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Abstract
Recent success of machine learning in many domains has been overwhelming, which often leads to false expectations
regarding the capabilities of behavior learning in robotics. In this survey, we analyze the current state of machine learning
for robotic behaviors. We will give a broad overview of behaviors that have been learned and used on real robots. Our
focus is on kinematically or sensorially complex robots. That includes humanoid robots or parts of humanoid robots, for
example, legged robots or robotic arms. We will classify presented behaviors according to various categories and we will
draw conclusions about what can be learned and what should be learned. Furthermore, we will give an outlook on problems
that are challenging today but might be solved by machine learning in the future and argue that classical robotics and other
approaches from artificial intelligence should be integrated more with machine learning to form completely autonomous
systems.
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1 Introduction
Machine learning and particularly deep learning (LeCun et al., 2015) made groundbreaking success possible in many
domains, such as computer vision (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012), playing video
games (Mnih et al., 2015), and playing Go (Silver et al., 2016). It is unquestionable that learning from data,
learning from experience and observations are keys to really adaptive and intelligent agents – virtual or physical.
However, people are often susceptible to the fallacy that the state of the art in robotic control today heavily relies
on machine learning. This is often not the case. An example for this is given by Irpan (2018): at the time of
writing this paper, the humanoid robot Atlas from Boston Dynamics is one of the most impressive works in robot
control. It is able to walk and run on irregular terrain, jump precisely with one or two legs, and even do a back flip
(Boston Dynamics, 2018). Irpan (2018) reports that people often assume that Atlas uses reinforcement learning.
Publications from Boston Dynamics are sparse, but they do not include explanations of machine learning algorithms
for control (Raibert et al., 2008; Nelson et al., 2012). Kuindersma et al. (2016) present their work with the robot
Atlas, which includes state estimation and optimization methods for locomotion behavior. Robotic applications
have demanding requirements on processing power, real-time computation, sample-efficiency, and safety, which
often makes the application of state-of-the-art machine learning for robot behavior learning difficult. Results in
the area of machine learning are impressive but they can lead to false expectations. This led us to the question:
what can and what should be learned?

Recent surveys of the field mostly focus on algorithmic aspects of machine learning (Billard et al., 2008; Argall
et al., 2009; Kober et al., 2013; Kormushev et al., 2013; Tai and Liu, 2016; Arulkumaran et al., 2017; Osa et al.,
2018). In this survey, we take a broader perspective to analyze the state of the art in learning robotic behavior and
do explicitly not focus on algorithms but on (mostly) real world applications. We explicitly focus on applications
with real robots, because it is much more demanding to integrate and learn behaviors in a complex robotic system
operating in the real world. We give a very broad overview of considered behavior learning problems on real robotic
systems. We categorize problems and solutions, analyze problem characteristics, and point out where and why
machine learning is useful.

This article is structured as follows. We first present a detailed summary of selected highlights that advanced
the state of the art in robotic behavior learning. We proceed with definitions of behavior and related terms. We
present categories to distinguish and classify behaviors before we present a broad overview of the state of the art
in robotic behavior learning problems. We conclude with a discussion of our findings and an outlook.

2 Selected Highlights
Among all the publications that we discuss here, we selected some highlights that we found to be relevant extensions
of the repertoire of robotic behavior learning problems that can be solved. We briefly summarize these behavior
learning problems and their solutions individually before we enter the discussion of the whole field from a broader
perspective. We find it crucial to understand the algorithmic development and technical challenges in the field. It
also gives a good impression of the current state of the art. Later in this article, we make a distinction whether
the perception or the action part of these behaviors have been learned (see Figure 1).

An early work that combines behavior learning and robotics has been published by Kirchner (1997). A goal-
directed walking behavior for the six-legged walking machine SIR ARTHUR with 16 degrees of freedom (DOF)
and four light sensors has been learned. The behavior has been learned on three levels – (i) bottom: elementary
swing and stance movements of individual legs are learned first, (ii) middle: these elementary actions are then
used and activated in a temporal sequence to perform more complex behaviors like a forward movement of the
whole robot, and (iii) top: a goal-achieving behavior in a given environment with external stimuli. The top-level
behavior was able to make use of the light sensors to find a source of maximum light intensity. Reinforcement
learning, a hierarchical version of Q-learning (Watkins, 1989), has been used to learn the behavior. On the lowest
level, individual reward functions for lifting up the leg, moving the leg to the ground, stance the leg backward,
and swinging the leg forward have been defined.

