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ABSTRACT

In modern oceanography Photosynthetically Available
Radiation (PAR) is used for modelling vegetation
growth as it is a requirement for the process of
photosynthesis. PAR as integrated value of the light
spectrum between 400-700 nm can be measured directly
using respective sensor systems. However, PAR can
also be determined indirectly using measurements from
only a small number of discrete wavelengths. In this
paper, such a modelling approach is presented for
predicting PAR in the water column. The approach uses
spectral information within the water column and from
above the sea surface. Three different modelling
approaches based on artificial intelligence (AI) were
used. It was shown that the artificial neural network
(ANN) approach outperformed the regression tree (RT)
and the linear regression (LR) approaches. It was also
shown that the models generalise well, with an accuracy
loss of 10 % based on the median, on data recorded in
other geolocations without additional modification or
re-training.

INTRODUCTION

In modern oceanography, one of the important
parameters is Photosynthetically Available Radiation
(PAR), which is the integrated radiation between 400-
700 nm. It can be used for modelling vegetation growth
due to being a requirement for the photosynthesis

process (Holinde and Zielinski, 2016; Wang et al.,
2013).

Therefore, measuring PAR is important. As proven in
previous work, the PAR values can be re-constructed
using only discrete wavelengths from the underwater
light field and, if necessary, additional environmental
parameters (Stahl et al., 2022; Kumm et al., 2022).
Predicting PAR has been explored in the context of
autonomous Argo Float devices (Sloyan et al., 2018) in
(Stahl et al., 2022) using multiple linear regression and
regression trees. Kumm et. al. (2022) showed that these
results can be improved by using artificial neural
networks-based models and further improved by
incorporating additional environmental parameters, i.e.
pressure. Due to the heavy dependency of the
underwater light field on the incoming surface
irradiance (Es) (Wollschläger et al., 2020d), an
alternative to incorporate pressure measurements to
improve accuracy would be using these surface light
field measurements. However, since Argo floats operate
autonomous underwater for long time, simultaneous
measurements of the surface light field is not an option.

A similar way of measuring PAR is being conducted by
Freefall Profilers (Figure 1). However, different to Argo
Floats, these measurements also comprise Es. Therefore,
this study tries to map the approaches from Kumm et al
(2022) and Stahl et al (2022) to the freefall profiler
platform. In addition, it will be investigated if
incorporating Es into the model building increases the
accuracy. It will also be investigated if models trained
on one set of experiments can be generalised to data
from other measurements, i.e. other geolocations. If
possible, it would allow marine scientists to reuse the
developed models without re-training.
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Figure 1 – Freefall profiler.

RADIOMETRIC PROFILING

For the data acquisition, the underwater light field was
investigated using a free-falling profiling system
(HyperPro II; Sea-Bird Scientific, USA, former
Satlantic), which is designed to slowly sink vertically
through the water column (Figure 1). The HyperPro II
was equipped with two hyperspectral HyperOCR
radiometers (Sea-Bird Scientific, USA, λ=350-800 nm)
measuring different parts of the underwater light field:
A planar cosine radiometer was mounted looking
upward in order to determine the downwelling
irradiance Ed(λ), thus the overall light field propagating
from the from the sea surface into the depth. Another,
radiance-type radiometer with a field-of-view of 8.5°
was mounted looking downward to measure the
upwelling radiance Lu(λ), thus the light field scattered
back from the depth in a narrow cone in sinking
direction. A third planar cosine radiometer was placed
as reference in an unshaded, upright position on an
elevated position on the ship in order to determine the
downwelling irradiance Es(λ) above the seawater, thus
the light field impinging on the sea surface. Its
measurements allow the correction of the in-water
measurements for general changes in the light field (e.g.
temporary cloud coverage) during the deployment of the
HyperPro II. The HyperPro II also contains sensors for
additional parameters, like temperature, conductivity,
depth, chlorophyll-a fluorescence, backscatter, and tilt
of the instrument. All sensors on the instrument were
pre-calibrated by the manufacturer, and the radiometers
were checked with a reference lamp (FieldCal, TriOS
GmbH, Germany) before and after the cruise,
confirming that the initial calibration was still valid.

