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ABSTRACT

Yield prediction at both field and subfield level poses a sig-
nificant challenge, yet it holds paramount importance for
decision-making and food security within the agricultural
sector. Recent efforts, focused on integrating remote sensing
data coupled with machine learning models, thereby creat-
ing globally scalable models for various crop types. This
study underscores the effectiveness of Sentinel-2 and com-
plementary data sources such as weather, soil, and terrain in
enhancing machine learning-based yield prediction. We ad-
dress the limitations of previous works and introduce a frame-
work that incorporates local neighborhood information using
convolutional neural networks and geographical coordinates.
Additionally, we address the complexity of sensor fusion,
showcasing both input fusion and feature fusion frameworks.
We highlight that handling modalities with varying spatial
and temporal resolutions requires adequate and advanced
fusion mechanisms in crop yield prediction. Notably, this
study reports an R2 of 0.86 for soybean in Argentina using
a feature fusion scheme with attention mechanism. The re-
sults are demonstrated on a large yield dataset for soybean,
wheat, and rapeseed distributed across Argentina, Uruguay,
and Germany.

Index Terms— Yield Prediction, Sentinel-2, Multi-
modal Learning, Neural Networks

1. INTRODUCTION

Yield predictions are pivotal for advancing agricultural pro-
ductivity and resource efficiency. The integration of Remote
Sensing (RS) and Machine Learning (ML) significantly con-
tributed to the recent successes, capitalizing on large datasets
and scalable models. Consequently, there is a rising popular-
ity of frameworks showcasing global scalability applicable to
diverse crop types. One of the major drivers of such mod-
els are RS data sources with global coverage. The Sentinel-2
(S2) mission, as one of the primary examples, offers temporal
and multispectral data with a spatial resolution up to 10m.
Such data captures crop-specific features, frequently used for
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crop yield modeling. When combined with additional data
modalities (ADM) such as weather, soil, and terrain informa-
tion, a robust foundation for effective yield modeling is estab-
lished [1]. This, in turn, leverages powerful models, support-
ing decision-making in the agricultural industry.
Nonetheless, open questions remain in RS-based yield pre-
diction. When working with multimodal data, originating
from sensors with varying temporal and spatial resolutions,
the identification of an appropriate data fusion scheme be-
comes imperative [2]. In addition, existing research has pri-
marily concentrated on pixel-based yield mapping, often ne-
glecting local neighborhood effects by treating each pixel in-
dependently [3, 4]. In contrast, the inclusion of local neigh-
borhood information, provides a more comprehensive under-
standing of spatial relationships and interactions within the
agricultural landscape. Only a few studies exist that incor-
porate spatial information for crop yield prediction, as evi-
denced in [5].

In this research, a framework for crop yield prediction us-
ing multimodal input data is proposed. To explicitly account
for local neighborhood effects, a convolutional neural net-
work (CNN)-based architecture is employed. We highlight,
that the incorporation of neighborhood information improves
over a state-of-the-art baseline model. Moreover, to account
for varying temporal and spatial resolutions, different data fu-
sion strategies are compared, namely input and feature fusion.
We highlight that, feature fusion based on attention mecha-
nism better captures the non-linear nature of yield formation.
Additionally, it is demonstrated that S2 is impressively suited
for crop yield prediction.

2. METHODOLOGY

2.1. Data

Yield Data As ground truth, a large yield dataset is utilized,
containing yield data from multiple years, countries, and crop
types. Field records contain sub-field level data points, col-
lected by combine harvesters and containing geo-referenced
information of the yield in tons/hectare (t/ha). Such data is
frequently plagued by inaccurate measurements, necessitat-
ing thorough data cleaning [6]. This process involves elim-



inating samples with zero yield values. Additionally, sam-
ples beyond three standard deviations are filtered out. Fol-
lowing this, yield maps are rasterized to 10m spatial reso-
lution by utilizing S2 data as the reference. In total, 1061
yield maps are used for major field crops, including soybean,
wheat, and rapeseed, distributed across Argentina, Uruguay,
and Germany. A detailed description of the available ground
truth yield data is given in Tab. 1.

