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Abstract—Dynamic hand gesture recognition is crucial for
human-machine interfaces in the automotive domain. However,
creating a diverse and comprehensive dataset of hand gestures
can be challenging and time-consuming, especially in dynamic
dual-task situations like driving. To address these challenges, we
propose using synthetic gesture datasets generated by virtual 3D
models as an alternative. Our framework synthesizes realistic
hand gestures using a combination of 3D models and animation
software, particularly utilizing Unreal Engine. This approach
enables the creation of diverse and customizable gesture datasets,
reducing the risk of overfitting and improving the model’s
generalizability. Specifically, our framework generates natural-
looking dynamic hand gestures with multiple variants, including
gesture speed, performance, and hand shape. Moreover, we
simulate various camera locations, such as above the driver and
behind the wheel, and different camera types, such as RGB,
infrared, and depth cameras, without incurring additional time
and cost to obtain these cameras. Our experiments demon-
strate that our proposed framework, SynthoGestures (avail-
able at https://github.com/amrgomaaelhady/SynthoGestures), can
augment or replace existing real-hand datasets with additional
enhancement in gesture recognition accuracy. Our tool for
generating synthetic static and dynamic hand gestures saves
time and effort in creating large datasets, facilitating the faster
development of gesture recognition systems for automotive ap-
plications.

I. INTRODUCTION

Hand gestures are an essential aspect of human-machine
interaction, as they enable natural communication between
humans and devices [1]–[6]. In particular, hand gesture recog-
nition can control various parts of the vehicle, such as audio
systems, climate control, and navigation [7]–[9]. Hand gesture
recognition involves detecting, analyzing, and interpreting
hand movements to understand the intended message [3], [10]–
[14]. As technology advances rapidly, hand gesture recognition
techniques have evolved significantly. Despite these advances,
state-of-the-art techniques rely on complex deep learning al-
gorithms that require large amounts of data [1], [2], [15], [16].
While most existing state-of-the-art gesture recognition meth-
ods achieve high performance, they suffer from a lack of gen-
eralization due to multiple factors, such as the need for further
data and dataset biases. To solve these problems, researchers
used model adaptation and personalization to improve user
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Fig. 1. We present, a new 3D synthetic hand gesture generation framework,
SynthoGestures, that provides a cost-effective and flexible approach for
creating new variations of dynamic and static hand gestures. Our framework
combines 3D modeling with a game engine (i.e., Unreal Engine) to produce
multiple datasets with different camera positions (e.g., infotainment perspec-
tive, top view, and behind the wheel) and different camera types (e.g., RGB,
infrared, and depth camera) with different noise modeling techniques.

performance [17]–[19]; however, they still require recruiting,
collecting and recording large amounts of data. Obtaining large
datasets of real hand gestures in dual-task dynamic situations,
such as controlling the vehicle while driving, can be expensive
and time-consuming. To address this challenge, researchers
have turned to synthetic data generation [20]–[27]; however,
these tools are still generating basic and mostly static gestures.
Thus, we propose SynthoGestures1, an Unreal Engine-based
framework that creates synthetic nature-looking dynamic hand
gestures with all the desired variations to be used in training
large gesture recognition models. Our tool can be used to
create synthetic datasets from multiple camera positions within
the vehicle (i.e., multiple point-of-view) as well as multiple
sensor types, such as RGB, infrared, and depth-based cameras,
with added noise modeled from existing hardware.

In summary, our contributions are three folds as follows:
1) We present, SynthoGestures, a novel 3D dynamic hand
gesture generation framework that provides a cost-effective
and flexible approach for creating new variations of hand
gestures using different sensor types to overcome data set
biases and lack of generalization. 2) We provide a dataset
of synthetic hand gestures in the automotive domain for
controlling various parts of the infotainment system. 3) We
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highlight the augmentation ability of synthetically generated
dynamic hand gestures to partially or fully replace existing
hand gesture datasets with additional enhancement in model
performance when training with state-of-the-art recognition
models.

II. RELATED WORK

This section delves into existing research on synthetic ges-
ture generation and recognition. When utilizing synthetic data
to train a machine learning algorithm for gesture recognition,
two overarching aspects emerge; the quality and quantity of
the samples. Hence, synthetic data generation is challenged by
generating a large volume of samples that closely resemble
real gestures in terms of appearance and functionality while
encompassing sufficient variations to generate a substantial
amount of data that would enhance generalization and model
performance.

