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ABSTRACT

Yield prediction at both field and subfield level poses a sig-
nificant challenge, yet it holds paramount importance for
decision-making and food security within the agricultural
sector. Recent efforts, focused on integrating remote sensing
data coupled with machine learning models, thereby creat-
ing globally scalable models for various crop types. This
study underscores the effectiveness of Sentinel-2 and com-
plementary data sources such as weather, soil, and terrain in
enhancing yield prediction. We address limitations of previ-
ous works and introduce a framework that incorporates local
neighborhood information using a convolutional neural net-
work approach. Additionally, we address the complexity of
sensor fusion, showcasing both early fusion and late fusion
frameworks. Notably. This study reports an R? of 0.83 for
soybean in Argentina. The results are demonstrated on a large
yield dataset for Soybean, Wheat, and Rapeseed distributed
across multiple countries, including Argentina, Uruguay, and
Germany.

Index Terms— Yield Prediction, Sentinel-2, Multi-
modal Learning, Neural Networks

1. INTRODUCTION

Yield predictions are pivotal for advancing agricultural pro-
ductivity and resource efficiency. The integration of Remote
Sensing (RS) and Machine Learning (ML) significantly con-
tributed to the recent successes, capitalizing on large datasets
and scalable models. Consequently, there is a rising popular-
ity of frameworks showcasing global scalability applicable to
diverse crop types. One of the major drivers of such mod-
els are RS data sources with global coverage. The Sentinel-2
(S2) mission, as one of the primary examples, offers tempo-
ral and multispectral data with resolution up to 10m. Such
data captures crop-specific features frequently used for crop
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yield modeling. When combined with additional data sources
(ADS) such as weather, soil, and terrain information, a ro-
bust foundation for effective yield modeling is established.
This, in turn, leverages powerful models, supporting decision-
making in the agricultural industry.
Nonetheless, open questions remain in RS-based yield predic-
tion. When it comes to multimodal data, originating from sen-
sors with varying temporal and spatial resolutions, the iden-
tification of an appropriate data fusion scheme becomes im-
perative. In addition, existing research has primarily concen-
trated on pixel-based yield mapping, often neglecting local
neighborhood effects by treating each pixel independently.
In contrast, the inclusion of local neighborhood information,
provides a more comprehensive understanding of spatial rela-
tionships and interactions within the agricultural landscape.
In this research, a framework for crop yield prediction
using multimodal input data is proposed. To explicitly ac-
count for local neighborhood effects, a convolutional neural
network (CNN)-based architecture is employed. Moreover,
different data fusion strategies are compared, accounting for
varying temporal and spatial resolutions using a modality-
specific encoder architecture. We highlight, that the incorpo-
ration of neighborhood information improves over a state-of-
the-art baseline model. Additionally, it is demonstrated that
S2 is impressively suited for crop yield prediction. The inclu-
sion of ADS can additionally contribute to a superior model
performance.

2. METHODS
2.1. Data

Yield Data A large yield data set is created, containing
yield data over multiple years, countries, and crop types.
Field records contain sub-field level data points, collected by
combine harvesters and containing geo-reference information
of the yield in tons/hectare (t/ha). More precisely, 1061 yield
maps are available for major field crops, including Soybean,
Wheat, and Rapeseed, distributed over Argentina, Uruguay,
and Germany. A detailed description of available ground
truth yield data is given in Tab. 1. Such data is frequently
plagued by inaccurate measurements, necessitating thorough
data cleaning. This process involves eliminating samples
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Table 1: Yield map (fields) per country and crop type for
different years.

Country [ Years Rapeseed | Wheat | Soybean | Sum
Germany 2016-2022 111 188 0 299
Uruguay 2018-2022 0 0 572 572
Argentina 2017-2022 0 0 190 190
Sum 111 188 762 1061

with zero yield. Additionally, samples beyond three standard
deviations are filtered out. Following this, yield maps are
transformed into a 10m resolution by utilizing S2 data as the
reference.

