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A B S T R A C T

Passive Acoustic Monitoring (PAM) has emerged as a pivotal technology for wildlife monitoring, generating vast
amounts of acoustic data. However, the successful application of machine learning methods for sound event
detection in PAM datasets heavily relies on the availability of annotated data, which can be laborious to acquire.
In this study, we investigate the effectiveness of transfer learning and active learning techniques to address the
data annotation challenge in PAM. Transfer learning allows us to use pre-trained models from related tasks or
datasets to bootstrap the learning process for sound event detection. Furthermore, active learning promises
strategic selection of the most informative samples for annotation, effectively reducing the annotation cost and
improving model performance. We evaluate an approach that combines transfer learning and active learning to
efficiently exploit existing annotated data and optimize the annotation process for PAM datasets. Our transfer
learning observations show that embeddings produced by BirdNet, a model trained on high signal-to-noise re-
cordings of bird vocalisations, can be effectively used for predicting anurans in PAM data: a linear classifier
constructed using these embeddings outperforms the benchmark by 21.7%. Our results indicate that active
learning is superior to random sampling, although no clear winner emerges among the strategies employed. The
proposed method holds promise for facilitating broader adoption of machine learning techniques in PAM and
advancing our understanding of biodiversity dynamics through acoustic data analysis.

1. Introduction

Passive Acoustic Monitoring (PAM) has emerged as a powerful
technology for wildlife monitoring, allowing researchers and biodiver-
sity managers to gather extensive acoustic data with minimal distur-
bance of natural habitats (Sugai et al., 2019; Sugai and Llusia, 2019).
PAM systems make it possible to continuously record environmental
sounds (soundscapes), offering valuable insights into animal behaviour,
species richness, and ecosystem health, with important applications in
ecosystem management, rapid assessments of biodiversity, and basic
research (Ross et al., 2023; Sueur et al., 2008). However, effectively
utilising the vast amount of data generated by these systems still poses
significant challenges, limiting adoption of PAM methods for

biodiversity monitoring.
Acoustic indices are often used as a computationally efficient strat-

egy for summarising and making sense of large soundscape datasets
(Campos et al., 2021; Machado et al., 2017; Sueur et al., 2014). How-
ever, these methods are controversial and have been shown to misrep-
resent biodiversity in some cases (Bicudo et al., 2023; Sethi et al., 2023).
Therefore, the detection and identification of discrete sound events (e.g.,
at the species level), while more costly, plays an essential role in
extracting ecologically relevant information from soundscape datasets.

1.1. Sound event detection

In the field of machine learning, the task of detecting and identifying
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discrete events in acoustic data is known as sound event detection, a
challenge well suited to the capabilities of convolutional neural net-
works (CNNs) (Hershey et al., 2017; Nolasco et al., 2023). Due to the
possible simultaneous occurrence of sounds from multiple species in a
soundscape, species identification is better described as a multi-label
sound event detection task. As with any other supervised learning task,
sound event detection requires the training data to be annotated with
class labels (e.g., species identity and times of occurrence), and
obtaining or generating those annotations can be very time consuming.

While the idea of using CNNs for species identification in bioacous-
tics is not new (see LeBien et al. (2020) for an early example, and Stowell
(2022) for a survey), real-world applications are often limited by the
lack of annotated multi-label data. In fact, deep learning models for
species detection in PAM datasets are often trained using single-label
focal recordings (see Kahl et al. (2021) for a prominent example),
neglecting the multi-label character of soundscapes. Furthermore, focal
recordings differ from PAM in that they are normally carried out with
directional, professional-grade recorders actively pointed to the sound
source by an expert in loco, thus yielding recordings of high quality and
signal-to-noise ratio. For models intended for application to soundscape
data, the use of focal recordings as training data constitutes a form of
domain-shift, with recognised deleterious effects on performance (Kahl
et al., 2021). The alternative, however, is costly: before training auto-
mated classifiers, experts would have to annotate PAM datasets for the
label classes of interest, a process that can take over 10 min of analysis
labour per minute of recorded data (Lüers et al., 2024).

1.2. Transfer learning

Therefore, practical few-shot learning methods for PAM are needed.
Transfer learning is a key technique in few-shot learning (Wang et al.,
2020), and consists of the transfer of knowledge learned from one task to
another, often resulting in improved efficiency and performance in the
target task. The basic idea is that a model trained on a large and diverse
dataset for one source task can capture useful features and patterns that
are applicable to a related target task.