Several approaches explored synthesizing hand gestures
to enhance gesture recognition models [23]–[25], [28]–[31].
However, most approaches focused on static, isolated hand
gesture recognition with a black background. More specifi-
cally, Lindgren et al. [23] investigated simple static gesture
recognition using synthetic data. However, they focused on the
impact of simple variations in the simulated hand (e.g., thicker
hands, taller fingers, and wider interfinger spacing) on recog-
nition accuracy. In more detail, they used a character model
in Unreal Engine to perform five static hand gestures. While
the length and spacing of the fingers were modified within
the 3D model, the remaining variations, such as the thickness
of the fingers, the rotation, and the position of the hand, were
applied to the depth image after generation. They evaluated the
influence on recognition accuracy by systematically excluding
these individual variations from the training set in an ablation
study. The results revealed that all variations, except rotation,
contributed to increased recognition accuracy. Interestingly,
the accuracy declined when rotation changes were included
in the training set. The authors reasoned that the original
orientation of the hand played a crucial role in recognition
and that alterations in rotation disrupted this essential feature,
rendering it unreliable for accurate classification. However, a
limitation of this study is that the authors primarily focused on
applying variations to the image itself rather than leveraging
the full potential of the character model. Consequently, their
approach could have been replicated using real hand images,
thereby underutilizing the capabilities offered by the game
engine. Another limitation is that they focused only on static
gestures in a static environment, unlike our approach, which
focuses on dynamic gestures for a dynamic environment such
as driving.

Similarly, Tsai et al. [24] explored an alternative approach
to improve recognition accuracy by combining synthetic and
real data. Their methodology aligned with the previous study,
involving variations in static hand gestures that encompass
finger spacing, rotation, size, and position. However, they
implemented these modifications directly on a hand model,
incorporating a more comprehensive range of gradations. This

resulted in a total of 108,864 synthetic gestures generated.
They compared three training models: one that exclusively
uses synthetic data, another that is trained sequentially with
synthetic data followed by real data, and a third model that
is trained simultaneously with synthetic and real data. The
authors reported an accuracy improvement of 27.78%, 79.86%,
and 89.58% for each model, respectively. However, when
the authors introduced a complex background instead of a
simple black background, all models fell significantly below
the accuracy value of the real data-only model. While the
authors suggested employing a background removal algorithm
to mitigate this issue, we suggest incorporating the background
during the gesture modeling and synthesis stage, as presented
in our simulation. Although the aforementioned approach
involves augmenting real data with synthetic data, most studies
adopt a slightly different strategy. They employ a real data set
as the foundation and supplement it with synthetic data to
expand the training set. This approach reduces the need for
extensive gesture recording while enabling coverage of corner
cases not covered by the real data set. For example, Ibrahim
and Kashef [25] observed that dynamic sign language gesture
recognition improved consistently when using a combination
of real and synthetic data, especially for small-size datasets.
Additionally, they discovered that synthetic data promote
signer independence within the training set, mitigating the
problem of overfitting and improving model generalization by
ensuring sufficient variation in gesture generation.

The significance of recognition accuracy in gesture recog-
nition extends beyond animation quality and realistic sam-
ples. De Melo et al. [31] demonstrated this by generating
dynamic gestures using 3D character models and investigating
the performance impact of various variations in the virtual
environment and gestures. Experimental manipulation of input
parameters yielded notable results. Generally, higher resolu-
tion proved beneficial for performance. Similar trends were
observed for rendering quality and frame rate, as reducing
the number of frames resulted in diminished performance.
Additional experiments were conducted to assess the influence
of factors such as animation speed, skin tone, thickness,
character model gender, and background environment. Any
modifications to these variations led to a significant decrease
in performance, except for the background and gender of
the character model. The findings of this study highlight the
multitude of factors that can impact the performance of gesture
recognition algorithms. Consequently, these factors warrant
careful consideration when synthesizing hand gestures and
justify the need for a framework with more control over the
generated data as implemented in our approach.

III. METHOD

The SynthoGestures framework employs a systematic ap-
proach to generate dynamic hand gestures. It starts by collect-
ing initial settings from user input or a JSON file, including
recording parameters and default hand selection. Users can
customize gestures by specifying camera types, locations, hand
attributes, gesture speed, and lighting conditions. The frame-
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Fig. 2. Overview of our SynthoGestures framework for dynamic hand gesture synthesis. It takes initial settings by user input or reads them from a
JSON file. This includes generic recording settings such as saving file path, number of recordings per gesture, video resolution, and default hand to perform
gestures. Next, the framework allows for the customization of gestures, including camera types, locations, hand shapes and positions, gesture speed, and
lighting conditions. This enables the generation of diverse variations in performance for dynamic hand gestures. Additionally, it allows the user to identify
only general settings and automatically loops over all possible gesture-specific settings to produce a comprehensive data set with multiple variations.

