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Avoidance of specific 
calibration sessions in motor 
intention recognition 
for exoskeleton‑supported 
rehabilitation through transfer 
learning on EEG data
Niklas Kueper 1, Su Kyoung Kim 1 & Elsa Andrea Kirchner 1,2*

Exoskeleton-based support for patients requires the learning of individual machine-learning models to 
recognize movement intentions of patients based on the electroencephalogram (EEG). A major issue 
in EEG-based movement intention recognition is the long calibration time required to train a model. In 
this paper, we propose a transfer learning approach that eliminates the need for a calibration session. 
This approach is validated on healthy subjects in this study. We will use the proposed approach in our 
future rehabilitation application, where the movement intention of the affected arm of a patient can 
be inferred from the EEG data recorded during bilateral arm movements enabled by the exoskeleton 
mirroring arm movements from the unaffected to the affected arm. For the initial evaluation, we 
compared two trained models for predicting unilateral and bilateral movement intentions without 
applying a classifier transfer. For the main evaluation, we predicted unilateral movement intentions 
without a calibration session by transferring the classifier trained on data from bilateral movement 
intentions. Our results showed that the classification performance for the transfer case was 
comparable to that in the non-transfer case, even with only 4 or 8 EEG channels. Our results contribute 
to robotic rehabilitation by eliminating the need for a calibration session, since EEG data for training 
is recorded during the rehabilitation session, and only a small number of EEG channels are required for 
model training.
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With the demographic change, the cost of stroke in 2017 was €60 billion in the 32 European countries alone1. 
Effective rehabilitation for stroke patients is needed. To enable more effective sensorimotor rehabilitation therapy, 
traditional physiotherapy can be combined with robot-supported therapy2–4. Such approaches reduce costs, 
increase the efficiency of therapy, and relieve the burden on the therapists by enabling high repetitions in inter-
active and self-initiated therapy as well as by extending therapy options5. It was shown that patients receiving 
intensive peer mentoring during and after rehabilitation had greater gains in self-efficacy6, which is highly impor-
tant in rehabilitation7 and decreases the time for unplanned rehospitalizations6. The application of new robotic 
technologies, are expected to reduce the total disease burden by 6 to 10 percent by 20408. Active exoskeletons9 
are commonly used for assistance in daily living (ADL)10–12 as well as for rehabilitation therapies, and have shown 
to be effective in neuromotor rehabilitation, especially after stroke13–15.

For individualized support of patients, learning of individual machine-learning models from human data is 
required, to classify such physiological data online. For example, to provide support when needed16–18, physi-
ological measurements such as the electromyogram (EMG), which can, for example, be recorded from a healthy 
leg to control a disabled leg using an exoskeleton19, or the electroencephalogram (EEG) which allows conclusions 

OPEN

1Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), 28359  Bremen, 
Germany. 2Institute of Medical Technology Systems, University of Duisburg-Essen, 47057  Duisburg, 
Germany. *email: elsa.kirchner@uni-due.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-65910-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16690  | https://doi.org/10.1038/s41598-024-65910-8

www.nature.com/scientificreports/

to be drawn about a user’s movement intention, is of great importance for successful neurorehabilitation13,14. In 
particular, EEG can be used to infer movement intentions9,20, for example, where a patient wants to move21,22. 
There are many examples of how human EEG can be used to control exoskeletons using a brain-computer 
interface (BCI)13,14,21–25. However, BCIs are often not used to decode brain activity that correlates with the brain 
processes that control movement intention, planning, and execution; instead, other brain signals, such as the 
activity evoked in the visual cortex by flickering light, known as steady-state visual evoked potentials (SSVEP) are 
used21,22,26. Such BCI’s artificially use the patient’s EEG as a control input. To bridge the gap between brain and 
body caused by brain injury and to promote rehabilitation, such an approach is not the preferred one. Instead, 
brain activity that drives movement intention, planning, and execution should be used as a natural or intrinsic 
bridge between the brain and the body27,28. Such an approach will use both, the physiological data that directly 
encodes the human’s intention and the autonomous capabilities of the robotic system, i.e., an exoskeleton. Since 
the patients, especially severely affected stroke patients, are not able to move their affected limb, motor imagery 
(MI) is often used to generate motor-related patterns in the EEG (e.g. see Fig. 1b). This means the patient only 
imagines the movements repeatedly instead of attempting actual movement executions. But still, the evoked MI 
activity in the EEG is comparable to the activity evoked by movement executions29–31. However, in the field of 
BCIs, long training sessions are often required to record a large amount of training data. Thus, such intensive 
training sessions require the patient to imagine movements several times. This goes along with two problems: (1) 
It is difficult to monitor and ensure a good vividness of the imagined movements32,33; (2) such training sessions 
are very tiresome and do not promote therapy while using time that could otherwise be used for an effective 
therapy session. Even if a patient can complete such long training sessions, this is not desirable since all time avail-
able should be used for therapy in the early post-stroke period in which the brain is very plastic34. Waste of time 
in this very sensitive period by plainly recording data to train a classifier must be avoided as much as possible.