Along these lines, LeBien et al. (2020) build a pipeline for frog and
bird species identification from acoustic data using as feature extraction
a ResNet50 pre-trained on ImageNet, a large image dataset (He et al.,
2016). Florentin et al. (2020) and Dufourq et al. (2022) explore a wider
range of CNN architectures pre-trained on ImageNet for single-species
detection in PAM datasets. Tsalera et al. (2021) compare the perfor-
mance of CNNs pre-trained on ImageNet or AudioSet, a large acoustic
dataset, and find that models pre-trained on the audio domain are better
at detecting sound events. Çoban et al. (2020) use VGGish, a CNN pre-
trained on AudioSet, to detect coarse grained sound events (e.g., song-
bird, waterbird, insect) in a PAM dataset. Ghani et al. (2023) compare 5
models pre-trained on audio data on 6 bioacoustics datasets and find
that Perch1 and BirdNet (Kahl et al., 2021), which differ only slightly
regarding their training data, perform best at species identification;
evaluation was done on focal and citizen-science datasets. Swaminathan
et al. (2024) extend the observation to attention-based architectures pre-
trained on human speech. Lauha et al. (2022) show that transfer
learning can be helpful also for small networks trained from scratch on
small, targeted datasets gathered from online resources such as Mac-
aulay Library2 (as opposed to foundation models trained on large
datasets). While the works cited above evaluate transfer learning models
based on classification performance, McGinn et al. (2023) take a
different approach and investigate the topology of fine grained, sub-
species sound events in the embedding space afforded by BirdNet;
they find that different call types of a same species (e.g., drumming
versus vocalization) form distinct clusters, and that the vicinity of each

such cluster reflects species identity rather than sound morphology (i.e.,
the space immediately around a given cluster contains different calls of
the same species, rather than similar calls from distinct species).

Therefore, to our knowledge, only one of the studies investigated
large transfer learning models pre-trained on data from the bioacoustics
domain (Ghani et al., 2023), and none assessed their performance
particularly in soundscape type (omnidirectional, multi-label) datasets.

1.3. Active learning

While transfer learning can provide a solid starting point for sound
event detection models, it does not eliminate the need for annotated
data. Active learning is a machine learning strategy that consists of
selecting and labelling first the most informative samples. The core idea
is to make the learning process more efficient by selecting first the in-
stances that are expected to provide the greatest reduction in uncer-
tainty or error, rather than labelling a randomly selected subset of
instances or all available data exhaustively. This is particularly useful in
situations where labelling data is expensive, time-consuming, or other-
wise resource-intensive (Kadir et al., 2023, e.g.).

Wang et al. (2022) use a synthetic dataset built by recombining
environmental sounds with urban soundscape background to study how
active learning can improve upon random selection in the context of
prototype based classification with models trained with few-shot epi-
sodes. In two early bioacoustics applications, Qian et al. (2017) use
active learning to improve on the data efficiency of bird species classi-
fiers applied to a museum sound collection (likely focal recordings),
while Kholghi et al. (2018) perform coarse-grained classification on
omnidirectional recordings; in both cases, classifiers operate on low
level descriptors and acoustic indices, both of which are hand-designed
feature extractors that afford lower performance than representations
learned by deep neural networks. Allen et al. (2021) use active learning
and deep learning to detect humpback whale songs (single species) in a
very large PAM dataset (187,000 h); they use a randomly initialised
ResNet-50 variant (no transfer learning), and the small size of their
validation set (6.25 h, or 0.003% of the data) precludes comparing
different active learning methods. Similarly, van Osta et al. (2023) use
transfer learning (ResNet seemingly pre-trained on ImageNet) and an
active learning strategy to train a classifier for a single cryptic bird
species, but do not compare different active learning strategies.

In summary, while the applicability of active learning to the domain
of bioacoustics has been demonstrated, none of the active learning
studies we are aware of make use of state-of-the-art feature spaces (e.g.,
transfer learning models); in addition, the particularities of soundscape
type (omnidirectional, multi-label) data have also not been addressed.

1.4. Contribution

This study explores the combination of transfer learning and active
learning as a means to reduce the amount of time needed to annotate
PAM datasets (Fig. 1). Specifically, we compare 5 standard embedding
models pre-trained on large datasets from domains with varying degrees
of proximity to PAM (namely, images, generic audio, or bioacoustics)
and evaluate them with linear classifiers on three soundscape datasets
covering different taxa. For the unparalleled multi-label PAM dataset
AnuraSet, our simple linear model (applied to features extracted with a
transfer learning model) surpasses the convolutional baseline (Cañas
et al., 2023) by a remarkable margin of 21.7%. After identifying the
feature space (i.e. transfer learning model) that gives the best classifi-
cation accuracy for sound event detection with soundscape data, we
investigate the potential of active learning to accelerate learning in this
space. In contrast to previous literature, we perform a comparative study
of different active learning strategies. We investigate a range of sam-
pling strategies: uncertainty and diversity based methods, myopic
(greedy) and adaptive (batchmode) methods, and combinations thereof.
Finally, we evaluate the resulting learning curves through the lens of

1 https://tfhub.dev/google/bird-vocalization-classifier/4
2 https://www.macaulaylibrary.org/
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different accuracy metrics (namely precision and recall) and discuss
their practical implications.

