the model parameter variations (top two

lines) indicate the parameters that the controller uses in its internal model. The model parameters are varied on the x-axis

and the y-axis shows the increase in cost relative to the cost with unperturbed model parameters. A green background means

that the swing-up was successful while a red background means the swing-up failed. Similarily, the noise responsiveness

and delay plots show the const increase and success for varying noise variances, responsiveness factor and delay time. The

bottom right shows a histogram of the percentages of successful swingup simulations for each category.

cost increase in the controller’s cost function. The first

two rows show modelling errors and as expected the cost

increases when the controller acts on model parameters that

do not match the parameters used for the simulation. It can

be observed that the iLQR (stab) controller can deal with

changes in the motor inertia Ir, the inertias I1 and I2 and

the viscous friction b2 in the second joint. The robustness

to changes in m1r1,m2r2,m2, b1 and cf2 is a little worse.

Most critical are changes in cf1, where small deviations from

the correct value prevent a successful swing-up. This is not

surprising as the acrobot can not directly compensate for the

friction in the first joint and that friction makes dynamic

motions at low velocities more difficult. The same controller

on the pendubot can deal well with changes in cf1 but not

so well with changes in cf2 (all 21 variations of cf1 were

successful, see Table II).

When comparing the performance of all controllers, it

can be observed that the iLQR (stab) controller achieved

the most successful swing-ups on the acrobot configurations

(M1: 191, M2: 233, out of 315 total attempts) while on

the pendubot configurations the TVLQR controller was most

successful (M1: 272, M2: 244). iLQR (Riccati) receives

decent results on the pendubot configurations (M1: 106,

M2: 145) with the good robustness to noise and respon-

siveness but less robustness to modelling errors and delay.

On the acrobot configuration, iLQR (Riccati) only scores

61 successful swing-ups in both configurations. With at

most 20 successful swing-ups across all categories in each

configuration, iLQR(free) showed to be very sensitive to all

kinds of errors, perturbations or noise. The PFL controller

showed little robustness on the M1 acrobot configuration but

performed well in all other configurations (Acrobot: M1: 26,



m1r1 m2r2 m2 I1 I2 Ir b1 b2 cf1 cf2 q̇noise q̇noise (filt.) τnoise τresp delay total

M1 Acrobot 382
TVLQR 6 6 2 2 1 5 1 2 1 2 6 5 18 19 8 84
iLQR (stab) 13 8 14 17 19 21 9 19 1 14 8 8 7 20 13 191

iLQR (Riccati) 1 3 1 1 1 4 1 2 1 3 6 5 10 19 3 61
iLQR (free) 1 1 1 1 1 1 2 1 3 1 1 1 1 1 3 20
PFL 3 1 1 2 2 2 1 1 1 2 1 1 1 2 5 26

M2 Acrobot 634
TVLQR 11 1 1 12 1 4 1 8 3 13 8 8 21 21 7 120
iLQR (stab) 15 10 16 21 16 21 14 21 9 18 12 11 14 19 16 233

iLQR (Riccati) 1 1 1 1 1 1 1 2 1 3 8 8 13 17 2 61
iLQR (free) 1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 18
PFL 14 9 14 19 17 19 10 11 1 9 16 15 21 20 7 202

M1 Pendubot 861
TVLQR 21 18 18 21 21 18 21 7 21 5 21 21 21 21 17 272

iLQR (stab) 21 15 16 21 17 14 21 7 21 6 8 8 15 20 15 225
iLQR (Riccati) 4 2 2 5 2 2 1 1 2 1 21 21 14 21 7 106
iLQR (free) 1 1 1 1 2 1 1 1 1 2 1 1 1 1 3 19
PFL 19 16 16 18 16 20 19 3 21 11 16 15 19 19 11 239

M2 Pendubot 827
TVLQR 19 18 17 21 17 17 17 3 16 1 21 21 21 20 15 244

iLQR (stab) 21 15 16 21 17 16 21 10 21 12 4 4 5 15 11 209
iLQR (Riccati) 16 3 2 14 3 3 3 1 5 3 21 21 21 21 8 145
iLQR (free) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 17
PFL 18 12 12 21 14 15 14 2 15 8 13 14 21 19 14 212

TABLE II: Results of all robustness tests which were conducted in simulation. Listed are the number of successful swing-ups

out of 21 variations of the quantity in the header.

Fig. 6: Success scores of the robustness tests for all controllers applied to acrobot and pendubot.

M2: 202, Pendubot: M1: 239, M2: 212).

The robustness results can also be used to quantify the

difficulty of the swing-up task on the different configurations.

Summing up all scores on the acrobot configurations yields

382 successful swing-ups on model M1 and 634 on model

M2, clearly indicating that the swing-up task on the acrobot

with the longer second link (M2) is easier than when the link

lengths are reversed (M1). This is consistent with the region

of attraction analysis that was used during the system design

in section IV-A. In the case of the pendubot, there are 861

successful swing-ups on the M1 model and 827 on the M2

model. This confirms that for the pendubot the M1 model

poses the easier task and that the difference in difficulty is

less significant as it was the case when comparing the region

of attractions of the pendubot LQR controller.