To address this issue, transfer learning (TL) can be applied in BCI applications to reduce or even avoid 
calibration sessions. This can be achieved by using prior knowledge or data that does not originate from the 
target session, subject, or even measurement device or task35. TL has recently proven it’s potential to improve 

Figure 1.   Comparison between the proposed classifier transfer approach for stroke rehabilitation (see a)) and 
a standard MI scenario used in rehabilitation (see b)). In (a) a patient, exercising in the exoskeleton’s mirror 
mode is shown while EEG data is recorded. The classifier is transferred after training to predict the movement 
intentions of the affected arm. In (b) a standard MI training scenario with an evaluation of the classifier for 
stroke rehabilitation is shown. The images are used from a supporting video (source: https://​www.​youtu​be.​com/​
watch?v=​dCn1k​tzbpZ8).

https://www.youtube.com/watch?v=dCn1ktzbpZ8
https://www.youtube.com/watch?v=dCn1ktzbpZ8
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classification performance and reduce calibration times in several investigations36–40. By applying such a TL 
approach, the amount of required data and the duration of training sessions that are not beneficial for the 
patient’s rehabilitation can be reduced. However, in most cases, the patient still needs to participate in training 
or calibration sessions that do not directly serve rehabilitation. Hence, besides cross-session as well as cross-
subject paradigms, cross-task TL approaches are investigated for a complete avoidance of calibration sessions. 
Such cross-task approaches even enable learning in the first place if labeled EEG data is only available from a 
similar task. Choosing a similar task that is part of the therapy session and by applying a cross-task approach 
would make it possible for patients to no longer need to participate in training sessions to train an ML model 
for decoding EEG data. However, in comparison, cross-task classification approaches based on EEG data and 
TL have been less comprehensively investigated35.

Nevertheless, across different fields of BCI research, transfer approaches for cross-task EEG classification 
have been proposed. In our previous work, we showed that a classifier trained on EEG data from an observation 
scenario could be transferred to detect the erroneous behavior of a robot during an interaction scenario41–44. 
Therefore, the elicted event-related potential (ERP), namely the error-related potential (ErrP), could be classified 
in the transfer case although the tasks and ERP shapes differed between training and testing. The transferability 
of a classifier for the detection of errors across tasks was also shown in45, where a deep convolutional neural 
network was used to detect errors for two different error paradigms from intracranial EEG data. Another appli-
cation of a classifier transfer is the detection of target and missed target events from EEG while the classifier was 
trained on EEG data evoked by target and standard events (oddball paradigm) to enhance the amount of avail-
able training data and, hence, to enable classification of EEG trials evoked during recognition of targets and the 
failure of recognition of those46–48. Further examples of applied cross-task EEG classification can be found in the 
literature in the area of workload recognition49–51, where the performed workload task differed between training 
and testing a classifier or model. For example in49, a domain adaptation approach was applied that improved the 
workload classification performance for the transfer case compared to a non-transfer case. Besides cross-task 
EEG classification, where a classifier is strictly trained on one task and tested on another task, fusion approaches 
were applied in which data from different tasks were combined for training a classifier52,53.

In this work, we focus on how to generate training data for an EEG-based intention recognition to guide 
support using an active exoskeleton54 for unilateral arm movements of the affected arm after stroke. To obtain 
a natural bridge, EEG data related to the execution of movements is used instead of EEG evoked by MI. With 
our study on healthy subjects, we want to show, that our envisioned approach to train a classifier on EEG data 
recorded during robot assisted mirror therapy of patients, that enables bilateral movements, can be used to 
predict unilateral arm movements. In more detail, our approach will allow to train a classifier during a therapy 
session that does not require intention recognition from EEG activity but makes use of the intelligence of the 
robotic system to timely map movement intention to movement execution. This is done by making use of the 
exoskeleton’s mirror mode in which a movement of the unaffected arm is transferred to the affected arm by 
the exoskeleton (see Fig. 1a)54. Hence the exoskeleton supports mirrored dual arm movements intended by the 
patient. While the patient is exercising in this mode, EEG data can be recorded. The recorded EEG contains 
activities associated with the planning and execution of bilateral arm movements and can be used to train a clas-
sifier to infer the movement intention of both arms. The usability of such a classifier cross-task transfer approach 
to infer the motion intention of the (supposed to be the) affected arm alone will be investigated in our study 
presented here. To this end, we evaluate it’s principle feasibility by conducting a study with healthy subjects and 
report and discuss the results here. Our approach eliminates any exclusive time spent by the patient for only 
generating training data, as data collection is integrated into the therapy training itself. To our knowledge, the 
transferability of a classifier between bilateral and unilateral movements (upper body reaching movement tasks), 
especially conceptualized to support rehabilitation therapy, has not been proposed or investigated so far.