2. Methods

2.1. Datasets

The affordability of recording equipment has led to the publication of
many PAM datasets in recent years. However, it is noteworthy that the
vast majority of these datasets provide single-label annotations, indi-
cating that labels are mutually exclusive and cannot occur simulta-
neously. Other studies predominantly use single-label datasets, e.g.
Ghani et al. (2023). As PAM recordings often capture several species
calling simultaneously, we take advantage of more realistic PAM data-
sets with multi-label annotations, which provide information on the
presence or absence of each species individually.

AnuraSet is a recently released real-world benchmark multi-label
PAM dataset containing 27 h of audio plus manually created expert
annotations for 42 species of anurans (frogs and toads) from two
different biomes (Cañas et al., 2023). The original authors divide the
one-minute audio files recorded in four different areas into segments of
three seconds each, with an overlap of two seconds. This segmentation
approach resulted in 58 three-second audio files per minute, increasing
the dataset to 77 h of audio. The sample rate is 22.05 kHz. To mitigate
class imbalance, the authors implement a stratified training/evaluation
split, allocating 30% of the data to the evaluation set. To prevent data
leakage, the split was performed on the original one-minute files,
ensuring that all corresponding three-second files were assigned exclu-
sively to either the training or evaluation set. Due to class imbalance,
AnuraSet comes in partitions based on the number of positive samples:
frequent (>10,000), common (5000–10,000) and rare (<5000). We
used the evaluation set and the partitions as defined by the original
authors.

Noronha set is a novel, small, expert annotated multi-label dataset
derived from a multi-year PAM program carried in Fernando de Noro-
nha, Brazil. The selected part, referred to here as the Noronha set,
consists of 1.25 h annotated by an expert for 5 species of seabirds. The
sample rate is 48 kHz. As a first pre-processing step, we segmented the
one-minute files into three second snippets with no overlap. A stratified
split was used to generate an evaluation set containing one-third of the
available data.

Watkins Marine Mammal Sound Database (Watkins) is a single-
label dataset containing calls from 56 marine mammal species (Sayigh
et al., 2016). To emulate a multi-label PAM dataset, we inserted sound
samples from the Watkins database into a noisy background3 at random
positions, including the possibility of overlapping events. The sample
rate is 48 kHz. For training, we included all classes with 500–1000 oc-
currences, for a total of 9 classes. The audio data was segmented into
three second long files. From the total duration of 7.8 h of audio, the
evaluation set (1.6 h) contains 20% of the events from each class.

2.2. Transfer learning

We explore the potential of several standard pre-trained CNNs as
feature extractors for sound event detection at the species level in PAM.
The CNNs used here were trained on datasets from different domains
and modalities, with varying degrees of similarity to the target modality
(audio) and domain (multiple species in PAM datasets). To ensure the
robustness of the results, we averaged them over 30 independent runs.

2.2.1. Model architectures
Following Dufourq et al. (2022), we test ResNet152-V2 (He et al.,

2016) and VGG16 (Simonyan and Zisserman, 2015); these are CNNs pre-
trained on ImageNet (Deng et al., 2009), a dataset on the visual mo-
dality. VGGish, a variant of VGG11A (Simonyan and Zisserman, 2015),
and YAMNet, a MobileNet-V1 network (Howard et al., 2017), were pre-
trained on AudioSet (Gemmeke et al., 2017), a dataset from the same
target modality (audio) but a different domain (YouTube sound clips).
BirdNet (Kahl et al., 2021) was trained on data from the target modality
(audio) and a related domain (bird vocalisations from focal recordings,
also annotated at species level).

2.2.2. Model layers
Deep neural networks learn multiple representations of different

levels of abstraction: the first layers reflect low level input features,
while the last layers capture structure more directly related to the pre-
dictions output by the model (Bengio, 2009). We evaluate embeddings
at different layers within the CNNs. For VGG16 we investigate the last
three layers before the final classification layer (‘fc2’, ‘fc1’, and
‘flatten’). For ResNet152-V2 we only investigate the last embedding
layer (‘avg_pool’). Considering our future goal of implementing a real-
time pipeline with transfer learning and active learning, we decide not
to explore further layers of both visual domain models due to their large
dimensionality (100,352 for both models). Since the models pre-trained
on AudioSet were designed to be used as feature extractors, we only use
the last layer for VGGish and the penultimate layer for YAMNet. For
BirdNet we investigate the last three embedding layers, batch normali-
zation and dropout layers excluded (‘GLOBAL_AVG_POOL’, ‘POST_-
CONV_1’, and ‘BLOCK_4-4_ADD’); the latter layer is a convergence point
of a branched architecture, so we do not investigate further layers. We
refer to each layer by natural numbers reflecting distance from the
classification layer, e.g., ‘BirdNet-1’ denotes the last layer before the
classification layer of the BirdNet model.