work automates the generation process by iterating through
gesture-specific settings, resulting in a comprehensive dataset
with various performance variations, as seen in Figure 2. An
initial gesture script (i.e., Unreal Engine blueprint) is created
as a baseline for further gesture generation. It encompasses
a list of variations that lead to different executions during
generation and recording. Once the gestures are defined, the
user proceeds with camera location selection, choosing a
camera type and angle for iterative recording.

a) Camera Selection.: Users can customize camera se-
tups in camera settings, including camera types and their
associated parameters. Each camera type in the list includes
parameters such as activation status and a list of camera angles
such as position and rotation. Within our framework, three
camera types are available: RGB, depth, and infrared. How-
ever, additional camera types can be easily modeled into the
framework using the appropriate realistic specifications. The
RGB image is obtained directly from the virtual camera sensor
provided by Unreal Engine without additional post-processing
or added effects. The depth camera introduces depth percep-
tion by utilizing a flip-book animation of a grayscale noise
texture. This texture, divided into multiple tiles, changes every
few frames to simulate noise variations. An adjustable variable
controls the intensity of the noise, filtering out pixels with
smaller alpha values. The noise intensity depends on the
object’s distance from the camera and the depth difference
between adjacent pixels. This approach enhances the noise
around edges and nonorthogonal surfaces. The resulting depth
image is generated by interpolating pixel colors based on the
distance to the camera, while the depth difference and distance

modulate the noise. This approach for modeling the noise of
a depth camera provides a realistic representation of depth
information in the scene as seen in previous work [32]. The
infrared effect is achieved by applying the Fresnel effect [33]
to the person’s body, resulting in an orange color at the
center, transitioning to green towards the edges. Other objects,
including the car, exhibit the Fresnel effect with a dark blue
appearance. Blurring effects are simulated using a panned
noise texture across the character, creating a blurry appearance
at the edges.

b) Gesture Selection and Performance Variation.: Upon
selecting the desired camera angle, the system proceeds with
the iteration process through the available gestures. The ed-
itable gesture list found in the general settings determines
the inclusion of gestures in the generation phase. A child
script inherent from the previously mentioned baseline script
to provide essential gesture variations and to define the hand’s
movement path during the gesture execution using a spline
positioned in front of the human model within arm’s reach.
An illustrative example of setting up a rotation gesture is
presented in Figure 3. Our gesture generation system en-
compasses two modes: description-based and animation-based.
The description-based method provides a more optimum so-
lution for gesture execution. There are two modes within the
description-based method: the single gesture mode and the
chain gesture mode. In the single gesture mode, a pre-gesture
is initiated, followed by the execution of the gesture itself, and
concluding with a post-gesture. This sequence is repeated to
generate multiple variants of the gesture. The same procedure
is applied to the remaining gestures. On the other hand, in the



Fig. 3. An example of the character model with the spline of a rotation gesture (right) with the generated gesture sequence as a low frame rate depth image
without noise (left).

chain gesture mode, the order differs. The pre-gesture is initi-
ated first, followed by the execution of all gestures, including
transitions between them, and ultimately the post-gesture. This
iterative process generates diverse variants. In chain mode,
consecutive gestures are considered cohesive and recorded in a
single video. Several parameters can be chosen for the gesture,
including Gesture Name, Number Of Variations, Use of Left
Hand, Arm Part (identifying the segment of the arm), Gesture
Speed, Pre-gesture Speed (denoting the speed of the hand
when reaching the starting position of the gesture) and Post-
gesture speed (denoting the speed of the hand when moving
back to the driving wheel). Several additional variations exist
within the SynthoGestures framework controlling every aspect
of gesture performance and hand physique.

c) Gesture Execution.: Once all cameras are selected
and all gestures are implemented, gesture execution begins.
In the description-based approach, a gesture is represented
in the game engine as an object comprising a spline and
variation components. During recording, the arm follows a
coordinate traveling along the spline. The child script handles
the coordination of the spline and arm movement. The main
event, triggered after the pre-gesture animation, updates the
spline to encompass the entire gesture path. A timeline moves
the hand along the spline, while an additional function de-
termines the hand’s position and applies appropriate rotations
and finger variations. There are special cases for chain mode
and static gestures, each requiring specific handling during
gesture execution. Transition speeds are adjusted on the basis
of the length of the spline segment and desired speed, ensuring
realistic movement. The Control Rig, an inverse kinematic
system for human movement modeling, updates the human
model based on the position of the hand. It aligns the upper
and lower arm with the wrist to achieve natural movement.
The arm is positioned before the main gesture for the hand
and finger gestures, and only the hand or finger is moved using
an aiming function. The Control Rig’s functionalities include

updating the arm, hand rotation, finger rotation, and spacing,
contributing to the realistic execution of the gesture.