The rest of the paper is structured as follows. Section Methods provides detailed information about our pro-
posed classifier transfer approach to support patients in future rehabilitation sessions as well as the conducted 
study and performed evaluations. This includes detailed information about the processing of the recorded data 
and evaluation of the proposed cross-task classifier transfer approach under a varying number of used EEG 
channels. Afterward, the results of our evaluations are described in the corresponding Results section. In section 
Discussion the main findings of our evaluations regarding the proposed classifier transfer approach and its impli-
cations for our future work are discussed in detail. Finally, section Conclusion provides a summary of this work.

Methods
Proposed future therapy approach
Our proposed approach is intended to support (mainly strongly affected) stroke patients in therapy sessions 
supported by an active exoskeleton, where the unaffected arm of the patient will control the affected arm with 
the help of the exoskeleton in a so-called mirror mode. The exoskeleton does execute mirrored movements to 
enable bilateral movement support. This means the movement of the unaffected arm is mirrored to the affected 
arm while the task for the patient is still to move both arms to induce bilateral motor activity in both hemispheres. 
This also means that these executed bilateral movements are already part of the therapy so it is not considered 
as an additional calibration session. However, the exoskeleton is not able to support the affected arm based on 
the movement intention of the patient. Due to this, we want to predict the movement intention of the affected 
arm by analysis and decoding of the patient’s EEG. For training a classifier for this task, we use the EEG recorded 
during mirror mode therapy as explained before. By this cross-task transfer, we completely avoid calibration 
sessions for using the BCI.
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Proposed classifier training method
To train an EEG classifier to only predict movement intentions for the affected arm of stroke patients in the 
future rehabilitation sessions, a two-step concept was developed. It has to be noted that in this work with healthy 
subjects, we assumed the right arm of the subjects to be the affected one and the left arm to be the unaffected one. 
In the first step, the EEG classifier is trained during the execution of bilateral arm movements (in a mirror mode 
rehabilitation session). The onsets of the bilateral movements are inferred from the unaffected arm to generate 
reliable movement onset labels to train the classifier. In the second step, the classifier is transferred to predict 
unilateral movements of the affected arm. The transfer approach consists of training on EEG data derived from 
bilateral movement executions and applying a custom EEG-channel selection to improve the transferability of 
the classifier by data adaptation. Since the LRP (Lateralized Readiness Potential)55,56, which is associated with 
movement planning, can be observed from EEG-channels of the motor cortex side contralateral to the moved 
upper limb57, we focus on the differences and similarities in the EEG data between bilateral and unilateral move-
ment intentions. Therefore, we customized our selection of EEG channels for the data processing, that is related 
to the planning of unilateral movements with the affected limb. Hence, the abilities of the unaffected limb are 
used to generate reliable training labels and the classifier can be custom-trained on the provided EEG data, con-
taining information about the movement intentions of the affected arm. The proposed method was evaluated 
by conducting experiments, involving bilateral and unilateral movement tasks, executed by healthy subjects.

The training and testing conditions of the evaluation are illustrated in Fig. 2a): train-test conditions: (A) 
unilateral-unilateral (no transfer), (B) bilateral-bilateral (no transfer), and (C) bilateral-unilateral (cross-task 
transfer). Condition C is our target condition, i.e., cross-task transfer takes place. The classifier is trained on EEG 
evoked by bilateral arm movements and transferred to infer intended unilateral arm movements. Condition A 
(training and testing on EEG evoked by movements of the supposed to be affected arm) and Condition B are only 
used to compare how well a classifier performs without transfer compared to the cross-task transfer (Condition 
C). Moreover, for our envisioned application, the most relevant performance differences are between condition C 
(cross-task transfer from bilateral to unilateral) and condition A (unilateral-unilateral, no transfer), where train-
ing and testing were evaluated on EEG activity recorded from the hemisphere contralateral to the moved arm.