Table 1: Yield map (fields) per country and crop type for
different years.

Country Years Rapeseed Wheat Soybean Sum
Germany 2016-2022 111 188 0 299
Uruguay 2018-2022 0 0 572 572

Argentina 2017-2022 0 0 190 190
Sum 111 188 762 1061

Data Modalities In all experiments, S2 L2A multispectral
time series data is used, encompassing all 12 spectral bands.
Bands available in low resolution are upsampled to a spatial
resolution of 10m. S2 is collected from seeding to harvesting.
Further, ADM are acquired for each field. More specifically,
weather, soil, digital elevation map (DEM), and the sample
coordinates (coord) as latitude (lat) and longitude (lon). Co-
ordinates are projected into a three-dimensional space as fol-
lows: x = cos (lat) · cos (lon), y = cos (lat) · sin (lon),
z = sin (lon). A detailed description of data modalities is
given in Tab. 2. From the DEM, we further derive slope,
aspect, and curvature using the RichDEM library [7]. We fur-
ther derive the topographic wetness index (TWI) [8]

Table 2: Selected modalities complementing Sentinel-2

Modality Product Unit Source

Weather

Precipitation m

ECMWF [9]Max Temperature K
Min Temperature K
Average Temperature K

Soil

Soil Organic Carbon dg/kg

SoilGrids [10]

Nitrogen cg/kg
Cation Exchange Capacity mmol(c)/kg
Clay g/kg
Silt g/kg
Sand g/kg
pH pHx10
Volumetric fraction of course fragments cm3/dm3

Terrain DEM m SRTM [11]

Data Preprocessing

In this research, two different fusion methods are compared.
More specifically, Input Fusion (IF) with a monthly sam-
pling, and Feature Fusion (FF) with the complete time series.

Input Fusion: For IF, a 24-month time series is gener-
ated by choosing a single S2 image per month, spanning from
seeding to harvesting, in accordance with [4]. Time steps
falling outside the growing period are masked, utilizing -1 as

the masking value. For each time step between seeding and
harvesting, ADM are further included, by first upsampling
modalities to 10m resolution before being concatenated, fol-
lowing [4]. Temporal features, including weather data, are
aggregated between S2 time steps. In contrast, static features,
such as soil, DEM, and coordinates, are replicated across time
steps.

Feature Fusion: For FF, each modality is handled in-
dependently. We distinguish between temporal features and
static features. For temporal modalities, including S2 and
weather, the complete time series is used. We further use
padding, with the padding value being -1. Static features, in-
cluding soil, DEM, and coordinates are upsampled to 10m.

2.2. Model Architecture & Training

We formulate a pixel-based prediction that leverages local
neighborhood information. Specifically, a window is utilized
to extract the neighborhood for each sample, where the center
pixel represents the pixel of interest. In the context of labeled
training data, where the input is represented as x ∈ X and the
corresponding target as y ∈ Y . The dimensions of the input
data are denoted as X ∈ RN×B×T×5×5, and for the target,
Y ∈ RN . In this representation, N refers to the total number
of samples, B the number of bands, and T the number of time
steps. For each sample, we span a window of size 5 × 5. In
the case of FF, X is a set of {XS2, XDEM , XSoil, XWeather,
XCoord}, where each modality is handled individually. In the
following, we describe the model architecture for IF and FF.

Input Fusion: In the IF approach, we utilize a 3D-CNN
(3D-Conv) block with a kernel size of (1, 5, 5) to expand the
number of channels to 64, incorporating batch normalization
and LeakyReLU activation. Further, the output is passed into
a Long short-term memory (LSTM) cell with 2 layers and
64 hidden units. Following, a fully connected network (FC)
block is employed, containing a single layer with 64 hidden
units, batch normalization, rectified linear unit (ReLU) ac-
tivation, and dropout. We use a dropout probability of 0.2.
Finally, a single linear layer with 64 hidden units and a sin-
gle output channel is employed, reflecting the predicted yield
value.