Peters et al. (2005) presented an algorithmic milestone in reinforcement learning for robotic systems. They
specifically used a robot arm with seven degrees of freedom (DOF) to play tee-ball, a simplified version of baseball,
where the ball is placed on a flexible shaft. Their solution combines imitation learning through kinesthetic teaching
with dynamical movement primitives (DMPs) and policy search, which is an approach that has been used in many
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2 Selected Highlights

following works. In their work, Peters et al. (2005) used natural actor-critic (NAC) for policy search. The goal
was to hit the ball so that it flies as far as possible. The reward for policy search included a term that penalizes
squared accelerations and rewards the distance. The distance is obtained from an estimated trajectory computed
with trajectory samples that are measured with a vision system. An inverse dynamics controller has been used to
execute motor commands. About 400 episodes were required to learn a successful batting behavior.

Ball-in-a-cup is a very challenging game. A ball is attached to a cup by a string. The player has to catch
the ball with the cup by moving only the cup. Even human players require a significant amount of trials to
solve the problem. Kober et al. (2008); Kober and Peters (2009) demonstrate that a successful behavior can be
learned on a SARCOS arm and a Barret WAM. A similar approach has been used: imitation learning with DMPs
from motion capture or kinesthetic teaching and refinement with a policy search algorithm, in this case Policy
Learning by Weighting Exploration with the Returns (PoWER). In addition, the policy takes the ball position into
consideration. A perceptual coupling is learned to mitigate the influence of minor perturbations of the end-effector
that can have significant influence on the ball trajectory. A successful behavior is learned after 75 episodes.

The problem of flipping a pancake with a pan has been solved by Kormushev et al. (2010b) with the same
methods: a controller that is very similar to a DMP is initialized from kinesthetic teaching and refined with PoWER.
The behavior has been learned with a torque-controlled Barrett WAM arm with 7 DOF. The artificial pancake
has a weight of 26 grams only, which makes its motion less predictable because it is susceptible to the influence
of air flow. For refinement, a complex reward function has been designed that takes into account the trajectory
of the pancake (flipping and catching), which is measured with a marker-based motion capture system. After 50
episodes, the first successful catch was recorded. A remarkable finding is that the learned behavior includes a
useful aspect that has not directly been encoded in the reward function: it made a compliant vertical movement
for catching the pancake which decreases the chance of the pancake bouncing off from the surface of the pan.

Table tennis with a Barrett WAM arm has been learned by Mülling et al. (2011, 2013). Particularly challenging
is the advanced perception and state estimation problem. In comparison to previous work, behaviors have to take
an estimate of the future ball trajectory into account when generating movements that determine where, when,
and how the robot hits the ball. A vision system has been used to track the ball with 60 Hz. The ball position is
tracked with an extended Kalman filter and ball trajectories are predicted with a simplified model that neglected the
spin of the ball. 25 striking movements have been learned from kinesthetic teaching to form a library of movement
primitives. A modified DMP version that allows to set a final velocity as a meta-parameter has been used to
represent the demonstrations. Desired position, velocity and orientation of the racket are computed analytically
for an estimated ball trajectory and a given target on the opponent’s court and are given as meta-parameters to
the modified DMP. In addition, based on these task parameters, a weighted average of known striking movements
is computed by a gating network. This method is called mixture of movement primitives. The reward function
encourages minimization of the distance between the desired goal on the opponent’s court and the actual point
where the ball hits the table. In the final experiment, a human played against the robot, serving balls on an area
of 0.8 m × 0.6 m. Up to nine balls were returned in a row by the robot. Initially the robot was able to return
74.4 % of the balls and after playing one hour the robot was able to return 88 %.

