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Abstract—The increasing number of Low Earth Orbit (LEO)
satellites, driven by lower manufacturing and launch costs, is
proving invaluable for Earth observation missions and low-
latency internet connectivity. However, as the number of satellites
increases, the number of communication links to maintain also
rises, making the management of this vast network increasingly
challenging and highlighting the need for clustering satellites into
efficient groups as a promising solution. This paper formulates
the clustering of LEO satellites as a coalition structure generation
(CSG) problem and leverages quantum annealing to solve it.
We represent the satellite network as a graph and obtain the
optimal partitions using a hybrid quantum-classical algorithm
called GCS-Q. The algorithm follows a top-down approach by
iteratively splitting the graph at each step using a quadratic
unconstrained binary optimization (QUBO) formulation. To eval-
uate our approach, we utilize real-world three-line element set
(TLE/3LE) data for Starlink satellites from Celestrak. Our ex-
periments, conducted using the D-Wave Advantage annealer and
the state-of-the-art solver Gurobi, demonstrate that the quantum
annealer significantly outperforms classical methods in terms of
runtime while maintaining the solution quality. The performance
achieved with quantum annealers surpasses the capabilities of
classical computers, highlighting the transformative potential of
quantum computing in optimizing the management of large-scale
satellite networks.

Index Terms—Quantum annealing, coalition formation, LEO-
satellites, combinatorial optimization

I. INTRODUCTION

In recent years, there has been a significant surge in interest
and investment from various companies aiming to launch
Low Earth Orbit (LEO) satellite constellations to provide
low-latency internet connectivity globally [1]. This innovative
approach is emerging as a promising alternative to traditional
inter-continental underwater cables, which often fail to reach
remote and underserved regions, such as isolated islands. In
this context, companies such as OneWeb, Viasat, Globalstar,
and Amazon (Project Kuiper) are at the forefront, each striving
to deploy vast networks of LEO satellites to ensure ubiquitous
broadband coverage. SpaceX’s Starlink project has demon-
strated the feasibility and potential of this technology, spurring
a competitive landscape where numerous other enterprises are
rapidly advancing. These ambitious initiatives aim to bridge
the digital divide, offering high-speed internet access to even

Fig. 1.Architecture for finding the optimal coalition structures using GCS-
Q, an iterative algorithm for optimal graph partitioning leveraging quantum
annealing hardware. At each step, the optimal graph cut is determined by
formulating a QUBO problem, which is embedded onto the annealer hardware.
The quantum tunneling phenomenon helps find the lowest energy solution
efficiently within the exponentially large solution space. The optimality
condition involves choosing the best solution from the sample set output by
the annealer that satisfies the use case-specific constraints.

the most remote corners of the world, thereby fostering greater
global connectivity and inclusion.

Despite the promising advantages of LEO satellite constel-
lations, the peer-to-peer (P2P) communication model inherent
to these networks presents significant challenges, particularly
in terms of latency and network efficiency [2]. In a P2P
model, data packets must traverse multiple satellite nodes to
reach their destination, which can result in increased latency
due to the numerous hops required. This latency issue is
exacerbated by the dynamic nature of satellite orbits and the
varying distances between satellites [3]. Adopting a coalition
formation paradigm, where satellites are grouped into clusters,
can mitigate these challenges by reducing the number of hops
needed for data transmission. Within this paradigm, while P2P
communication still occurs, cluster heads play a crucial role in
managing intra-cluster communication and coordinating with



other cluster heads for inter-cluster communication. This struc-
ture shortens communication paths, minimizes latency, and
improves overall network performance [4]. Finding the optimal
partitioning, taking into account various factors for reliable
communication, is an NP-Hard task [4, 5]. With thousands of
LEO satellites continuously in motion, the need to frequently
find optimal coalitions adds to the sheer complexity of the task.
There is a trade-off between experiencing higher latency due
to more hops in the P2P communications without clusters and
spending computational time to evaluate the optimal clusters.