2.2.3. Pre-processing
For all experiments, we use three-second long audio segments

referred to as ‘samples’. A sample is considered positive for a given event
class whenever event occurrence overlaps with the sample, even if only
partially and briefly.We resample the audio for the models trained in the
audio domain to 48 kHz (BirdNET) or 16 kHz (YAMNet and VGGish).
Since ResNet152-V2 and VGG16 take images as input, spectrograms
were calculated for each sound sample using the native sampling rate of
the audio signal, employing a window size of 512 samples and an
overlap of 256 samples. Lastly, each spectrogram was resized to the

Unlabelled Dataset

Random
sample selection

Annotation
manual

Unlabelled Dataset

Transfer learning
data representation

Active learning
sample selection

Annotation
semi-automatic

Train model

Fig. 1. Workflow for annotating passive acoustic monitoring datasets,
comparing the conventional approach (left) with the proposed approach (right).
We compare the transfer learning models BirdNet, VGGish, YAMNet, VGG16
and ResNet152-V2 for generating data representations. As active learning
method we select uncertainty methods, diversity methods, adaptive methods
and combinations of those.

3 https://www.youtube.com/watch?v=sCc3UtzZDEo
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dimensions required by each of the two convolutional models.

2.2.4. Training
To evaluate the performance of sound event detection, a linear multi-

label classifier is trained. The resulting architecture consists of a single
fully connected layer with one output node per species in the dataset.
Each output node indicates the presence or absence of that species and is
independent of the other output nodes. A binary cross-entropy loss
function and logistic activation are used since we train a multi-label
classifier. The classifiers are trained on frozen embeddings (no fine-
tuning) for a maximum of 1000 epochs. Early stopping criteria, start-
ing from epoch 50, are based on the validation loss, with a minimum
delta of 0.1 and a patience of 10 epochs, with reinstatement of the best
weights. VGGish and YAMNet take as input audio segments shorter than
the 3-s samples employed in this study. In order to generate a single
embedding point for each 3-s sample, we split each sample into shorter
segments expected by the models, resulting in an array of time points as
output. We then proceeded with a multiple instance learning approach
by applying the classifier to each element in the array, and then pooling
the output array into a scalar value with the exponential softmax func-

tion ŷ =
∑

i yi
exp(yi)∑
j
exp(yj)

(Wang et al., 2019).

2.3. Active learning

The active learning experiments are carried out in the embedding
space of the selected transfer learning model (BirdNet-1, see Section
3.1). We explore a range of sampling strategies: uncertainty and di-
versity based, myopic (greedy) and adaptive (batch mode), and com-
binations thereof. Fig. 2 provides a schematic overview of the pure
families of sampling strategies: Random sampling selects samples arbi-
trarily, uncertainty sampling targets samples near the decision bound-
ary, and diversity sampling focuses on samples that span the entire data
space. In all cases, 5% of the samples are selected at random. Class labels
are available for all samples used in this study, and an active learning
scenario is emulated by hiding all labels from the classifier at first and
incrementally revealing the ones for each batch of samples queried by
the sampling methods. We use a batch size of 20 samples. The classifier
heads are identical to those from the transfer learning training process.
To ensure the robustness of the results, we averaged them over 30 in-
dependent runs.

Uncertainty sampling strategies compute uncertainty scores for each
unlabelled sample and select those with the highest scores. Following
Monarch (2021), we implement ‘least confidence’ (ΦLC), ‘ratio’ (ΦRC)
and ‘entropy’ (ΦEN). Fig. 3 shows the uncertainty score Φ corresponding
to a prediction y for a signle species within a binary model. With n
species, and therefore n binary classifiers, n uncertainty scores per
sample are computed. Deriving a single uncertainty score per sample
involves score aggregation, where we explore the techniques of aver-
aging and selecting the maximum value. ΦLC bi(y), ΦRC bi(y) and
ΦEN bi(y) have a strictly monotonic increase in the range [0;0.5] and a
strictly monotonic decrease in the range [0.5; 1] (see Fig. 3). Conse-
quently, using the maximum score yields the same selected sample.
Therefore, we use a singular method with maximum score aggregation
and choose ΦRC bi(y).

Diversity sampling strategies aim to achieve comprehensive
coverage of the data space with the selected samples, ensuring an even
distribution and avoiding class imbalance. Unlike uncertainty sampling,
diversity sampling selects samples directly based on the structure of the
dataset, without relying on model predictions or labels. We implement
k-means clustering using the Euclidean distance measure. Within each
cluster, we select the centroid (the sample with the smallest distance to
the cluster centre), an outlier (the sample farthest from the nearest
cluster centre) and three random samples. The number of clusters is
inversely determined; e.g., to annotate 20 samples at a rate of 5 samples
per cluster, we use 4 clusters (Monarch, 2021, chapter 3).