The handling of the HyperPro II followed the same
protocol as in Holinde and Zielinski (2016),
Mascarenhas et al. (2017), and Wollschläger et al.
(2020d): Prior to the deployment of the HyperPro II at a
station, the depth sensor was tared on deck of RV
Heincke (Alfred-Wegener-Institut Helmholtz-Zentrum
für Polar- und Meeresforschung, 2017) with the
instrument in an upright position in order to adjust it to
the current air pressure and ensuring correct in-water
readings of the depth. Afterwards, the HyperPro II was
deployed from the ship’s stern, letting it drift to a
distance of approx. 30 m to avoid shadow anomalies on
the underwater measurements caused by the ship and its
superstructures. Per station, one to three profiles were
taken, depending on available time. All profiles were
done as deep as possible (limited by the length of the
instrument cable), but at least until the lower limit of the
euphotic zone (depth in which 1% of surface PAR is
available). Data were recorded using the SatView
software (version 2.9.5_7). During data processing
readings corresponding to an instrument tilt of >5° were
discarded, as a vertical orientation of the instrument is
necessary for correct measurements.

MODELLING

For modelling purposes, data from the HE533
Expedition (Voß et al., 2020e) was used after pre-
processing, i.e. normalisation and removal of data
records with missing values. Random sampling without
replacement was applied, to split the HE533 data into a
training set (70 %) and a test set (30 %). The training set
was used to learn three different AI based models, i.e. a
Linear Regression model (LR), an Artificial Neural
Network model (ANN), and a Regression Tree
model (RT).

The test set was then used to validate the models
generated in terms of accuracy. The outcome of this
validation serves as a baseline to investigate the
generalisability of the different models to measurements
in other geolocations.

The models generated on HE533 where then applied on
the other datasets available and evaluated in terms of
accuracy. This accuracy was then compared with the
baseline accuracy calculated from the HE533 test data.
The modelling approach described is visualised in
Figure 2.

EXPERIMENTAL SETUP

Publicly available datasets from different ship cruises
are used. All datasets can be found on the data portal
Pangaea (www.pangaea.de). The data from the cruise
HE533 (Voß et al., 2020e) was used to train the different
models, while the data from the other cruises was used
for validation (Friedrichs et al., 2020; Mascarenhas et
al., 2020; Voß et al., 2020f, 2020a, 2020b, 2020c,
2020d; Wollschläger et al., 2020a, 2020b, 2020c). The
HE533 dataset contains originally 9858 tuples of which



37.77 % had to be discarded because of missing values.
The combined dataset for validation contains 64060
tuples of which 23.05 % for experiment 1 and 23.14 %
for experiments 2 and 3 had to be discarded also because
of missing values.

Figure 2: Modelling approach used

All models were generated using the KNIME
workbench (Berthold et al., 2009). An ANN was used
with one hidden layer containing 100 hidden units and
trained for 1,000 epochs, using adaptive RProp
(Riedmiller and Braun, 1993). For the RT the procedure
described by Breiman et al. (1984) is applied with a
couple of simplification, for instance no pruning, not
necessarily binary trees. LR model uses standard
multiple linear regression (Freedman, 2009).

Three sets of experiments were carried out. In all the
experiments, the models were trained using the HE533
dataset. In the first set of experiments, the models were
trained on three wavelengths measured in the water
column (Ed), 400 nm, 412 nm, and 490 nm, based on
(Stahl et al., 2022). In the second set of experiments, the
full spectrum of the surface light (Es) between 400 nm
and 700 nm, in 1 nm steps, was added to the inputs. In
the third set of experiments, the full Es spectrum was
replaced by the same wavelengths that were used from
the underwater light field. The results of the experiments
are presented in the next section.