Data Modalities In all experiments, S2 L2A multispectral
time series data is employed, encompassing all 12 spectral
bands. Bands available in low resolution are upsampled to
achieve a spatial resolution of 10m. S2 is collected from seed-
ing to harvesting. Further, ADS are acquired for each sample.
More specifically, weather, soil, digital elevation map (DEM),
and the coordinates as latitude (lat) and longitude (lon), re-
spectively. Coordinates are projected into three dimensions
as [cos (lat) - cos (lon), cos (lat) - sin (lon), sin (lon)]. A de-
tailed description of data modalities is given in Tab. 2. From
DEM, we further derive slope, aspect, curvature, and topo-
graphic wetness index (TWI).

Table 2: Selected modalities complementing Sentinel-2

Data Source  Product Unit Source
Weather Precipitation m ECMWEF[1]
Max Temperature K
Min Temperature K
Average Temperature K
Soil Soil Organic Carbon dg/kg SoilGrids[2]
Nitrogen cg/kg
Cation Exchange Capacity mmol(c)/’kg
Clay g/kg
Silt g/kg
Sand g/kg
pH pHx10
Volumetric fraction of course fragments  cm3/dm3
Terrain DEM m SRTM][3]

Data Preprocessing

Two different data preprocessing are employed, encompass-
ing a monthly sampling with Early Fusion (EF), and a Late
Fusion (LF) with the source data.

Early Fusion For EF, a 24-month time series is gener-
ated by choosing a single S2 image per month, spanning from
seeding to harvesting, in accordance with [4]. Time steps
falling outside the growing period are masked, utilizing -1
as the masking value. For each time step between seeding
and harvesting, ADS are further included, by first upsampling
modalities to 10m resolution before being concatenated, fol-
lowing [4]. Temporal features, including weather data, are
aggregated between S2 time steps. In contrast, static features,
such as soil, DEM, and coordinates, are replicated across time
steps.

Late Fusion For late fusion, each modality is handled in-
dependently. We distinguish between temporal features and
static features. For temporal modalities, including S2 and
weather, the complete time series is used. We further use
padding, with the padding value being -1. Static features, in-
cluding soil, DEM, and coordinates are upsampled to 10m.

2.2. Model Architecture & Training

We formulate a pixel-based prediction that leverages local
neighborhood information. Specifically, a window is em-
ployed to extract the neighborhood for each sample, where
the center represents the pixel of interest. In the context of
labeled training data, where the input is represented as ¢ € X
and the corresponding target as y € Y. The dimensions of
the input data are denoted as X € RN*BXT*3x3 ‘and for the
target, Y € RY. In this representation, IV refers to the total
number of samples, B the number of bands, 7' the number of
time steps, respectively. For each sample, we span a window
of size 3 x 3. In the case of late fusion, X is a set of {Xgo,
Xpem,> Xsoits» XCoord> XWeather }» Where each modality
is handled individually. We establish two scenarios for both
model architecture and training oriented on the data fusion
strategy.

Early Fusion In the EF approach, the model architec-
ture incorporates a convolutional Long short-term memory
(convLSTM) [5] backbone architecture, depicted in Fig. 1
(a). The input, is passed to a conv3-D block to expand the
number of channels, incorporating batch normalization and
LeakyReLU activation. Further, the output is passed into a
convLSTM cell with 64 hidden units, following a conv-2D
block with a single output channel, reflecting the predicted
yield value. rectified linear unit (ReLU) activation is used.
From the output of size 1 x 3 x 3, the center pixel is extracted
as the final prediction.

Late Fusion For LF, we employ independent modality
encoders. We differentiate between spatio-temporal (S2),
temporal (weather), and spatial features (soil, DEM, coordi-
nates). The architecture of the late-fusion model is illustrated
in Fig.1(b). The foundational elements of this architecture
include the convLSTM unit depicted in Fig.1(a), an Long
short-term memory (LSTM)[6] network as a stack of 2 LSTM
layers, and a CNN block comprising two 2D-convolution lay-
ers with batch normalization and ReLU activation after each
layer. Spatio-temporal features are directed to a convLSTM
block, while spatial features are channeled to the CNN block.
For temporal features, we utilize an LSTM block for repre-
sentation extraction, followed by a 2D-convolution layer with
padding. Each modality-specific encoder extracts features
in the form of a window with a single channel represented
as 1 x 3 x 3. Finally, we concatenate the extracted window
representations along the channel dimension. Subsequently,
the input is passed into the CNN block to obtain predictions,
considering the center pixel of the output window.
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Fig. 1: a) convLSTM backbone, to process spatio-temporal
data. b) Late fusion architecture. Each modality is separately
encoded. Following, modalities are concatenated and subse-
quently inserted into a CNN Block.