Adaptive sampling strategies aim to reduce redundancy within the
selected batch of samples during an iteration. Adaptive uncertainty
sampling uses the predictions of the trained model to relabel the vali-
dation set as ‘correct’ or ‘incorrect’. The model's last layer is replaced by
a single node and retrained using the generated labels. Iteratively, the
unlabelled set is fed into the model, samples that are likely to be
‘incorrect’ are selected, added to the ‘correct’ labelled validation set and
the model is retrained (Konyushkova et al., 2017). Adaptive diversity
sampling minimises the distribution gap between training and unla-
belled data. After labelling the validation set ‘validation’ and the unla-
belled set ‘unlabelled’, the model's last layer is replaced with a single
node and retrained using the generated labels. Iteratively, the unlabelled
subset is fed into the model, samples likely to be ‘unlabelled’ are
selected. They are iteratively added to the validation set (Monarch,
2021, chapter 5). Both adaptive strategies use 5 iterations in our
implementation.

Combined sampling strategies address the limitations of pure
strategies. Uncertainty sampling selects samples close to the decision
boundaries, but may introduce redundancy. Diversity sampling covers
the entire input space, but may miss critical regions. We therefore

Fig. 2. Schematic representation of the random, uncertainty, and diversity
sampling strategies. Random sampling selects arbitrary samples. Uncertainty
sampling selects samples based on their proximity to the model's decision
boundary, calculated using the existing class 1 and class 2 labels. Diversity
sampling uses the internal data structure for sampling purposes, such as clus-
tering the data and selecting samples from each cluster.

Fig. 3. Uncertainty scores for binary inputs computed with the methods ‘ratio’
(ΦRC bi), ‘least confidence’ (ΦLC bi) and ‘entropy’ (ΦEN bi), given a model pre-
diction y.
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investigate methods that combine uncertainty and diversity strategies.
Filtering pre-selects 50% of the samples by diversity sampling and uses
uncertainty sampling to sample from this pre-selection. We use this
method for ‘combi: ratio max + clustering’. Hybrid sampling selects
50% of the samples from each of the twomethods. All other combination
methods use hybrid sampling.

2.4. Computational resources

The computational analyses4 including pre-processing steps are
conducted using Python programming language version 3.10. Key li-
braries include librosa for audio processing, scikit-maad for spectrogram
computation, and TensorFlow for learning processes. We used BirdNet
V2.4,5 VGGish,6 YAMNet,7 VGG168 and ResNet152-V29 as embedding
models for the present study.

We used an Intel® Core™ i7-1165G7 CPU, and 32 GB of RAM for all
computations. The pre-processing, especially the computation of the
embeddings, requires approximately 100 h of CPU time for all three
datasets for all embedding models and layers. The active learning ex-
periments require approximately 6 h of CPU time per random seed for all
three datasets. Table 1 shows the CPU time required for all sampling
strategies, normalized to random sampling.

3. Results

An annotated PAM dataset typically serves one of two primary pur-
poses: as a resource for training new machine learning models for later
deployment for inference in a related domain (e.g., geographical region,
taxa), or as an end product in itself for subsequent analysis of ecological
phenomena within the same domain. In this study, we explore the po-
tential of combining transfer learning and active learning to accelerate
the annotation of species-level sound events in PAM datasets for both
purposes.

3.1. Transfer learning

We start by testing different pre-trained models as feature extractors
for species-level sound event detection. All performance metrics are

computed on the held-out evaluation sets described in section 2.1.
To gain intuition on the potential of each embedding model, we

generate low-dimensional neighbor visualizations for high-dimensional
embeddings of samples using UMAP, a neighbor embedding method that
aims to preserve the distances between points observed in the high-
dimensional embedding space within the low-dimensional representa-
tion (McInnes et al., 2020). The visualization in Fig. 4 shows that the
BirdNet embeddings exhibit a clear separation between class clusters,
with more pronounced differentiation in layers closer to the final layer.
VGGish and YAMNet show effective cluster separation for only a subset
of clusters, while ResNet152-V2 embeddings appear as a continuum,
salt-and-pepper pattern in the low dimensional representation. Cluster
separation is visible for VGG16, with more apparent separation for
layers further away from the top.

We then train linear multi-label classifiers on embeddings derived
from the AnuraSet (frequent, common, rare and all), Noronha set, and
Watkins datasets, using all pre-trained models. The quantitative results
presented in Table 2 are largely consistent with the intuitions afforded
by the neighborhood embedding visualizations, with BirdNet perform-
ing best, followed by intermediate layers of VGG16, albeit with much
lower dimensionality.