IV. RESULTS

To assess the effectiveness of the gesture generation sys-
tem, we employ the methodologies of Tsai et al. [24] and
Ibrahim and Kashef [25] in combining synthetic and real
data to improve the accuracy of recognition or maintain
performance with limited real data points. We utilize the
NVIDIA Dynamic Hand Gesture Dataset [12] and the state-
of-the-art gesture recognition model recently developed by
Köpüklü et al. [13], [14]. Six distinct gestures were selected
from the NVIDIA dataset, generated with multiple variations,
and then recorded as depth camera videos. These variations
encompassed changes in the character model’s gesture speed,
position, finger rotations, and hand orientations. The selec-
tion of random value ranges for these variations was aimed
at producing natural-looking gestures while maximizing the
parameter space. In total, 600 gesture videos were generated,
with 100 variants for each of the six selected gestures. The real
data set was divided into 50% for training, 30% for validation,
and 20% for testing. Note that the synthetic data was not used
for validation and testing since it is used as an augmentation
technique and it is not the target of the gesture recognition
model. The six gestures chosen for the experiments included a
horizontal swipe gesture, a vertical swipe gesture, a horizontal
swipe gesture with two fingers, a peace sign, a rotating gesture
with two fingers, and a pointing gesture with two fingers.

A comprehensive set of experiments was performed to
evaluate the effectiveness of synthetic data and to determine
optimal configurations for training a neural network. The
baseline experiment exclusively utilized real data, consisting
of a diverse range of 33 gesture variations per gesture class
collected from 20 participants [12]. To assess the efficacy
of synthetic data, a pre-training approach was used, where
different proportions of synthetic data were initially trained,
corresponding to ratios of 25%, 50%, 100% and 200% (i.e.,
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Fig. 4. Gesture recognition accuracy for different combination of synthetic
and real hand gestures. The prefix “Pre” are the models pre-trained with
the synthetic data, while “Mixed” are models trained from scratch with the
combined synthetic and real data. The first number is the percentage of gesture
variations (i.e., data size) for synthetically generated hand gestures, while the
second number is the same for the real data.

8, 16, 33, and 66 generated gesture variations per gesture).
Then, it was followed by a fine-tuning step using the entire
real dataset. Subsequent experiments involved the training
of the neural network from scratch using this combination
of synthetic and real data throughout the training process,
with the hyperparameters set to default values as defined
in [14]. Consistency in training time and epoch count was
maintained to ensure a valid comparison of the trained models.
Furthermore, two additional experiments were carried out,
combining 25% and 50% of the real data variations with
100% of the synthetic data variations. These experiments
involved simultaneous training in both real and synthetic data,
replicating the methodology mentioned earlier to examine the
individual impact of real and synthetic data on the learning
model. Figure 4 presents the recognition accuracy for all
experiments. It is evident that the pretraining strategy did
not enhance accuracy compared to the baseline, indicating
that using synthetic data alone is not equivalent to using real
data. On the contrary, training the model from scratch with a
combination of synthetic and real data demonstrated superior
performance, particularly when a substantial amount of syn-
thetic data was incorporated. Furthermore, when comparing
the “Mixed 25 100” model to the “Mixed 100 25” model,
with accuracies of 40.87% and 35.76%, respectively, both
synthetic and real data showed a similar effect on recogni-
tion performance. Similarly, comparing the “Mixed 50 100”
model to the “Mixed 100 50” model, with accuracies of
78.83% and 68.61%, respectively, revealed a similar pattern.
However, in both cases, having a higher proportion of real data
than synthetic data resulted in improved performance. These
experiments highlight that models incorporating synthetic with
real data outperform those trained solely on real data, specifi-

cally those trained with a substantial amount of synthetic data.
Furthermore, we analyze the impact of different ranges