Experimental setup and procedure
Eight healthy subjects (4 male, 4 female) at the age of 25.5± 4.0 years participated in our study. The study was 
approved by the ethics committee of the University of Bielefeld according to the guidelines of the German Soci-
ety for Psychology and the Professional Association of German Psychologists and all subjects gave their written 
informed consent to participate in the study. Only healthy right-handed subjects with no history of neurologi-
cal or muscular diseases were recruited for the experiments. All subjects were advised to be well-rested for the 
experiment. The experiment setup is illustrated in Fig. 3. The subjects were seated in a comfortable chair inside a 
shielded cabin. In front of the subjects a custom-built board, including hand-switches and a button were placed 
on a table. The subjects were asked to perform a reaching task, by pressing the button with their thumb. The 
button was placed at a height of approximately 25 cm and at a distance of 30 cm away from the resting position. 
The resting position was defined by the hand switches, where the subjects were asked to place their hands dur-
ing the resting period. The position of the button was adjusted to the arm length of the subjects. The start and 
endpoint of the movements were standardized by ensuring a 90-degree forearm-upper arm angle at rest and 0 
degree when pressing the button.

Two types of movement tasks were conducted in the experiment (see Fig. 2b, c): 1. unilateral reaching move-
ments and 2. bilateral reaching movements. The sequence of the two task types was varied between subjects 
(counterbalanced) to neutralize possible learning effects. For the unilateral task, only the dominant right arm 
was moved whereas in the bilateral task, a synchronous movement of both arms (both thumbs pressing the but-
ton) was executed. Each task included 3 sets of 40 self-initiated movements. Therefore, each subject performed 
a total of 120 trials for each task. Each trial consisted of a resting period of at least 5 s followed by a self-initiated 
and self-paced reaching movement. Trials with a resting period under 5 s were excluded from the evaluation and 
an error symbol was presented on a monitor for a duration of 200ms . The error symbol consisted of a fixation 
cross that turned from a green to a red background color. During the whole experiment, a fixation cross with a 
green background was continuously shown on the monitor. After each set, the subjects were asked to relax for 
at least 5 min to avoid any fatigue. The whole experiment was designed and controlled by using the Presentation 
software [Neurobehavioral Systems, Inc., Albany, USA].

Data acquisition
EEG data was recorded using a LiveAmp64 amplifier and an actiCap montage with 64 active electrodes [Brain 
Products GmbH, Munich, Germany]. The electrodes were located according to the extended 10–20 system with 
FCz as a reference electrode. All impedances were kept below a threshold of 5 k� and were controlled after each 
measurement set. The data was acquired at a sampling rate of 500Hz and prefiltered by the measurement device 
to a bandwidth of 0.1− 131Hz . To avoid possible artifacts during the recording, the subjects were asked to avoid 
head and eye movements as far as possible.

EMG signals were recorded bipolar (Ag/AgCl electrodes) by a WavePlus wireless system and picoEMG sen-
sors by Cometa [Cometa srl., Barregio, Italy]. The EMG was sampled at 2000Hz and reduced to a bandwidth 
of 10–500Hz by filters of the measurement device. The signals were recorded from 8 muscles for the right and 
left side of the body which were: M. biceps brachii medial, M. triceps brachii medial M. triceps brachii lateral, 
M. deltoideus lateral, M. deltoideus anterior, M. deltoideus posterior, M. trapezius pars descendens (upper tra-
pezius) and M. flexor carpi radialis. The skin was prepared with alcohol and electrodes were placed according 
to anatomical landmarks58.
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To mark the physical movement onsets, an infrared motion tracking system [Qualisys AB, Gothenburg, Swe-
den] was used in addition to the mechanical hand-switches. In total, 4 motion tracking cameras (Oqus 300+ ) 
were placed in the shielded cabin to record motion data. To track the motions, 3 reflecting markers were placed 
on the back of the hand, the elbow (next to the lateral epicondyle) and the deltoideus (muscle belly) on each side 
of the body. The motion tracking data was acquired at a sampling rate of 500Hz.

All events during the experiments, such as pressing/releasing the hand switches and the button, as well as 
invalid trials (shown error symbols), were tracked by the EEG system. Additionally, the start and stop of the 
recordings of each measurement system were recorded by the trigger channels of the EEG system to synchronize 
all the data in the offline analysis.