Overall, we find that BirdNet-1 performes best as a feature extractor
for multi-label classification for the utilized PAM datasets. The analysis
of the frequent, common and rare parts of AnuraSet shows that this
result is independent of the number of positive samples. Fig. 5 shows the
single class F1 score for samples embedded with BirdNet-1 for each of
the 42 classes of AnuraSet. As reported in the original paper (Cañas
et al., 2023), one can observe a strong correlation between F1 score and
class size, and consequently a wide gap between macro and micro F1
scores.

3.2. Active learning

We investigate the effect of active learning by emulating the anno-
tation of the common partition of the AnuraSet, the Noronha set and the
Watkins dataset. Due to the superior performance of the transfer

Table 1
Required computational time for all active learning (AL) strategies. The
computational time is normalized, i.e. it is divided by the time required for
random sampling.

AL Family AL Strategy tstrategy
trandom

uncertainty least confidence avg 1.06
entropy avg 1.23
ratio avg 1.10
ratio max 1.09

diversity clustering 2.04
adaptive adapt uncertainty 1.98

adapt diversity 9.98
combination ratio max + clustering 2.01

adapt uncert + clustering 3.86
ratio max + adapt div 12.20
adapt uncert + adapt div 16.96

Fig. 4. UMAP plots for different embedding layers of different embedding
models for AnuraSet. For UMAP generation, we randomly select 5000 samples
and discard all samples that are aligned to more than one class. Colors and
shapes indicate the 10 classes with the highest occurrence frequency. Layers are
numbered according to their distance from the classification layer, e.g. ‘Bird-
Net-1’ is the last layer before the classification layer of the BirdNet model.

4 https://github.com/HKathman/pam_annotation_experiments
5 https://github.com/kahst/BirdNET-Analyzer/tree/main/checkpoints/V2.4
6 https://tfhub.dev/google/vggish/1
7 https://tfhub.dev/google/yamnet/1
8 tensorflow.keras.applications.vgg16.VGG16(weights=’imagenet’).
9 tensorflow.keras.applications.resnet_v2.ResNet152V2

(weights=’imagenet’).
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learning results of the BirdNet-1 embedding, we use this embedding as
the feature extractor for all subsequent active learning experiments.

From a machine learning perspective, the two objectives outlined in
the beginning of Section 3 diverge in the data distribution. A machine
learning model aims to classify new data that comes from the same
distribution as the original dataset. Therefore, we report results for the

held-out evaluation sets described in Section 2.1. As illustrated in Fig. 1,
the process of annotating an entire dataset using active learning is an
iterative process that relies on careful sample selection strategies. This
process leads to a distinction in the distribution between the entire
dataset and the remaining unlabelled subset. Consequently, we will
present results specific to this remaining unlabelled subset.

To gain intuition on the potential of active learning, we compare the
detection rate over time using random sampling and active learning. The
‘Ground Truth’ curve of Fig. 6 shows the cumulative occurrences of the
class DENMIN (AnuraSet) throughout the day, aggregated across all
samples recorded at each respective time. We present the number of
positive detections using different numbers of training samples. The
initial training set of 20 samples is identical for both sampling strategies,
resulting in identical curves for random sampling and active learning.
The F1 score is 0.01, and the curve remains constant over time. Grad-
ually adding training samples increases the F1 score and reshapes the
curve to resemble the ‘Ground Truth’. With a small number of training
samples (100 or 200), the training set selected by active learning yields
significantly more occurrence detections and a higher F1 score. This
effect is less pronounced when using 1000 training samples.

Due to the significant imbalance of classes in the datasets, we used
the macro F1 score as the evaluation metric, and provide the corre-
sponding macro precision and macro recall values in appendix A. As a
baseline for active learning, all figures show the performance of random
sampling.

We investigate the uncertainty sampling strategies ‘least confidence’,
‘ratio’ and ‘entropy’ with the score aggregation methods ‘max’ and

Table 2
Size and performance of embedding layers from different transfer learning models. The layers are labelled in reverse order, with layer 1 being the last layer before the
classification layer. We analysed the frequent, common and rare part as well as the whole dataset of AnuraSet, the Noronha set and the Watkins dataset. We provide
micro (Mic) and macro (Mac) F1 scores calculated for the evaluation set. Each score represents the average result of 30 runs.

AnuraSet

Layer Frequent Common Rare All Noronha set Watkins

Model Pre-Training # Size Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1

BirdNet Bird 1 1024 0.901 0.888 0.791 0.789 0.487 0.406 0.797 0.588 0.747 0.610 0.393 0.378
vocalisations 2 6144 0.870 0.858 0.764 0.763 0.495 0.451 0.752 0.575 0.729 0.541 0.353 0.340

3 4608 0.869 0.855 0.766 0.764 0.516 0.453 0.765 0.578 0.726 0.517 0.356 0.347
VGGish AudioSet 0 128 0.612 0.567 0.271 0.227 0.005 0.034 0.409 0.313 0.553 0.641 0.145 0.155
YAMNet AudioSet 1 1024 0.748 0.702 0.479 0.440 0.077 0.127 0.560 0.406 0.632 0.728 0.128 0.128
VGG16 ImageNet 1 4096 0.690 0.594 0.394 0.393 0.032 0.100 0.492 0.374 0.335 0.396 0.088 0.120