In this paper, we formulate the clustering of LEO satel-
lites as a coalition structure generation (CSG) problem and
leverage the power of near-term quantum annealer hardware
to solve it. We represent the topology of the LEO satellites
as a graph and define the problem of finding the optimal
partition of satellites into distinct coalitions by iteratively
partitioning the graph. Given the exponential complexity of
graph partitioning, we reformulate the problem as a Quadratic
Unconstrained Binary Optimization (QUBO) problem, which
can be efficiently addressed using quantum annealers [6].
We conduct experiments on simulations based on existing
literature and explore various configurations to test different
sparsity levels of communication links among the satellites.
Utilizing real hardware by D-Wave, accessed remotely as a
cloud service, we empirically compare the performance against
the classical baseline solver Gurobi. Our results demonstrate
a superior performance of the quantum annealer over the
classical state-of-the-art method, highlighting the potential
of quantum computing in addressing complex optimization
problems in satellite communication networks.

II. RELATED WORKS

While increasing the number of satellites in a network
enhances throughput, it also raises management overhead
and inter-satellite interference, leading to only marginal im-
provements. To address this, the concept of satellite clusters
has been explored to boost performance through cooperation
[7]. Typically, satellites are treated as autonomous agents
equipped with sensors and computing capabilities to process
requests, and they are constantly in motion. As satellites can
communicate with one another, a cooperative game-theoretical
framework can be employed to find the optimal partition of the
satellites into mutually disjoint subsets that maximize utility.
Specifically, the use case of satellites is formulated as a Graph
Coalition Game, and solving this problem is NP-Hard.

Considering use-case-specific constraints such as cluster
size, connectivity, and diameter, several works aim to optimize
one or more network management factors, such as stable
communications [4, 8], energy-efficient task cooperation [9],
task allocation, and resource utilization [10–13]. Leveraging
small groups of satellites to minimize routing overhead in
wireless ad-hoc networks has also been explored [14–17].
Additionally, there are classical methods inspired by quantum
evolutionary algorithms for finding the optimal coalitions of
satellites [18, 19]. Our approach leverages these foundations
but utilizes quantum annealing for enhanced efficiency.

Further, [20] discusses the use of quantum annealers for
grouping satellites into coalitions to maximize the total cov-
erage of a designated Earth region. However, the algorithm
is impractical as the number of qubits grows in the order
of the Stirling number [21]. In contrast, we build upon the
work of [6] by applying GCS-Q, a quantum annealing-based
graph coalition structure generation algorithm to find the
optimal partition of the satellites that can run on existing
hardware. Moreover, our method demonstrates high scalability
and outperforms classical state-of-the-art methods in terms of
runtime while generating the similar quality results.

III. METHODS

A. Graph Representation of LEO Satellite Network

The LEO satellite network is represented as a connected,
undirected, weighted graph G = (V,E,w), where V is the
set of vertices representing the satellites, E is the set of edges
representing the communication links between satellites, and
w : E → R is the weight function assigned to each edge.
An edge (u, v) ∈ E exists if there is a direct communication
link between satellites u and v. The edge weight w(u, v) is
a function of the factors that contribute to the efficiency of
the communication link. Based on a comprehensive survey of
existing literature [4, 5, 9, 22], edge weight can be defined as:

w(u, v) = α·L(u, v)+β·R(u, v)+γ·M(u, v)+δ·B(u, v) (1)

where L(u, v) represents the latency, which is a function
of the distance between the communicating satellites u and v;
R(u, v) denotes the reliability, which can be the probability
that the communication link between u and v is operational;
M(u, v) accounts for the management overhead or the cost of
maintaining the link; and B(u, v) indicates the bandwidth of
the communication link.

The coefficients α, β, γ, δ are weighting factors that balance
the influence of each component on the overall edge weight.
These parameters are set depending on the specific use case.