Learning end-to-end behaviors that take raw camera images to compute corresponding motor torques (visual
servoing) has been demonstrated impressively by Levine et al. (2016). They use the 7 DOF arm of a PR2 robot to
learn a variety of isolated manipulation behaviors: hanging a coat hanger on a clothes rack, inserting a block into a
shape sorting cube, fitting the claw of a toy hammer under a nail, and screwing a cap on a water bottle. The final
behaviors use a convolutional neural network (CNN) to control the arm’s movements at 20 Hz based on the visual
input from a monocular RGB camera with a resolution of 240x240 pixels. A sophisticated training process involving
several phases has been developed in this work. The first layer of the convolutional neural network is initialized
from a neural network that has been pretrained on ImageNet (Deng et al., 2009). In a second pretraining step,
the image processing part of the neural network is initialized by training a pose regression convolutional neural
network that predicts 3D points that define the target objects involved in the task. Guided policy search is used
to train the final policy. The whole state of the system is observed during this training phase and a local dynamic
model is trained. An optimal control method that uses the full system state is used to obtain a “guiding policy”.
This guiding policy is used to train the neural network policy in a fully supervised setting. The final neural network
policy, however, works directly on images that represent partial information about the state of the system without
having the knowledge of the full system state that would only be available during training. The whole training
process for a new behavior requires 3–4 hours.
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Grasping has also been learned from raw monocular RGB camera images with a 7 DOF robot arm by Levine
et al. (2017). In this application, the behavior is not learned end-to-end, but a neural network has been learned to
predict the success of a motion command for a given camera image (and the camera image before the behavior is
started). The behavior goes through a sequence of ten waypoints defined by the Cartesian end-effector position
and the rotation of the 2-finger gripper around the z-axis. A motion command is selected in each step by an
optimization procedure based on the predicted success of the motion command. The remarkable fact about
this work is that a total amount of more than 800,000 plus 900,000 grasps collected in two datasets have been
performed to train the grasp success prediction model and a maximum of 14 robots has been used in parallel to
collect the data. A large variety of objects has been used to test the learned grasping behavior.

3 Definition of Behavior
Before we enter the discussion of robotic behaviors, we clarify several related terms. These are mostly taken from
biology.

We borrow a definition of the term behavior from behavioral biology. Unfortunately, many behavioral biologists
disagree in the definition of behavior (Levitis et al., 2009). Hence, we will select one and this is the one proposed
by Levitis et al. (2009): “behaviour is the internally coordinated responses (actions or inactions) of whole living
organisms (individuals or groups) to internal and/or external stimuli ..”. Note that we excluded a part of the original
definition as it only applies to biological systems. For our purposes we extend this definition to artificial systems
like robots. Furthermore, Levitis et al. (2009) point out “Information processing may be a necessary substrate for
behaviour, but we do not consider it a behaviour by itself.” This is an important statement because it excludes
perception, state estimation, and building world models from the definition of behavior while it may be part of a
behavior.

There are other terms related to behavior and behavior learning that we use in the discussion. Shadmehr and
Wise (2005, page 46) state “Once the CNS [central nervous system] selects the targets (or goals) of reach ... it
must eventually compute a motor plan and generate the coordinated forces needed to achieve the goal, even if
this computation evolves during the movement. The ability to achieve such goals typically requires a motor skill.”
Hence, we can distinguish the more general concept of a motor skill and an explicit and specific motor plan. The
term skill is widely used. We define skill as a learned ability of an organism or artificial system. A skill is not
the behavior but a behavioral template that can be adapted to a behavior for certain situations that are similar
to those in which it was learned. A set of skills constitutes a skill library or motor repertoire. A motor plan is a
sequence of actions to be taken in order to achieve a given goal. Another term that is often used in the context
of robot skill learning is movement primitive. Movement primitives are “fundamental units of motor behavior”,
more precisely, “indivisible elements of motor behavior that generate a regulated and stable mechanical response”
(Giszter et al., 1993). More specifically, a movement primitive can represent a learned skill and a motor plan is a
skill adapted to a specific situation.

4 Classification of Behaviors
Now that we have defined behavior and related terms, we will introduce categories to distinguish and classify
behaviors and behavior learning problems. Note that some behaviors cannot clearly be categorized or some
categories do not even apply to all behaviors. In contrast to Schaal and Atkeson (2010), we focus completely
on classifying the problem and corresponding behavior, not on the method that is used to solve the problem or
generate the behavior, and we use more refined categories to characterize these behaviors.