Training & Evaluation Training is executed using the
ADAM optimizer on MSE loss between prediction of the cen-
ter pixel and target pixel for a maximum of 50 epochs with a
learning rate of 0.006 and a batch size of 2048. The training
incorporates a reduce-on-plateau learning rate scheduler. For
regularization, early stopping is applied after 10 consecutive
epochs with no improvement. Additionally, as part of the data
augmentation strategy, random rotation is applied to the input
window, temporal dropout is employed for temporal features.

To assess the impact of local neighborhood information,

we present results of a baseline model. More specifically,
a pixel-based model founded on LSTM [6]. We utilize the
same architecture as described in [4], including only S2 as
input. To further assess the impact of fusion strategies and
multimodal input, we report results of a convLSTM model
(Fig. 1(a)) with only S2 as input.
We conduct model evaluations on a per-region and per-crop
type basis. To achieve this, we employ stratified K-fold
(K=10) cross-validation with non-overlapping groups. The
stratification is done based on regions, and the grouping is
performed by field. In the quantitative evaluation, standard
regression metrics are employed and reported as the average
over validation folds. The metrics include mean absolute
error (MAE), mean absolute percentage error (MAPE), root
mean square error (RMSE), the coefficient of determination
(R?), and Bias.

3. RESULTS

We start by presenting quantitative results for each crop type
and model. The results are presented in Tab. 3. For each

dataset, comprising a unique country and crop type, results
are presented for both fusion strategies. This includes a mix of
S2 and ADS. Further, results of the convLSTM and baseline
model are presented, incorporating only S2 data. For each
model, the incorporated modalities are specified, and the best
scores are highlighted. Note that all proposed architectures
improve over the baseline model, highlighting the potential
of including neighborhood information. For wheat, the EF
approach performs best, with an R? of 0.71 on the field level.
This signifies an impressive improvement of 16 percentage
points (p.p) over the baseline, and 2 p.p over the convLSTM.
Reviewing the other dataset, it becomes apparent, that the
difference in performance is marginal. Surprisingly, it is
noteworthy that the convLSTM trained on S2 alone achieves
a remarkable performance.

Fig. 2 depicts a scatter plot illustrating the relationship be-
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Fig. 2: Scatter plot of field predictions and ground truth yield
data for Soybean in Uruguay and Argentina. Colors are used
to differentiate between harvesting years.

tween the target yield per field and the corresponding model
prediction for soybean in Argentina and Uruguay. The illus-
tration highlights differences between countries and years.
Notably, we observe low yields in 2018 in Uruguay, while
Argentina generally exhibits higher yields. Additionally, the
figure demonstrates the effectiveness in capturing the data’s
variability across a broad spectrum of plausible yield values.

In terms of quantitative assessment, all spatial models
demonstrate an enhancement over the baseline. Particularly,
when dealing with fields affected by cloud cover, the inclu-
sion of spatial information proves beneficial for the overall
performance. Fig. 3 showcases a rapeseed field in Germany,
where the top section presents a segment of S2 time series,
highlighting cloud corruption in the second image. Below
this, the ground truth yield map is displayed, followed by
the prediction from the spatial model (LF), and the base-
line prediction. Notably, the baseline exhibits difficulties
with cloud-corrupted pixels, while the spatial approach yields
more realistic and improved results.



Evaluation Field

Subfield

MAE RMSE MAPE

Dataset Model t/ha t/ha %

R2 BIAS | MAE RMSE MAPE R2 BIAS
- t/ha t/ha t/ha % t/ha

Soybean (Argentina) | Early Fusion | 0.38  0.49 0.11
Late Fusion | 0.31  0.42 0.08
convLSTM 0.34 045 0.1

Baseline 0.4 0.53 0.11

078 0.03 | 0.66 0.88 0.25 0.64 0.01
083 -0.06 | 0.62 0.85 0.22 0.67 -0.05
082 -04 0.66 0.89 0.24 0.63 -0.04
0.74 -0.1 0.69 0.92 0.25 0.61 -0.06