B. Defining Graph Coalition Structure Generation Problem

Given the graph G(V,E,w) representing the satellite net-
work, the graph coalition structure generation is an optimiza-
tion problem that aims to find a partition (P ) of V that
maximizes the total utility, which can be formulated as:

P ∗ = argmax
P

∑
C∈P

∑
i,j∈C

w(i, j) (2)

where C ⊆ V is a coalition of satellites, and P ∗ is
the optimal coalition structure. However, unlike continuous
optimization, the cost function in this context is non-convex,
meaning that small changes in input do not necessarily result
in small changes in the cost. Additionally, the problem space
contains an exponential number of potential solutions. To
address these challenges, we leverage the quantum tunneling
phenomenon, which allows us to efficiently navigate the
solution space and identify the optimal solution.



Fig. 2.Comparison of runtimes for the D-Wave Advantage annealer and Gurobi in finding the optimal graph partition for varying edge sparsities, where sparsity
= 0 denotes a fully connected graph, and sparsity = 1 indicates the graph is a tree. The graph includes plots for the total runtime for remotely accessing the
annealer as a cloud service, the runtime excluding internet latency and service queue waiting time (On-site), and the time taken for Gurobi to run locally. The
plot illustrates the mean (represented by a solid line), the range (indicated by the broadly shaded area), and the standard deviation (denoted by the lightly
shaded area) of the runtimes aggregated over three sets of synthetic data.

C. GCS-Q Algorithm

GCS-Q [6] is a quantum-supported solution for finding the
optimal coalition structure in graph games. Given the graph
game, GCS-Q initially assigns all agents to a single coalition
and then follows a top-down approach by iteratively splitting
the graph into two unconnected components.

To find an optimal split (or optimal bipartition), GCS-Q
divides the underlying connected component of the graph (a
coalition) into two disconnected subgraphs by removing the
edges that maximize the sum of the remaining edge weights in
the subgraphs. At each step, the quantum annealer is invoked
to find the optimal split, exploring an exponential number of
solutions. This leverages the power of the quantum annealing
process, as finding the optimal bipartition of a connected graph
is computationally expensive for classical computers.

Whenever a split of a coalition is found to have a better
coalition value than the original coalition, it is considered. This
process is repeated until no further beneficial splits are found.
In our implementation, we use GCS-Q for a constrained setting
specific to the application, taking into account the maximum
size of a cluster among the satellites.

IV. EXPERIMENTS

A. Experimental Settings

We executed the experiments for GCS-Q on the D-Wave
Advantage hardware provided as a cloud service via the dimod
library. To evaluate the performance of the existing hardware,
we analyze both runtime and quality for single graph partitions
as well as the complete coalition structure generation. As
a classical counterpart, we implemented the state-of-the-art
Gurobi solver and compare its performance with the annealer.
We executed the experiments on 3 sets of synthetically gener-
ated data using fixed seeds for reproducibility and performed
the runtime analysis. The classical part of our experiments was
conducted on a system equipped with a 12th Gen Intel(R)
Core(TM) i7-12800H CPU @ 2.40 GHz and 64 GB RAM,
with all software developed in Python 3.12.

For real-world data, we captured the general perturbations
(GP) orbital data of the satellites from Celestrak 1. Specifically,

1https://celestrak.org/NORAD/elements/

we downloaded the three-line element (TLE/3LE) data of the
Starlink satellites, and given a timestamp, we implemented
code to evaluate the positions of the satellites. We ran the ex-
periments limiting the number of satellites considered, starting
with a small number and gradually increasing the number of
satellites. As the information about the communication links
is not available, we construct a geometric graph [23] using
a tunable radius parameter that defines the coverage for each
satellite for P2P communication.

B. Results

In this section, we present the outcomes of our experiments,
focusing on two main aspects: the optimal split of the satellite
network graph and the application of real-world Starlink data.
The results highlight the performance and quality of solutions
obtained using the D-Wave Advantage annealer compared to
the Gurobi solver.