Domain: Behaviors are often useful only in specific domains. Sometimes similar but different behaviors are used
in different domains. Examples for domains are manufacturing, healthcare, logistics, household, or games. We will
explicitly exclude military applications. Here, we will follow a bottom-up approach to identify relevant domains
that include a significant amount of learned behaviors.

Hierarchy of behaviors: Behaviors can have different timescales and levels of abstraction regarding goals.
For example, keeping a household clean is more abstract and time-consuming than picking up a particular cup.
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4 Classification of Behaviors

Furthermore, behaviors can consist of sub-behaviors, as shown in Figure 6. A resource management behavior can
achieve the goal of maintaining a storage filled by keeping track of the stored amount (stocktaking) and collecting
resources (foraging) when necessary. As goals become more concrete and faster to achieve, their priority generally
increases: in the example, keeping balance or avoiding an obstacle are often obligatory leading to compromises in
the achievement of higher level goals. Sub-behaviors may be executed in parallel or in a sequence and generally,
the type of their combination (output weighting, suppression, sequence) is learnable.

Organizing behaviors hierarchically has been demonstrated to be of practical relevance to organize hand-coded
behaviors for the complex domain of robot soccer. The behavior specification languages XABSL (Loetzsch et al.,
2006) and CABSL (Röfer, 2018) are common among robot soccer teams. A hierarchical behavior structure is also
useful to divide the learning procedure, as demonstrated by Kirchner (1997). Hierarchical behavior organization
dates back at least to the field of behavior based robotics Arkin (1998), manifested, for example, in the subsumption
architecture of Brooks (1986).

Perception and action: Behaviors often involve perception and action (see Figure 1). Some behaviors can be
executed open-loop. They do not incorporate any sensory feedback after they have been started. Pure perception
on the other hand does not match our definition of behavior. However, often a coupling between perception and
action is required. Sometimes both components are learned, sometimes only the action is learned and sometimes
there is a stronger focus on learning the perception part of the behavior. We will indicate which part of the
behaviors are learned with this classification.

Deliberative vs. reactive behaviors: Arkin (1998) distinguishes between deliberative and reactive robot control.
This can be transferred directly to robotic behavior. Deliberative control often relies on a symbolic world model.
Perception is not directly coupled to action, it is used to populate and update the world model. Actions are
derived from the world model. Deliberative control is usually responding slowly with a variable latency and can
be regarded as high-level intelligence. We define deliberative behaviors as behaviors that only have an indirect
coupling between sensors and actuators through a form of world model. Behaviors that are learned completely
are usually not deliberative. Only parts of deliberative behaviors are learned. Reactive control does not rely on a
world model because it couples perception and action directly. It usually responds in real-time, relies on simple
computation, and is a form of low-level intelligence. Reactive control architectures often combine multiple reactive
behaviors. An interesting property of these architectures is that often unforeseen high-level behavior emerges from
the interplay between robot and environment. Reflexive behavior is purely reactive behavior with tight sensor-
actuator coupling. Deliberative and reactive behaviors are often closed-loop behaviors. Behaviors without coupling
between perception and action also exist. These are open-loop behaviors. Sometimes open loop behaviors are
triggered with a hard-coded rule based on sensor data. Note that sensor data used during the training phase is
irrelevant for this classification, only sensor data during execution of the behavior is relevant.

Discrete vs. rhythmic behavior: Schaal et al. (2004) distinguish between two forms of movements: discrete
and rhythmic movements. Discrete movements are point-to-point movements with a defined start and end point.
Rhythmic movements are periodic without a start or end point or could be regarded as a sequence of similar discrete
movements. Some behaviors might be rhythmic on one scale and discrete on another scale. This distinction has
often been used for robotic behaviors. Hence, we adopt it for our survey. Schaal et al. (2004) show that discrete
movements often involve higher cortical planning areas in humans and propose separate neurophysiological and
theoretical treatment.