of variations, including speed, position, and finger spacing,
on recognition performance, as in related work [23]. Each
variation is examined under median, low, and high range
conditions. We chose the model “Mixed 100 100” as the
default model for this analysis due to its high accuracy and
moderate complexity. In the low-range condition, gestures
are generated within half of the median range, while in the
high-range condition, gestures are generated within double the
median range. For example, if the median range for the speed
variation adds values between 0 and 50 cm/s to the default
speed, the low-range condition will have a range of 12.5 to
37.5 cm/s, and the high-range condition will have a range of
-25 to 75 cm/s. This assumes that the default speed is above
25 cm/s to ensure positive values. The low-range and high-
range conditions for position and finger spacing variations
follow a similar pattern, with each dimension or finger having
its own adjusted range. It is important to note that only
one variation’s range is altered at a time, whereas all other
variations, including other active variations besides speed,
position, and finger spacing, continue to generate random
values within their respective median ranges. This approach
maintains a controlled number of changing variables, which
is desirable to accurately interpret the experimental results.
Restricting the variations exclusively to finger spacing, for
example, while keeping all other parameters constant, would
result in repeated gestures with minimal differences in finger
positions, rendering the analysis less meaningful.

Similarly to the previous approach, an analysis of other
parameters of camera settings is conducted. As evaluation in-
volves a depth camera, a similar conditional analysis is applied
to certain modeling aspects of the camera, such as the linear
coefficient of the camera chromaticity values [34] and the
minimum and maximum range of the camera, which typically
represents a hardware specification for various commercially
available depth cameras. The comparison of the model perfor-
mance for gesture-related and camera-related parameters under
the three range conditions is presented in Table I. Accuracy
results demonstrate that the selection of appropriate parameters
and settings for gesture generation significantly improves the
quality of synthetic gestures. For example, excessively lim-
iting the range of variations (i.e., low-range condition) leads
to overfitting and decreases performance, while excessively
high variance (i.e., high-range condition) introduces additional
noise. However, modeling both low and high ranges is crucial
to align with realistic hardware capabilities and gesture per-
formance constraints. It is worth mentioning that the median
range consistently yields optimal results across all ranges, as
it is modeled to represent the most realistic settings based
on previous research and assumes a highly capable hardware
configuration.

V. DISCUSSION AND CONCLUSION

We introduce SynthoGestures, a novel framework for gener-
ating synthetic dynamic hand gestures to enhance the accuracy



Gesture-Related Camera-Related
Range Condition Speed Position Finger Spacing Chromaticity Depth Range
Low 40.87% 43.06% 41.60% 42.33% 40.87%
Median 54.74% 54.74% 54.74% 54.74% 54.74%
High 55.47% 40.87% 31.38% 50.36% 41.60%

TABLE I
COMPARISON OF ACCURACY PERFORMANCE ACROSS DIFFERENT RANGES OF VARIED GESTURE-RELATED AND CAMERA-RELATED PARAMETERS. NOTE

THAT THE MEDIAN RANGE VALUE REMAINS CONSISTENT FOR ALL VARIATIONS, AS IT REPRESENTS THE ACCURACY RESULT OBTAINED FROM THE
DEFAULT MODEL “Mixed 100 100”.

of gesture recognition models. By leveraging the power of
virtual 3D models and animation software, our framework
enables the synthesis of diverse and customizable gesture
datasets. We have shown that by incorporating variations such
as gesture speed, performance, and hand shape, along with
simulating multiple camera locations and types, our framework
produces natural-looking gestures that closely resemble real-
world scenarios. Furthermore, our experiments have shown
that SynthoGestures can effectively augment existing real-hand
datasets while enhancing their performance. This capability
saves significant time and effort in the creation of datasets and
accelerates the development of gesture recognition systems in
automotive applications and beyond. While the results have
demonstrated the effectiveness of SynthoGestures in improv-
ing gesture recognition performance, it is essential to acknowl-
edge certain limitations and potential avenues for future work.
First, the current framework focuses primarily on the visual
aspect of hand gestures and may not capture other sensory
cues, such as tactile or proprioceptive feedback. For example,
trimmers could be added as noise to the hand gestures to
simulate force feedback when driving on different terrains. Ex-
ploring ways to incorporate these additional modalities could
further enhance the authenticity and realism of synthesized
gestures. Moreover, although SynthoGestures provides a wide
range of variations in gesture speed, performance, and hand
shape, there is still room to explore more complex and nuanced
variations that can capture the intricacies of natural hand
movements. Finally, our results show that having a higher ratio
of real-to-synthetic data is essential for improving the model
training performance, which should be considered in future
work and investigated further.

In conclusion, our framework can facilitate future work, ad-
vance the field of static and dynamic hand gesture recognition,
and pave the way for more sophisticated and accurate human-
computer interaction systems in various domains, including
automotive interfaces, virtual reality, and augmented reality
applications.
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