Feature Fusion: For FF, we utilize independent modal-
ity encoders. The core components of this architecture in-
clude 3D-Conv, 2D-CNN (2D-Conv), FC, and LSTM blocks,
as well as Scaled Dot-Product Attention. Each block incor-
porates batch normalization and ReLU activation. Spatio-
temporal features, such as S2, represented by dimensions N×
B × T × 5 × 5, are processed through a 3D-Conv block
with a (1, 5, 5) kernel size, followed by a LSTM block with
2 LSTM layers. Spatial features, including DEM, soil, and
coordinates with dimensions N ×B × 5× 5, are handled by
a 2D-Conv block with a (5, 5) kernel size, followed by a fully
connected (FC) layer. Temporal features, such as weather
data, are processed using a LSTM block for feature extrac-



tion. Each modality-specific encoder outputs features with
dimensions N × 64. To achieve modality fusion, we employ
scaled dot-product attention [12]. This mechanism enables
attention pooling, where a learnable query interacts with each
modality’s representation through cross-attention, generating
attention weights. We apply dropout with a 0.2 probability to
the attention weights during pooling. The final fused repre-
sentation is fed into a linear layer to predict the yield value.
The architecture is illustrated in Fig. 1.

Fig. 1: Feature fusion architecture: Each modality is sepa-
rately encoded. Subsequently, the modalities are fused using
scaled dot-product attention pooling and fed to a linear layer.

Training & Evaluation Training is executed using the
ADAM optimizer on MSE loss between prediction of the cen-
ter pixel and target pixel for a maximum of 50 epochs, with a
learning rate of 0.006 and a batch size of 2048. The training
incorporates a reduce-on-plateau learning rate scheduler. For
regularization, early stopping is applied after 10 consecutive
epochs with no improvement on the validation set. Addition-
ally, during training, as part of the data augmentation strategy,
random rotation by 90 degrees is applied to the input window,
and temporal dropout with a 0.2 probability is employed for
temporal features.

To assess the impact of local neighborhood information
and data fusion method, we present results of a baseline
model. More specifically, a pixel-based model based on
LSTM [13]. We utilize the same architecture as described
in [4], including S2, weather, soil, and DEM as input. We
conduct model evaluations on a per-region and per-crop type
basis. To achieve this, we employ stratified K-fold (K=10)
cross-validation with non-overlapping groups. The stratifica-
tion is done based on regions, and the grouping is performed
by field. In the quantitative evaluation, standard regression
metrics are employed and reported as the average over valida-
tion folds. The metrics include mean absolute error (MAE),
mean absolute percentage error (MAPE), root mean square
error (RMSE), the coefficient of determination (R2), and
Bias.

3. RESULTS

We start by presenting quantitative results for each crop type
and model. The results are presented in Tab. 3. For each
dataset, comprising a unique country and crop type, results
are presented for both fusion strategies. Further, results of the
baseline model are presented. The best performing model is
highlighted. We highlight that the inclusion of spatial infor-
mation results in an improved or equal performance compared
to the baseline. In the case of IF and Germany wheat, an im-
provement of 3 percentage points (p.p) in R2 at the field level
is presented. Nevertheless, we also observe cases with no im-
provement such as evidenced in Uruguay, soybean. Consid-
ering the FF, we observe consistent improvement over both
the baseline model and the IF model across all datasets. In
the case of Argentina, soybean we demonstrate an R2 of 0.86
on the field level, signifying an impressive improvement of
10 p.p over the baseline model and 8 p.p over the IF model.
In the case of Germany, wheat an improvement of 15 p.p is
reported, highlighting its superior performance in crop yield
prediction.
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Fig. 2: Scatter plot of field predictions and ground truth yield
data for soybean in Uruguay and Argentina. Colors are used
to differentiate between harvesting years. Results originate
from the FF model.