2 4096 0.696 0.608 0.443 0.449 0.059 0.146 0.504 0.388 0.324 0.382 0.146 0.165
3 25,088 0.856 0.829 0.707 0.692 0.370 0.337 0.726 0.513 0.502 0.581 0.294 0.280

ResNet152-
V2

ImageNet 1 2048 0.695 0.619 0.050 0.066 0.001 0.007 0.159 0.128 0.145 0.177 0.033 0.070

Fig. 5. Transfer learning applied to AnuraSet using features extracted from the
last layer before the classification layer of BirdNet. A linear classifier (logistic
regression) is used. The resulting F1 score for each species is plotted against the
number of samples containing that species. Frequent, common and rare species
are defined according to (Cañas et al., 2023).

Fig. 6. Cumulative occurrence detections for a single class of AnuraSet (DENMIN) over time of day, aggregated across all samples recorded at each respective time.
Shown are the ground truth and the number of positive detections using 20, 100, 200 and 1000 training samples (#TS) with the corresponding F1 score for the
sampling methods random (left) and uncertainty (right). A moving average filter with a window size of 4 is applied to to each curve.
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‘average’ (‘avg’). The top row of Fig. 7 shows the results for the evalu-
ation set of the three datasets. The score aggregation method ‘max’
consistently outperforms ‘average’ and surpasses random sampling.

We further investigate the diversity sampling strategy ‘clustering’
and explore two adaptive approaches – one for uncertainty and the other
for diversity. The results of the F1 score for the evaluation set are shown
in the center row of Fig. 7. For the common partition of AnuraSet and the
Noronha set, the adaptive uncertainty method shows a slight perfor-
mance advantage over other methods, with all methods outperforming
random sampling. For the Watkins dataset, none of the strategies clearly
outperform random sampling.

The bottom row of Fig. 7 shows the F1 score for the evaluation set for
the combined sampling strategies. We choose the ‘ratio max’ uncertainty
sampling strategy for the combination due to the superior performance
of the ‘max’ versions and the simplicity of calculating the ratio. For all
datasets, all combinations used outperform random sampling, with ratio
max + adaptive diversity being the best by a small margin.

Evaluating the results of the unlabelled datasets leads to comparable
conclusions (see fig. S1).

Looking at precision and recall values of the uncertainty methods in
Fig. 8, we observe a rapid convergence of precision for all methods. On
the other hand, recall does not show any convergence and remains
significantly lower than precision. While the choice of sampling method
seems to have a limited effect on precision, there is a clearly visible
effect on recall, where most methods clearly outperform random sam-
pling, leading to the ranking of F1 score performance. The compre-
hensive results presented in Figs. S2 to S4 yield consistent conclusions
across all active learning methods for both the evaluation and unlabelled
sets.

4. Discussion

This research investigates the combination of transfer learning and

active learning to efficiently support and accelerate the detection of
sound events in large, multi-label PAM datasets. In our study, we use
AnuraSet, an expert-annotated multi-label PAM soundscape dataset
unparalleled in terms of number of label classes (42 species of frogs and
toads) and duration of annotated segments. To generalise our findings,
we also use the Noronha set, a smaller, unpublished, multi-label dataset
expert-annotated for seabirds, and Watkins, which we created synthet-
ically by placing sound events from the Watkins Marine Mammal Sound
Database (Sayigh et al., 2016) into a noisy background, resulting in a
multi-label dataset. By exploring the applicability of different embed-
ding layers of embedding models, each with varying degrees of simi-
larity to the target modality of the acoustic data and the domain of
passive acoustic monitoring, we observe that the penultimate layer of
BirdNet (Kahl et al., 2021), a CNN trained on data most closely related to
both the target modality and the domain, yields the best performance as
a feature embedding model. Using BirdNet-1 as the embedding model,
active learning sample selection strategies significantly reduce the
number of samples required for annotation to achieve model
convergence.