Figure 2.   Concept for the evaluation of the classifier and the results of the ERP analysis (topography and 
grand average ERPs). Three train-test conditions (A, B, C) were selected for the evaluation of the classifier 
and shown in (a). The ERP analysis shown in (b) and (c) was performed on the data of the unilateral and 
bilateral movement tasks. For the ERP analysis, the data was band-pass filtered ( 0.1− 4Hz ), eye blinks were 
removed by manual exclusion of ICA components, and segmented into epochs from −1.5 s to 0 s based on the 
movement onset. Before averaging epochs, a baseline correction of −1.5 s to −1 s was applied based on the 
movement onset. A total of 960 epochs across all subjects were used to calculate the grand average of ERPs for 
both movement tasks. The grand average ERPs and topography were visualized for the two movement tasks: 
unilateral in (b) and bilateral in (c).



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16690  | https://doi.org/10.1038/s41598-024-65910-8

www.nature.com/scientificreports/

Estimation of physical movement onset
For estimating the physical (ground truth) movement onset, the position data tracked by the motion capture 
system were analyzed and processed in an offline evaluation. Since the executed reaching tasks consisted of 
moving the hand from a resting position towards the button, the data from the reflective marker of the moved 
hand was used for the estimation. Note that in a later rehabilitation session, movement onsets will be detected 
by the exoskeleton25,59. Since only healthy subjects participated in the study, the right arm was assumed to be the 
affected arm, while the left arm was assumed to be unaffected as stated above. Therefore, for bilateral movements 
only the position data of the left hand was selected for estimating the ground truth movement onset.

In the first processing step, the EEG and motion capture data were synchronized. Afterward, the position data 
was re-initialized to the resting position by subtracting the mean position data, calculated from the first second 
(resting period) of each experiment. In the next step, the absolute distance to the resting position was calculated 
by computing the euclidean distance from the three-dimensional position data. Additionally, the velocity of 
the hand was calculated for each timepoint by taking the difference between two consecutive samples of the 
euclidean distance. The velocity was filtered by a lowpass filter with a cutoff frequency of 4Hz (butterworth, 4. 
order) and normalized to the maximum value of the current trial. The distance and velocity were then combined 
by multiplication in order to provide an exact estimate of the movement onset. This procedure was chosen to 
calculate the onset, independently of small position fluctuations (producing high-speed values) or slight varia-
tions of the resting position between trials.

Starting from the movement period towards the resting period, it was searched backward for a data point 
with a magnitude below a defined threshold. The search started at the time when the mechanical hand switch was 
released since this is assumed to be the movement onset plus the mechanical delay of the device. The threshold 
was set to 0.6mm and specified concerning the resolution of the motion tracking system after calibration. The 
movement onsets were marked in the EEG data.

Channel selection and reduction
In order to provide proper transferability of the classifier, we custom selected EEG channels by means of the 
knowledge about the surface distribution of relevant EEG activity with respect to individual EEG channels. 
Since the LRP can be observed in the hemisphere contralateral to the side of the moved limb (right arm), we 
custom-selected channels for the classifications that were located on the left hemisphere, especially in the area of 
the motor cortex. With this approach, we aim to enhance the transferability of the classifier, which is trained on 
evoked EEG potentials from bilateral movement planning to predict unilateral movement intentions by selecting 
EEG channels related to right arm movements.

Besides enhancing the performance of the transferred classifier, we also aim to reduce the number of channels 
to provide an approach that is feasible to be used with persons suffering from stroke. Therefore, we systematically 
reduced the number of EEG channels used for the prediction of movement intentions in order to reduce the 
preparation effort in a real rehabilitation session. Due to this, we evaluated the use of 32, 21, 16, 8, and 4 custom-
selected channels to predict movement intentions. For the different numbers of channels, the selection was made 

Figure 3.   Experimental setup of the study. In (a) a subject is shown sitting in front of a screen wearing an EEG 
cap with 64 electrodes. In (b) the custom build experimental board including hand-switches (orange) and a 
button (blue) as well as the placed EMG-sensors (yellow) and motion tracking marker (green) are illustrated.
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considering the C1 channel as a center of EEG activity related to movement planning, with the other channels 
located around it. Therefore, by reducing the number of channels the area covered by the electrodes around this 
center was further reduced in size. The specified EEG channels for the custom selection are illustrated in Fig. 4.

In order to evaluate the relevance of custom channel selection, we further compared the custom selection 
to standard electrode constellations based on the extended 10–20 system. Since such a standard constellation 
comprises at least 16 EEG channels, we evaluated and compared 32, 21, and 16 channels for the standard con-
stellation as a baseline for our custom channel selection. The standard channel constellations for the different 
numbers of channels are illustrated in Fig. 5.

Figure 4.   Custom selected channels from the left hemisphere. Channels used for the study are marked by a red 
circle. The first 32 channels of the 64-channel cap layout are marked in Green, whereas the second 32 channels 
are marked in Yellow (combined to a total of 64 EEG channels).