V. EXPERIMENTS

1) Setup: The QDDs from T-motors pose some challenges

on the control algorithms due to presence of noise in velocity

measurements with standard deviations of σq̇ = 0.05 rad
s



and torque noise with στ = 0.05Nm. The torque response

factor kresp ranges between 0.4 and 0.9. The operating delay

lies between 0.005 s and 0.01 s. To achieve more dynamical

motions, we used friction compensation in both motors for

the acrobot and in the passive motor for the pendubot.
2) Acrobot Results: For the acrobot swing-up, we tested

the TVLQR controller to stabilize the iLQR trajectory on

model M2. The results are displayed in Figure 7(a), where

the colored dashed lines show the nominal trajectory that the

TVLQR controller is supposed to stabilize and the solid lines

show the actual measured positions, velocities and torques.

The controller tracks the trajectory well except for the final

part, which is the most challenging as the high velocities

in this phase cause vibrations in the system. Due to the

imperfect final phase, we tested the stabilization with LQR

in a separate experiment. The LQR controller is able to

stabilize the acrobot and the controller is able to recover

from relatively large state deviations as pictured in Fig. 7(c).

(a) Recorded data of acrobot swing-up with TVLQR.

(b) Pictures of acrobot swing-up with TVLQR.

(c) Pictures of acrobot stabilization with LQR.

Fig. 7: Acrobot swing-up and stabilization on the real system

with TVLQR and LQR (separate experiments).

3) Pendubot Results: Based on the robustness tests in

Section IV, the most robust controller for the pendubot with

model M1 is the TVLQR controller. For the experiment, we

combined the TVLQR controller with an LQR controller for

the stabilization after the swing-up. The TVLQR controller

is indeed able to perform a successful swing-up on the

real system and the LQR controller is able to stabilize the

(a) Recorded data of pendubot swing-up (TVLQR) and stabilization (LQR).

(b) Pictures of pendubot swing-up.

Fig. 8: Pendubot swing-up on the real system. The switch

from TVLQR to LQR stabilization happens at t ≈ 4.5 s

.

unstable fixpoint afterwards. The data recorded during the

experiment can be seen in Fig. 8(a). At t ≈ 4.5 s, the control

switches from the TVLQR trajectory stabilization to the LQR

fix point stabilization. The pendulum follows the position

and velocity of the desired trajectory closely. The torque

that is necessary for the tracking deviates noticeably from

the nominal torque, especially at the peaks and during the

final phase of the swing-up. During the LQR stabilization

phase the control output switches between minimum and

maximum torque with a high frequency. Attempts to tune

the LQR parameters by hand to avoid this behavior were

not successful. However, the LQR stabilization is stable and

can also be perturbed with a stick. The pendulum only drops

once the controller is switched off.

VI. CONCLUSION

We introduced a canonical hardware platform which al-

lows the comparison of the performance of different control

algorithms. The double pendulum can be operated either as a

pendubot or as an acrobot without changes in the hardware.

The double pendulum design can be changed with different

link lengths and a different attached mass at the tip which

creates systems with different difficulty for the controller. In

this paper, we evaluated the performance of the controllers:

LQR, TVLQR, PFL and three versions based on iLQR.

We tested their robustness to model inaccuracies, noise,

motor response and delay and demonstrated a successful

pendubot swing-up with TVLQR on the real hardware.

The necessary hardware components are inexpensive and

all software from the drivers to the operating software and

controllers is open source. The double pendulum is integrated

in RealAIGym [19] along with other canonical systems. The



transparency of this project has two major advantages for the

robotics research community. First, it enables reproducibility

of experimental results, which is of major importance for

sustainable scientific research. Second, the availability and

openness allows students and newcomers in the field to study

dynamic control at any level without boundaries set by high

costs, licences or closed software.

VII. REPRODUCIBILITY

The entire platform is designed to be replicated for repro-

ducing and improving on existing results. Two key aspects

are that the hardware is inexpensive and that all software

is openly available8, including all scripts and data which

were used to obtain the results from this paper. Additionally,

software is archived at Zenodo9 and the simulations from this

paper are uploaded to Code Ocean10 to be run online without

the need for a local installation. The github repository also

contains all necessary files for rebuilding the double pendu-

lum test bench such as the mechanical design, CAD models,

bill of materials, etc. Instructions for the assembly of the

hardware setup with step by step pictures can be found in the

same repository as well as in the supplementary materials for

this paper. The supplementary material also contains more

detailed descriptions of the controllers including pseudocode,

more details for operating the hardware and more benchmark

results.

This work complies with the Good Experimental Method-

ology (GEM) Guidelines [20]. This paper introduces an open

source and low-cost test bench and contains experiments

conducted in simulation and on real hardware (Q1). We lay

out the assumptions and research questions in sections III and

IV (Q2). In section IV, we also explain the evaluation criteria

(Q3) and how they are measured (Q4). The robustness

criteria quantify the sensitivity of the controllers and allow

for a comparison of the difficulty of the swing up task on

the acrobot and pendubot platforms (Q5). We published all

relevant information and data for reproducing our work (Q6)

and thoroughly reported methods, parameters and results

to give a realistic picture of our results (Q7) and draw

conclusions in section VI (Q8). A summarizing table of the

GEM guidelines and the compliance of this paper can be

found in the supplementary material.
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