Static vs. dynamic behavior: We introduce a classification of behaviors that distinguishes between dynamic
behavior and static behavior. Momentum is very important in dynamic behaviors because it will either be transferred
to the environment or it is required because the robot or the environment is not stable enough to maintain its
state without momentum. Static behaviors can be interrupted at any time and then continued without affecting
the outcome of the behavior. In practice, some behaviors also lie in between, because momentum is not important
but interrupting the behavior might alter the result insignificantly. Some problems would usually be solved by a
human with dynamic behaviors but when the behavior is executed slow enough, it loses its dynamic properties.
This is often the case when robots solve these kinds of problems. We call these kind of behaviors quasi-static.
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Kirchner (1997): goal-directed walking

Peters et al. (2005): tee-ball

learned

not learned

Kormushev et al. (2010b): pancake flipping

Kober et al. (2008); Kober and Peters (2009):
ball-in-a-cup

Levine et al. (2016): visuomotor control

Mülling et al. (2011, 2013): table tennis

Levine et al. (2017): grasping

ActionPerception internal
representation

Simple perception Simple internal
representation Complex action

Building Using

BehaviorPublication

Figure 1: Perception and action. The red background indicates which parts of the behavior are learned.
Sometimes both, perception and action, are learned and sometimes only some aspects are learned. The height of
each bar indicates complexity of the corresponding part.

This categorization is inspired, for example, by research in walking robots: a static walk can be stopped at
any time and the robot will stay indefinitely at the same position (Benbrahim and Franklin, 1997). A similar
categorization into dynamic and static movement techniques is made in rock climbing (Wikipedia contributors,
2018). A complementary definition for manipulation is provided by Mason and Lynch (1993): static manipulation
is defined as an operation “that can be analyzed using only kinematics and static forces”, quasi-static manipulation
can be analyzed “using only kinematics, static forces, and quasi-static forces (such as frictional forces at sliding

5



 

 
 

 

5 Robotic Behavior Learning Problems

contacts)”, and dynamic manipulation can be analyzed “using kinematics, static and quasi-static forces, and forces
of acceleration”.

Active vs. passive: Some behaviors are executed with the intention to actively change the state of the robot or
the world. Others are only passive and often have the goal of maintaining a state like homeostasis, that is, a state
of steady internal conditions. Change of the environment is a side effect. We borrow this idea from the behavior
architecture of Rauch et al. (2012) but it can be applied to any level of behavior.

Locomotion vs. manipulation: Many implemented behaviors of existing robotic systems can be categorized as
locomotion or manipulation. Locomotion includes all behaviors that move the robot and, thus, change the state
of the robot in the world. Change of the environment is a side effect. Manipulation behaviors change the state
of the environment. Changing the state of the robot is a side effect. Manipulation is typically characterized as
mechanical work that modifies the arrangement of objects in the world.

System requirements: Behaviors have different requirements on the hardware design of the robot. Many
locomotion behaviors require legs, manipulation behaviors require grippers, hands, and / or arms. Navigation and
exploration behaviors often only require wheels. Some behaviors rely on particular sensors, for example, cameras,
force-torque sensors, or distance sensors. We will mention the most important requirements in the description
of the behaviors if they are not obvious. An example of an obvious requirement is that a walking robot needs
something similar to legs.

Noise and uncertainty: Behavior learning applications are significantly more difficult if there is noise in state
transitions or state perception. Sometimes the state is not fully observable and, hence, there is uncertainty in
perception. Sometimes the state transition is not fully determined by the actions that the robot can execute
because the environment itself is dynamic. This is another reason for uncertainty.

5 Robotic Behavior Learning Problems
Robotic behaviors can be learned with many different approaches. Two relevant branches are reinforcement learning
and supervised learning. Recent surveys on reinforcement learning in robotics have been published by Kober et al.
(2013); Kormushev et al. (2013). Deep reinforcement learning is a new field that makes use of the results from
deep learning. Although there are only a few applications of deep reinforcement learning in robotics, results of
these methods are interesting for behaviors that involve difficult perception problems. A recent survey of deep
reinforcement learning has been published by Arulkumaran et al. (2017) and a survey of deep learning for robotic
perception and control by Tai and Liu (2016). Supervised learning can be used to learn the perception part of a
behavior, the action part, or both. If actions are learned supervised, this is called imitation learning or programming
by demonstration. Surveys have been written by Billard et al. (2008); Argall et al. (2009); Osa et al. (2018). We
do not discuss algorithms in this section. Please refer to these surveys or to other papers that we cite in this
section to learn more about specific algorithms that can be used to learn behaviors. We neither discuss the reported
performance of the solutions from the presented works.