Figure 5.   Standard channel constellation based on the extended 10–20 system. The channels used for this study 
are marked in green.
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EEG processing and classification
For the processing and classification of the EEG signals, the signal processing and classification platform 
pySPACE60 was used. A previously developed machine learning pipeline20, specialized to detect the LRP, was 
adopted.

Preprocessing and windowing
The EEG signals were processed window-wise by cutting out overlapping windows with a length of 1 s and a 
stepsize of 0.05 s . For each trial, a total of 81 windows, starting from window [−5.00,−4.00] s to [−1.00, 0.00] s 
were cut out with respect to the labeled physical movement onset at 0 s.

First, a subset of EEG channels corresponding to the evaluated channel selection methods was included in 
the next processing steps (see Channel Selection and Reduction). Subsequently, the data were standardized 
channel-wise (zero mean, SD of one) and decimated to 20Hz . Next, a FFT bandpass filter with a passband of 
0.1–4.0Hz was applied.

Feature extraction and classification
The channel dimension was reduced by applying an xDAWN spatial filter61 with 4 remaining pseudo-channels, 
which was designed to enhance event-related potentials. Afterwards, the last 4 samples of each window, that cor-
respond to the last 0.2 s , were extracted as time domain features. Therefore, a total of 16 features were extracted 
for each window. The features were then normalized by applying a Gaussian feature normalization (zero mean, 
variance one). After feature extraction, an SVM with L1-norm regularization was trained for a binary classifica-
tion task. The class labels were NoLRP (resting) and LRP (movement intention). To train the classifier, 2 out of 
3 recorded measurement sets (80 movement trials) were used as training data and the remaining set (40 move-
ment trials) was separated for testing (for more details see section Performance Evaluation and Metrics). The 
complexity parameter (hyperparameter) of the SVM was optimized by applying a grid search with 7 equal-spaced 
values in a range of 10−6–100 and using a five-fold cross validation on the training dataset to obtain the optimal 
hyperparameter. After obtaining the optimal complexity value, the SVM was trained on the whole training 
dataset. The class weights of the SVM were set to a ratio of 1:2 (NoLRP:LRP). The windows [−1.10,−0.10] s and 
[−1.00, 0.00] s were used as training instances of the LRP class and the windows [−3.05,−2.05] s , [−3.25,−2.25] s 
and [−3.50,−2.50] s were selected as training instances of the NoLRP class. After training, the classifier was used 
to predict all windows of a separate test set. This was done to simulate a real online application scenario, where 
a classifier continuously determines whether EEG windows correspond to a resting period or a period of move-
ment intention. The SVM scores were then transformed into a probability by using Platts sigmoid function62. A 
probability greater than 0.5 corresponded to a detected intention to move (LRP class); otherwise, a rest period 
(NoLRP class) was detected.

Performance evaluation and metrics
Since the class ratios (NoLRP:LRP) are unbalanced for the continuous detection of movement intentions (longer 
resting periods than movement planning) the balanced accuracy (BA) was used as a performance metric. The 
balanced accuracy calculates the performance concerning the individual class rates for both classes and is defined 
as the mean of the true negative rate (TNR) and the true positive rate (TPR). During the evaluation, care was 
taken that the TNR and TPR for each classification result were not imbalanced to avoid a disbalance or bias 
between the prediction of the NoLRP and LRP classes.

To emulate an online application scenario, the classifier was evaluated by creating set-wise train and test pairs. 
As mentioned above, for each condition, 2 measurement sets were used for training and the remaining set was 
used as a test set to evaluate the performance (leave one set out validation). Therefore, for each condition, a total 
of 24 performance results were produced due to 3 train/test permutations for all 8 subjects.

To evaluate the performance results with respect to the characteristics of the LRP, a relabelling technique was 
applied to the classification outcome in order to generate ground truth labels for performance evaluation. Since 
the individual planning and execution of a movement, for example, depending on the waiting time, is affecting 
the temporal characteristics of the LRP63, a variability between single trials must be considered. Since the actual 
start of the movement planning remains unknown, ground truth labels of the windows were computed based 
on the classification outcome for each individual trial considering an online application. In the following, the 
procedure is described in detail.