1) Optimal Split: The algorithm iteratively solves for find-
ing the optimal split in each step, which is also NP-Hard.
Thus, we initially compare the performances of the Advantage
annealer and Gurobi on graph partitioning for graphs that have
varying levels of connectivity among the nodes. Specifically,
we generated graphs that are fully connected (i.e., for n nodes,
there are n(n − 1)/2 edges, considered as sparsity = 0) to a
tree (i.e., for n nodes, there are n − 1 edges, considered as
sparsity = 1). The

a) Runtime: We ran the annealer experiments by sending
the problem from the client machine via the internet, with the
annealer hardware accessed as a cloud service. It is important
to note that the device is not dedicated exclusively to our
experiments; thus, the problem incurs internet latency as it
is sent as an HTTP request, waits in a service queue for our
turn, and then the QPU access is provided for the problem.
After the problem is solved, the sample set is sent back to our
client machine as an HTTP response, which is parsed to find
the optimal solution. We compare the runtime for this entire
process against that of Gurobi, which runs locally on the client
machine.

It is also shown in the literature that internet latency and
the waiting time in the service queue contribute significantly
to the total runtime [24]. However, for a fair comparison,



Fig. 3.Comparison of the solution quality for the single split problem across varying levels of graph sparsity. Sparsity = 0 denotes a fully connected graph,
sparsity = 0.5 represents a graph with intermediate connectivity, and sparsity = 1 indicates a tree structure. The plots show the cost of bipartition against the
number of satellites for one of the seeds, comparing the least cost sampled by the annealer, the most frequently sampled cost by the annealer, and the cost
obtained by Gurobi.

we should assume a hypothetical scenario of having the
annealer hardware on-site, eliminating the internet latency and
service waiting time. In that case, we can only consider the
QPU access time and the runtimes of the remaining classical
operations in the algorithm [25].

The results in Figure 2 indicate the efficiency of the
annealer’s runtime. Even the total runtime of the remotely
accessed annealer is less than that of Gurobi executed locally
for large dense graphs. Additionally, the runtime for the
hypothetical scenario of having an on-site annealer is in the
order of less than a second, as our subscription to D-Wave
is capped at 1 second, appearing flat compared to Gurobi,
which typically took several seconds. We ran the experiments
by increasing the number of graph nodes on the annealer till
we reached the hardware limitation (see x-axis in Fig. 2 and 3).
In contrast, we couldn’t continue the experiments for Gurobi
approximately beyond the size 50 for sparsity 0, size 80 for
sparsity 0.5, and size 520 for sparsity 1 as it was allowed to
run even for days but still couldn’t output a solution. There
are also cases where it took a very long time or even failed to
find a solution for certain problem instances when the branch
and bound technique followed by Gurobi could not prune any
portion of the exponentially large solution space and ended up
searching it entirely. Theoretically, the annealer takes constant
time to find the lowest energy state. However, embedding
and sampling multiple times are necessary as annealers are
probabilistic machines.

b) Quality: Although Gurobi is a state-of-the-art solver
for combinatorial optimization, it is still an approximate solver
like an annealer. While D-Wave exhibits faster processing than
Gurobi, it is essential to evaluate the quality of the solutions.
Figure 3 shows an empirical analysis of the annealer’s perfor-
mance in terms of the quality of the solution obtained for the
graph partition based on the value of the cut. The annealer
consistently samples a solution that is as good as the one
output by Gurobi.

Furthermore, as the annealer works as a sampling device
expected to sample the optimal solution, the current imple-
mentation of D-Wave considers the lowest-valued sample as
the solution. Ideally, an annealer device should consider the
most frequently occurring sample as the solution. As we can
set the number of times to sample, out of the 1000 samples

we took for each problem, we also plot the value of the most
frequently occurring sample. The present-day performance of
the D-Wave Advantage is impressive, rendering the difference
negligible. This indicates that the problem being solved is
well-embeddable onto the annealer hardware, which aids in
faster processing and maintaining high quality.

2) Starlink Data: By using the TLE/3LE data, we obtain
the satellite positions for a specific timestamp and constructed
a geometric graph. The edge weights were assigned based on
the distance, adding a random interference noise component,
such that both positive and negative values were allowed.

Implementing the constraint on the maximum number of
satellites in a coalition is a straightforward modification for
the annealers. In a scenario where a coalition has no splits
with a total value greater than that of the coalition under
consideration but exceeds the expected number of satellites,
the annealer can choose the next best solution present in the
sample set without mathematically modifying the problem
formulation. In contrast, for implementing the constraint on
the cluster size using Gurobi, the QUBO problem needs to
explicitly incorporate this constraint.