We will focus on kinematically or sensorially complex robots. That includes humanoid robots or parts of
humanoid robots like legged robots or robotic arms. We only consider applications for unmanned aerial vehicles,
autonomous underwater vehicles, or wheeled robots if the learned behaviors are relevant for humanoid robots.
That excludes some early works that apply machine learning to robotic control, for example, Mahadevan and
Connell (1992) learn a behavior to find and push a box with a wheeled robot, but also more recent work with deep
reinforcement learning on robotic systems. We also do not discuss behaviors that have only been demonstrated in
simulation because of the reality gap (Jakobi et al., 1995).

In this section, we try to capture the large variety of robotic behavior learning problems according to the
presented definition of behavior. We group problems according to the categories introduced in the previous section
and point out similarities and differences between and difficulties of these problems.

A histogram that shows the distribution of the analyzed papers by publication dates is displayed in Figure 2.
Although we do not claim to have included definitely every relevant work, it shows that the number of applications
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Figure 2: Histogram of publication years of the considered works.

of behavior learning to robotic systems has been growing fast in the last 10 years. Figure 3 shows how individual
behaviors can be grouped by their domain of application. Some behaviors can of course be applied in several
domains. These are elementary behaviors. Examples are walking and grasping. Table 2 summarizes the behavior
learning problems, corresponding publications, and their categorization. The remainder of this section is separated
in manipulation behaviors, locomotion behaviors, and behaviors that do not fit any of these categories.

5.1 Manipulation Behaviors
Figure 4 shows the categorization of manipulation behaviors that we used to structure this section. Manipulation
behaviors change the state of the robot’s environment, hence, we categorized behaviors by the softness of the
manipulated object and the dynamics of the behavior. This is similar to how Sanchez et al. (2018) structured
their survey about manipulation and sensing of deformable objects. We found this categorization to be useful
to organize publications that we present here. It might, however, not be easily applicable in other cases. For
example, in case of a robot that moves a catheter (Tibebu et al., 2014), we would have to answer the question
if the catheter is the manipulated object or part of the robot. If the catheter is part of the robot, what would be
the manipulated object?

5.1.1 Fixed Objects (A)

Flipping a light switch: Buchli et al. (2011) investigate the task of flipping a light switch. The switch essentially
is a via-point that has to be passed through very precisely in this kind of task. In addition to high accuracy, the
flipping process itself requires the exertion of forces. In their work, the robot learns to be compliant when it can be
and be stiff only when the task requires either high precision or exertion of forces. The problem could be extended
to the recognition of the switch, which is not done here.

Open door: In contrast to flipping a switch, opening a door does not require precise trajectories. Additionally,
more than just a via-point problem has to be solved: opening a door involves grasping the handle, closing the
kinematic chain between gripper and the handle and finally moving the handle. The movements of the robot after
grasping are restricted by the structure of the handle. Opening a door requires significant force exertion from the
robot to the environment. Nemec et al. (2017) ignore the problem of grasping and only consider the problem
of learning the unconstraint DOFs while the kinematic chain from the robot to the door is closed. Chebotar
et al. (2017b); Gu et al. (2017) consider the problem of learning this behavior end-to-end from camera images to
motor torques. Nemec et al. (2017); Englert and Toussaint (2018) ignore the perception part of the problem and
assume known relative positions. Kalakrishnan et al. (2011); Kormushev et al. (2011a) use force sensors. The
door considered by Kormushev et al. (2011a) does not have a handle but a horizontal bar that has to be pushed
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Figure 3: Mindmap of behavior learning applications. Applications are ordered by domain. Some behaviors
are assigned to multiple domains and most of the elementary behaviors could also belong to multiple domains.
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Figure 4: Categorization of manipulation behaviors. Manipulation behaviors are categorized in two dimen-
sions: softness and movability of the manipulated object and dynamics of the behavior. Blue letters indicate the
corresponding subsections.

with a larger force than a standard door handle. It is also the only work in which the door has been pushed and not
pulled. Nemec et al. (2017); Englert and Toussaint (2018) consider not only horizontal but also vertical handles.