First, a change point of classes (class boundaries) was computed, which gives an estimate of a started move-
ment planning phase after the resting period and therefore the starting point of the LRP class in time. This 
change point was defined as a point between two consecutive windows that lies within an interval between 
window [−2.00,−1.00] s to window [−1.00, 0.00] s . This is the range where movement planning is to be expected 
when continuously classifying windows in an online application scenario. The windows at the boundary of 
the defined interval correspond to windows where the true label is known with high certainty for the NoLRP 
( [−2.00,−1.00] s ) and LRP ( [−1.00, 0.00] s ) class. The choice of the class boundaries was also discussed in our 
previous work in20. If three consecutive NoLRP windows were counted backward in time (starting from window 
[−1.00, 0.00] s backward) within this range, the label change point was detected and the labels of all windows 
before this point were set to the NoLRP class and past this point to the LRP class. In case no change point was 
found inside this range, all windows within this range were defined as instances of the LRP class corresponding 
to a detected long movement planning phase. However, for windows where the true label is known (from the 
experimental design), the class label remained fixed for each movement trial. Therefore, all windows before 
window [−2.00,−1.00] s were always instances of the NoLRP class while window [−1.00, 0.00] s was always an 
instance of the LRP class. In conclusion, this technique was used to provide ground truth labels for each sliding 
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window based on the nature of the LRP under predefined constraints where the detection of a movement inten-
tion was allowed. To illustrate the procedure, the applied method is shown in Fig. 6.

Statistical analysis
The classification performances were analyzed by two-way repeated measures ANOVA with number of chan-
nels and train-test condition (Fig. 2a) as within-subjects factors to investigate the effect of cross-task transfer 
depending on the number of channels: transfer vs. no transfer (see Fig. 7). Additionally, we performed two-way 
repeated measures ANOVA with channel constellation and train-test condition (Fig. 2a) as within-subjects factors 
to compare both a standard constellation and custom channel selection for each train-test condition (see Fig. 8).

Ethical approval
The conducted study was examined and found to be harmless by the University of Bielefeld according to the ethi-
cal guidelines of the German Society for Psychology and the Professional Association of German Psychologists.

Results
Figure 7 shows the comparison of the classification performance between the following conditions: (A) unilateral-
unilateral (no transfer; baseline) and (C) bilateral-unilateral (transfer). As stated before for our envisioned appli-
cation conditions A and C are most relevant with respect to the question of what the performance differences 
are between cross-task transfer from bilateral to unilateral (condition C) and no transfer in which training and 
testing takes place on EEG activity recorded from the hemisphere contralateral to the moved arm (condition A). 
We found no significant differences between both train-test conditions (A vs. C) for all channel number setups 
(32, 21, 16, 8, 4). That means that the classification performance was slightly reduced for the transfer case but 
did not differ significantly from the no transfer case. In addition, we found no significant differences between 
the other comparison pairs of the train-test conditions, i.e., (A) versus (B) as well as (B) versus (C), for all setups 
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Figure 6.   Illustration of the relabeling technique. In (a) the determination of the label change point between 
two consecutive windows is shown while in (b) the ground truth label after applying the method is illustrated.
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of channel numbers (32, 21, 16, 8, 4). Note that the evaluation design was illustrated in Fig. 2a, i.e., three types 
of train-test conditions (A, B, C).

Figure 8 shows the classification performance between both types of channel constellations: (1) standard 
constellations vs. (2) custom channel selection. The custom channel selection improved the classification per-
formance. This was evident for the case transfer [standard constellations vs. custom channel constellations: n.s. 
for all setups of channels, see train-test condition (C) in Figure 8]. The case no transfer also benefited from the 
selection of custom channels when the number of channels was reduced (see train-test condition (A) in Fig. 8). 
However, when EEGs from bilateral movements were used for training and testing, we found no differences 
between both channel constellations, although, in the custom channel selection, only channels from the left 
hemisphere were used. Moreover, the classification performance was not affected by channel reduction (see, 
train-test condition (B) in Fig. 8).

Discussion
In this work, we proposed a novel approach to generate labeled EEG data from bilateral movement executions 
to train a classifier to predict unilateral movement intentions with high performance. The results show that uni-
lateral movement intentions can be predicted with a balanced accuracy up to 0.845 (for 32 channel, see Fig. 7) 
using the proposed approach for transferring the classifier. This implies that recorded EEG data from a bilateral 
interaction session can be used to predict unilateral movement intentions with high performance. Additionally, 
the results showed that there were no significant differences between classification performances of the no-
transfer condition unilateral-unilateral (A) and the cross-task transfer condition bilateral-unilateral (C) using 
the custom channel selection in case that a reduced number of channels was used for the classifications for the 
cross-task transfer condition (C) (see Fig. 7).