For our experiments, we set a constant timestamp and
calculated the positions of the satellites. By setting a coverage
parameter, we constructed the graph with edge weights as a
function of distance and an interference noise drawn from a
random distribution. We also set the maximum coalition size to
5. Since every communication link has a management cost as-
sociated with it [10], we compared the usefulness of coalition
formation by evaluating the number of communication links
before and after coalition formation. Our results indicate a sig-
nificant benefit from clustering the satellites, which simplifies
management compared to handling all satellites individually.

V. DISCUSSION

In this paper, we proposed a quantum annealing-based
approach to address the coalition structure generation problem
for Low Earth Orbit (LEO) satellite networks. Applying GCS-
Q, the D-Wave Advantage demonstrated superior runtime
performance compared to the classical Gurobi solver. Even
when accessed remotely, the annealer’s total runtime was less
than that of Gurobi for dense graphs, which ran locally. This
efficiency becomes even more pronounced when considering



Fig. 4.The figure depicts the benefits of coalition formation in terms of the
number of communication links. Having a lower number of communication
links is preferable as each link has a management cost.

an on-site annealer scenario, eliminating internet latency and
service queue waiting times. The quality of the solutions
obtained from the quantum annealer was comparable to those
from Gurobi. The annealer consistently found solutions with
optimal or near-optimal values, highlighting its effectiveness
in solving complex combinatorial optimization problems.

With a simple change in the implementation for considering
the solution from the sample set of the annealer, GCS-Q
showed the ability to handle varying levels of graph con-
nectivity and constraints, such as maximum coalition size,
underscoring its scalability and practicality for real-world ap-
plications. Our experiments with Starlink satellite data further
validated the approach, showing that the method can adapt
to dynamic and large-scale satellite networks. The proposed
hybrid quantum-classical approach offers significant potential
for enhancing the management of LEO satellite networks. By
optimizing coalition structures, the network can achieve re-
duced latency, improved reliability, and more efficient resource
utilization. Moreover, the number of requests each satellite
can send and receive is typically limited. For instance, if a
satellite has an antenna capable of sending a message to 5
nearby satellites simultaneously, in terms of the graph problem
formulated, the degree of a vertex should be a maximum of
5. While this specific constraint has not been explored in our
current study, it is noteworthy that with the existing hardware
capabilities and the ability to tweak the chain strength param-
eter of the D-Wave annealer, one could potentially adjust this
parameter to control the chain break fraction. This adjustment
could effectively translate to the constraint on the degree of a
vertex, representing a promising direction for future research.

VI. CONCLUSION AND FUTURE WORK

The integration of quantum computing into satellite net-
work management represents a promising frontier. Our study
illustrates that quantum annealing can effectively tackle the
NP-Hard problem of coalition structure generation in LEO
satellite networks, outperforming classical methods in runtime
and maintaining high solution quality. As quantum hardware
continues to advance, we anticipate even greater improvements
in the optimization of complex networks.

Future work will focus on leveraging the limitation of the
present-day hardware to tackle the constraint on the degree
of each vertex by tuning the chain strength. Also, finding
the optimal splits can be parallelized as each step would
be working on unconnected components of the graph. As a
classical solver like Gurobi can work well on sparse graphs,
one can implement a condition for deciding whether to use
Annealer or classical methods at each step. Moreover, with
the availability of dynamic proprietary information about the
satellites’ communication links and management costs, empir-
ical advantages can be proven more evidently. With the advent
of gate-based quantum computers, variational quantum algo-
rithms incorporating qubit-efficient encoding strategies can be
employed to solve the QUBO problem as an alternative for
annealers [26]. This research lays a foundation for leveraging
quantum computing to address other challenging optimization
problems in the satellite domain, paving the way for more
robust and efficient network infrastructures.

CODE AVAILABILITY

All code to generate the data, figures, analyses, as
well as, additional technical details on the experiments
are publicly available at https://github.com/supreethmv/LEO-
satellites-coalition.
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