Soybean (Uruguay) Early Fusion | 0.37  0.51 0.19
Late Fusion | 0.35  0.51 0.18
convLSTM | 0.34  0.52 0.17
Baseline 0.36 0.53 0.19

0.77 0.02 | 0.8 1.22 0.92 041 0.02

0.77 -0.04 | 0.8 1.22 0.9 04 -0.04
0.77 -0.02 | 0.79 1.22 0.9 04 -0.02
0.75 -0.06 | 0.78 1.22 0.96 041 -0.05

Rapeseed (Germany) | Early Fusion | 0.44  0.58 0.13
Late Fusion | 0.44 0.6 0.13
convLSTM 042 0.58 0.13
Baseline 0.61 0.77 0.17

0.81 -0.12 | 0.88 1.18 0.34 0.5 -0.08
0.8 -0.08 |09 1.23 0.35 046 -0.09
082 -0.01 | 0.88 1.2 0.36 0.49  0.02

0.67 -0.17 | 098 1.31 0.38 0.38 -0.11

Wheat (Germany) Early Fusion | 0.78  1.03 0.09
Late Fusion | 0.8 1.14 0.09
convLSTM 0.78 1.06 0.09
Baseline 0.91 1.27 0.1

071 -0.03 | 1.69 2.32 0.28 0.38 -0.02
0.64 -0.14 | 1.67 232 0.27 0.38 -0.17
0.69 0.02 .72 236 0.29 0.36 0.04

055 -0.15 | 1.73 238 0.29 035 -0.19

Table 3: Overview of results per crop type, region and model. The best scores are highlighted.
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Fig. 3: Example Rapeseed field in Germany, harvested in
2020. On top, part of the S2 time series, displayed in RGB.
Below, the ground truth yield map, depicted on the right, next
to it are the pixel-wise prediction from the late fusion model,
followed by the baseline predictions.

4. CONCLUSION

The findings of this research underscore the high potential
of remote sensing-based yield prediction. It is evident that
predicting yields at subfield resolution is particularly advan-
tageous when leveraging input from globally diverse sensors,
with Sentinel-2 emerging as a predominant contributor. Fur-
thermore, we emphasize the advantages of incorporating
neighborhood information at various levels. The optimiza-
tion of fusion strategies additionally enhances the quality of
results. However, it is crucial to note that the selection of
suitable data sources and their effective combination remains
an open area of research, demanding thorough exploration.

5. REFERENCES

[1] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara,
A. Horéanyi, J. Mufioz-Sabater, J. Nicolas, C. Peubey,
R. Radu, D. Schepers et al., “The ERAS global reanal-
ysis,” Quarterly Journal of the Royal Meteorological So-
ciety, vol. 146, no. 730, pp. 1999-2049, 2020.

[2] L. Poggio, L. M. De Sousa, N. H. Batjes, G. Heuvelink,
B. Kempen, E. Ribeiro, and D. Rossiter, “SoilGrids 2.0:
producing soil information for the globe with quantified
spatial uncertainty,” Soil, vol. 7, no. 1, pp. 217-240, 2021.

[3] T. G. Farr and M. Kobrick, “Shuttle Radar Topography
Mission produces a wealth of data,” Eos, Transactions
American Geophysical Union, vol. 81, no. 48, pp. 583—
585, 2000.

[4] D. Pathak, M. Miranda, F. Mena, C. Sanchez, P. Helber,
B. Bischke, P. Habelitz, H. Najjar, J. Siddamsetty, D. Are-
nas, M. Vollmer, M. Charfuelan, M. Nuske, and A. Den-
gel, “Predicting Crop Yield with Machine Learning: An
Extensive Analysis of Input Modalities and Models on
a Field and Sub-Field Level,” in IGARSS 2023 - 2023
IEEE International Geoscience and Remote Sensing Sym-
posium, 2023, pp. 2767-2770.

[5] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,
and W.-c. Woo, “Convolutional Istm network: A machine
learning approach for precipitation nowcasting,” Ad-

vances in neural information processing systems, vol. 28,
2015.

[6] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-
1780, 1997.



	 Introduction
	 Methods
	 Data
	 Model Architecture & Training

	 Results
	 Conclusion
	 References