In Fig. 2, a scatter plot illustrating the relationship be-
tween the target yield per field and the corresponding model
predictions is presented. The plot showcases results for soy-
bean in Argentina and Uruguay using the FF model. The
illustration highlights the differences between countries and
years. Notably, we observe low yields in Uruguay in 2018,
while Argentina generally exhibits higher yields. Addition-
ally, the figure demonstrates the model’s effectiveness in cap-
turing the variability in the data across a broad spectrum of
plausible yield values.

We further investigate the attention weights of each data
modality for the FF model. Fig. 3 visualizes the average at-



Evaluation Field Subfield

Dataset Model
MAE
t/ha

RMSE
t/ha

MAPE
%

R2
-

BIAS
t/ha

MAE
t/ha

RMSE
t/ha

MAPE
%

R2
-

BIAS
t/ha

Argentina, Soybean
Input Fusion 0.37 0.49 0.10 0.78 -0.02 0.67 0.90 0.25 0.62 0
Feature Fusion 0.27 0.39 0.08 0.86 0.01 0.60 0.81 0.23 0.70 0.01
Baseline 0.40 0.52 0.11 0.76 0 0.66 0.89 0.24 0.63 -0.02

Uruguay, Soybean
Input Fusion 0.37 0.52 0.18 0.76 -0.05 0.81 1.22 0.91 0.40 -0.04
Feature Fusion 0.32 0.46 0.17 0.81 -0.02 0.78 1.19 0.91 0.43 -0.02
Baseline 0.35 0.51 0.20 0.77 0.01 0.78 1.22 1.02 0.42 0.01

Germany, Rapeseed
Input Fusion 0.49 0.64 0.14 0.77 -0.16 0.90 1.22 0.36 0.46 -0.10
Feature Fusion 0.44 0.60 0.14 0.80 -0.07 0.87 1.20 0.35 0.49 -0.04
Baseline 0.49 0.65 0.15 0.77 -0.03 0.93 1.23 0.38 0.46 -0.04

Germany, Wheat
Input Fusion 0.80 1.05 0.09 0.70 -0.17 1.67 2.30 0.27 0.39 -0.10
Feature Fusion 0.61 0.83 0.07 0.81 -0.12 1.51 2.13 0.25 0.48 -0.13
Baseline 0.84 1.11 0.09 0.66 0.16 1.71 2.37 0.29 0.35 0.20

Table 3: Overview of results per crop type, region and model. The best scores are highlighted.
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Fig. 3: Bar plot illustrating attention weights derived from
scaled dot-product attention for all modalities across different
countries and crops.

tention weight for each data modality, by utilizing the scaled
dot-product attention. The average attention weight is calcu-
lated across all samples in the validation split over all folds
in the cross-validation. This illustrates how the model learns
to assign different importance to various modalities in terms
of attention weights. We notice that attention weights vary
across different regions and crops. However, the S2 modality
consistently dominates as the main contributor in all cases.
In the case of Uruguay, soybean ADM showcase the lowest
attention across all samples. In contrast, Germany illustrates
higher attentions for ADM with soil exhibiting the highest
values.

4. DISCUSSION & CONCLUSION

The findings of this research highlight the potential of remote
sensing-based yield prediction using subfield level yield data
and machine learning. We highlight Sentinel-2 data as a pre-
dominant contributor to the model’s performance but being
complemented by additional data modalities such as weather,
soil and terrain. We address the limitations of previous stud-

ies by introducing a method that incorporates local neighbor-
hood information while accounting for the varying temporal
and spatial resolutions of the multimodal input data. Our
results demonstrate that including neighborhood information
enhances model performance in crop yield prediction. Never-
theless, when working with multimodal data, selecting an ap-
propriate data fusion method is crucial. Our study reveals that
input fusion suffers under limitations, as it fails to adequately
address the different spatial and temporal resolutions of the
input. Additionally, such methods require expensive modal-
ity selection. To address this issue, we propose using feature
fusion with an attention mechanism, which has proven to be
a powerful method for crop yield prediction.
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