EXPERIMENTAL RESULTS AND DISCUSSION

For comparing the models, the R2 values were calculated
on the test data (see Figure 2). The R2 value was chosen
as metric to ensure comparability with previously
published results (Kumm et al., 2022; Stahl et al., 2022).
The results on the three experiments can be found in
Table 1, where the R2 values on HE533 correspond to
the left hand side of Figure 2, whereas the R2 for all

datasets except HE533 correspond to the right hand side
of Figure 2.

As can be seen in Table 1, the R2 values on all datasets
are lower compared with R2 values on test data from
HE533. This was expected since the additional data was
not involved in training the models and were recorded
in different geolocations with different physical
properties.

Table 1: R2 values for different models using Multiple
Linear Regression (LR), Neural Network (ANN) and
Regression Tree (RT).

Experiment
#

Trained
on

Model
R2 on
HE533

R2

(all
Datasets
except
HE533)

1

HE533
Ed(400),
Ed(412),
Ed(490)

LR 0.984 0.884

ANN 0.986 0.879

RT 0.972 0.821

2

HE533
Es(full
spectru
m) and
Ed(400),
Ed(412),
Ed(490)

LR 0.984 0.035

ANN 0.989 0.899

RT 0.977 0.795

3

HE533
Es(400),
Es(412),
Es(490)
and

Ed(400),
Ed(412),
Ed(490)

LR 0.982 0.880

ANN 0.986 0.919

RT 0.973 0.822

When comparing Experiment 2 with Experiment 1, one
can observe that the R2 values are in the same order of
magnitude for the evaluation on HE533, i.e. there was
no improvement. However, when comparing results for
all datasets, it can be observed that for ANNs the
accuracy increases by 2.0 % whereas the performance
for the regression tree deceases by 2.6 %. Noticeable,
the linear regress decreases in performance by 84.9 %.
It is believed that this underperformance is caused by
outliers in some of the additional spectral information
from the surface light. The linear regression approach
will consider all spectral information including outliers.
On the other hand, regression trees perform an internal
selection of the best spectral information for branching
and building the tree structure. Therefore, outliers may
not be selected for branching. A neural network can also
cope very well with outliers, since they can model non-
linear dependencies.



When comparing Experiment 3 with Experiment 1 one
can observe that the R2 values are in the same order of
magnitude, even for linear regression. This is in line
with the observations about linear regression
performance in Experiment 2, since in Experiment 3 a
limited spectrum, i.e. number of input variables, was
used. The datasets were normalised before training and
validation took place.

Comparing results on HE533, with the results on all
datasets except HE533 and for all experiments, once can
see that the accuracy drops by approximately 10 % using
median. The neural network-based model outperformed
linear regression and regression tree-based models. This
is probably because there are some non-linear factors
that a neural network can compensate better. These
results are in line with the findings reported by Kumm
et al. (2022).

It was shown that spectral information from the surface
light can be used to improve the generalisability of the
models, especially of the ANN.

CONCLUSIONS AND FUTUREWORK

The paper presented a modelling approach for
predicting PAR in the water column, which uses
selected spectral information within the water column
and additionally surface spectral information. Three
different AI-based modelling approaches where used. It
was shown that the ANN approach outperformed the RT
and LR models. It was also shown that the models
generalise well on data recorded in other geolocations
without additional modification or re-training.

It should be noted that the parameter settings of the
models have not been optimised yet. Therefore, further
improvements are potentially possible. The selection of
spectral variables was based on the literature. However,
it is conceivable that different spectral information may
result in more accurate models. Also, other
environmental parameters such as e.g. pressure or
salinity could potentially improve the models.
Therefore, a more systematic variable selection process
will be investigated in the future. In addition, methods
to improve linear regression models, such as regression
splines (Friedman, 1991) or generalised additive models
(Wood et al., 2015), will be investigated.
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