Automatic sound event detection for multi-label PAM datasets re-
quires large training sets of multi-label PAM data. While PAM data
inherently consist of multi-label annotations, the considerable time
required for annotation (Lüers et al., 2024) explains why most PAM
datasets are published with single or small sets of label classes. The
proposed approach for accelerating the generation of multi-label PAM
datasets differs from conventional workflows by applying feature
extraction techniques on the dataset and subsequently selecting the most
informative samples to speed up model convergence. While using a
pipeline of transfer learning and active learning has shown to reduce
annotation time in various domains such as labelling images from
camera traps (Norouzzadeh et al., 2021) and PAM data (van Osta et al.,
2023), our study presents the first systematic investigation of different
embedding models and active learning strategies for annotating PAM

Fig. 7. Active learning on the common partition of AnuraSet, Noronha set, and Watkins using the embeddings of BirdNet-1. Macro F1 score computed on evaluation
data. Mean ± SEM across 30 independent runs. Top: uncertainty-based sampling strategies (‘least confidence’, ‘ratio’ and ‘entropy’) and score aggregation methods
(‘max’ and ‘average’). Center: diversity-based sampling strategy (‘clustering’) and two adaptive strategies (‘uncertainty’ and ‘diversity’). Bottom: mixed diversity- and
uncertainty-based sampling strategies.
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datasets.
When evaluating embedding models across domains, we observe

that higher similarity to the target domain and modality corresponds to
improved performance, extending the findings of Ghani et al. (2023) to
multi-label PAM datasets. Layers further away from the classification
layer tend to capture more abstract features from the data on which they
were trained (Bengio, 2009). This phenomenon might explain the per-
formance gain with increasing distance for embedding models that are
less related to the target domain and modality (see Table 2, VGG16).
Conversely, embedding models that are closely related to the target
domain and modality show improved performance by minimising the
distance (see Table 2, BirdNet). Overall, we identify the penultimate
layer of BirdNet as the most informative for creating embeddings from
PAM data. Notably, the linear classifier using BirdNet embeddings
outperforms the models examined by (Dufourq et al., 2022) and (Cañas
et al., 2023), beating the latter by 21.7%.

Our analysis using BirdNet-1 embeddings demonstrates the superi-
ority of active learning over random sampling for multi-label PAM
datasets. Most previous active learning efforts in sound event detection
for PAM (Allen et al., 2021; Qian et al., 2017) have not utilized features
extracted with transfer learning. We build upon the research conducted
by van Osta et al. (2023), which implemented active learning on PAM
data embedded using a ResNet variant, seemingly pre-trained on
ImageNet. First, we compare various embedding models and demon-
strate that models trained on data more closely related to PAM than to
ImageNet yield superior performance. Second, we provide the first
structured analysis of several standard active learning strategies for
annotating PAM datasets. Fig. 6 illustrates that the performance of the
active learning model exceeds that of the random sampling model in the
first iterations. While our qualitative evaluation of active learning
methods consistently shows superior performance compared to random
sampling, no single method clearly outperforms all others. The absence
of a decisive winner was expected given our focus on multi-label tasks,
in contrast to the multi-class setup these strategies were designed for.
We find the score aggregation ‘max’ superior to ‘average’ for uncertainty
methods.

When examining the precision and recall values for the active
learning methods, we observe a rapid saturation of precision and low
recall values. The latter raised concerns since, within the active learning
framework, unattended events (false negatives) are irrevocably lost
unless manually verified. A potential remedy could involve a workflow
that mirrors medical tests, starting with heightened sensitivity to false
negatives followed by a phase emphasising specificity to false positives.
In our methodology, a similar approach could be realised by adjusting
learning to penalise false negatives, possibly via weighted binary cross

entropy loss or custom loss functions as in (Tian et al., 2022). While the
observed low recall necessitates careful consideration, it's important to
clarify that the scope of this study didn't encompass the optimisation for
accuracy metrics, exemplified by F1 Score. Instead, our primary goal
was to identify efficient strategies that synergise transfer learning and
active learning. To potentially elevate accuracy, strategies such as
applying Per-Channel Energy Normalization (PCEN) (Lostanlen et al.,
2019), refining spectrogram feature engineering (Dufourq et al., 2022),
or employing transfer learning with fine-tuning could be explored.

The present elaboration lays the theoretical foundation for several
future research directions. Although studies have shown a correlation
between the performance of embedding models and the degree of sim-
ilarity to the target modality and domain, there is currently no pre-
trained model specifically trained on multi-label PAM data. Training
such a model is future work that requires extensive training data,
especially multi-label annotated PAM data. Implementing a tool based
on the presented workflow could streamline the process of collecting
such data.

In the field, PAM data is recorded either continuously for permanent
monitoring or temporarily to create a new dataset. Continuous moni-
toring results in a consistent data distribution, which we analyse using
the evaluation set. In contrast, temporary monitoring results in a
changing data distribution, which we analyse using the unlabelled set.
Starting from a completely unlabelled stream or pool of audio data, the
combination of transfer learning and active learning provides the
theoretical basis for creating an annotation tool that can save annotation
time in two ways: Continuous biodiversity monitoring requires auto-
mated detection of sound events due to the large amount of incoming
data. A tool based on the proposed workflow would require fewer an-
notated samples to achieve the same model performance, thus reducing
annotation time. In addition, when annotating a complete PAM dataset,
the proposed workflow can accelerate the process by suggesting labels
based on previously sampled data. The user can then adapt these sug-
gestions instead of creating all labels from scratch, further saving
annotation time.
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