Moreover, we found that a custom selection of EEG channels outperformed the use of a standard channel 
constellation for training and transferring the EEG classifier (see Fig. 8). Therefore, the custom channel selection 
outperformed the standard channel constellation, especially for the transfer case. These results indicate, that 
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the custom channel selection allows the possibility to provide a proper transferability of the classifier to predict 
unilateral movements although only bilateral movements were executed in the training session.

In summary, our proposed cross-task transfer approach yields comparable performances to the no-transfer 
case for a unilateral movement prediction task based on EEG data. These results conducted with healthy subjects 
suggest that a cross-task transfer is possible and might be used in the future to transfer a ML model trained during 
an exoskeleton-supported mirror mode rehabilitation session to trigger movements support of an affected arm 
of a patient by the exoskeleton. A transfer of the results between healthy subjects and patients seems promising 
since the classifier is trained on the data evoked in the hemisphere that is affected by stroke. Hence, the classi-
fier can learn the affected pattern. The ability of a classifier to learn to infer movement intention from affected 
brain signals is supported by our own preliminary measurements with a small sample of stroke patients. These 
preliminary results indicate that movement intentions can be inferred with a performance comparable to that 
of healthy subjects although brain activity patterns are different due to the cerebral damage after stroke. Also, 
literature shows, that although cerebral damage might make it more challenging to detect movement intentions 
from the EEG with actual stroke patients due to possible differences in active cortex regions or signal amplitude64 
as well as additional artifact contamination of the signals65 the detection of movement intentions from the EEG 
after stroke is feasible66,67. Hence, being aware that the neural activity pattern may be altered after stroke, we 
think that the proposed approach can be successfully transferred to patients since the altered EEG pattern will 
be learned by the classifier from actually evoked movement preparations in the EEG of the paretic hemisphere 
as well as the surrounding motor area. Further studies with stroke patients are planned to answer this open 
question of our proposed new approach.

As expected, the results of our analysis of the effect of the number of electrodes showed, that the performance 
of the classifier systematically decreases with the number of used channels for all conditions. Nevertheless, the 
results show that the number of channels can be reduced, for example, from 32 to 21 channels without a signifi-
cant performance loss in case of classifier transfer (condition C in Fig. 7). Hence, a subset of channels covering to 
some extent relevant brain regions provide sufficiently relevant features for the detection of movement intentions. 
Even more interesting was, that we did not find significant differences between the cross-task transfer condition 
bilateral-unilateral (C) and no transfer baseline condition unilateral-unilateral (A) even though the number 
of channels was reduced for example from 32 to 21 included channels (see Fig. 7). This strongly motivates the 
applicability of the proposed approach even more, due to a clear reduction of preparation time when using a 
reduced number of EEG channels. Nevertheless, the channels must be carefully selected and were specifically 
chosen in the conducted study depending on the motion task to allow channel reduction without much loss in 
performance. Therefore, the same number and selection of EEG channels may not be adequate for a different 
movement task (e.g., hand movements) and an alternative manual or automatic technique can be required when 
reducing the number of used EEG channels.

Conclusion
We proposed a novel approach to train an EEG classifier on EEG data recorded during bilateral reaching move-
ments supported by an active exoskeleton that is afterward transferred to predict unilateral reaching move-
ments. The cross-task classifier transfer was supported by our knowledge-based selection of EEG channels. The 
approach was evaluated with data from healthy subjects recorded in the conducted study. It was shown that the 
proposed transfer approach can predict unilateral movement intentions with a high performance although the 
classifier is trained only on EEG data recorded during bilateral movements and even when using only a small 
amount of channels.

Due to the promising results, we are planning further investigations with stroke patients to evaluate the pro-
posed approach to improve stroke rehabilitation. In future work, we plan to use our approach in robot-supported 
rehabilitation using an upper body exoskeleton. In such an application bilateral movements of a hemiplegic 
patient can be detected from movement onsets of the unaffected arm while the assistive robotic device moves the 
affected arm synchronously with the unaffected arm (mirror mode). Hence, rehabilitation therapy can take place 
while EEGs are recorded and automatically labeled to generate labeled training data. After training a classifier 
on this data, unilateral movement intentions of the affected arm can be detected from it and supported by an 
exoskeleton. However, we assume that in the case of patients suffering from stroke channel selection might have to 
be adapted. To this end, an automated approach considering the type and effect of the lesion would be preferable.

We believe that our novel, robot-assisted rehabilitation approach can improve future rehabilitation therapy 
in coping with the effects of demographic changes such as the increase in life expectancy and the accompanying 
need for more support for the aging population.

Data availability
The datasets generated and/or analyzed during the current study are available in the following Zenodo reposi-
tory: https://​doi.​org/​10.​5281/​zenodo.​10229​480.
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