Turning objects: Several manipulation problems involve turning fixed objects, for example, turning a valve
(Carrera et al., 2012), or a crank (Petric et al., 2014), or screwing a cap on a (pill or water) bottle (Levine et al.,
2016). The challenge is to reach a via-point and then hold and move an object on a circular path. These behaviors
can be realized as rhythmic movements (Petric et al., 2014) or discrete movements (Carrera et al., 2012; Levine
et al., 2016). They can be discrete when the object has to be turned only by a small angle (for example, 90
degrees, Carrera et al. (2012)) or when the robot can spin its wrist (Levine et al., 2016). Some works focus more
on robustly reaching the target object (Carrera et al., 2012; Levine et al., 2016) and others on robustly turning
the object itself (Petric et al., 2014). Carrera et al. (2012) exclude perception from learning, Levine et al. (2016)
learn perception and action, and Petric et al. (2014) follow previously learned torque profiles.

5.1.2 Spatially Constrained Behavior (B)

Peg-in-a-hole: Inserting a peg in a hole is one of the most basic manipulation skills that we discuss in this
article. It is the most frequent assembly operation (Gullapalli et al., 1994). The behavior can benefit from both
visual (Levine et al., 2016) and force sensors (Gullapalli et al., 1994; Ellekilde et al., 2012; Kramberger et al.,
2016), but it can also be done without any sensors (Chebotar et al., 2017a). While the most obvious application
of this skill is found in assembly tasks (Gullapalli et al., 1994; Ellekilde et al., 2012; Kramberger et al., 2016; Levine
et al., 2016), it can also be used to, for example, plug in a power plug (Chebotar et al., 2017a). The problem
can be solved end-to-end from visual data to motor torques (Levine et al., 2016) or from force measurements to
Cartesian positions (Gullapalli et al., 1994) as a purely reactive behavior. Alternatively, learning can be combined
with search heuristics for the hole based on force measurements (Ellekilde et al., 2012; Kramberger et al., 2016).
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In the simplest case, the behavior is learned for a fixed relative transformation between robot and target (Chebotar
et al., 2017a).

A more advanced assembly operation that involves multiple instances of the peg-in-a-hole problem has been
learned by Laursen et al. (2018) to connecting a pipe for a heating system. In this task, a passively compliant
gripper holds a tool extension and has to use a tube feeder, nut feeder, and crimping machine. Only actions were
learned and a safety mechanism prevented the system from serious collisions. Apart from that, the system learns
blindly without any sensors.

Wiping: The motion required to solve sweeping, wiping, ironing or whiteboard cleaning tasks can be either
discrete or rhythmic. Further, all these task require environmental interaction by exerting (specific) forces on ex-
ternal objects. Learning mostly focuses on finding parameters for the representation of the movement. Kormushev
et al. (2010a, 2011a) let a robot learn a discrete ironing skill from demonstrated trajectories and additional force
profiles. They also evaluated their work on a whiteboard cleaning task (Kormushev et al., 2011c). A similar task
is surface wiping which is investigated by Urbanek et al. (2004); Gams et al. (2014). Both works represent the
wiping skill as a periodic movement. In this case, rhythmic motions are advantageous, as the complete surface can
be wiped easily by executing the motion several times while shifting only the center point. The work from Gams
et al. (2014) also uses force feedback to maintain contact with the surface. Besides the aforementioned household
tasks, there are also industrial operations that require constant environmental contact. From these, grinding and
polishing tasks have been investigated by Nemec et al. (2018). The goal of these tasks is to keep contact with
a specific force exertion between a polishing/grinding machine and the treated object, which is manipulated by
a robot with a desired orientation. Therefore, their approach reproduces the relative motion between object and
tool. The contact point is estimated using measured the forces and torques and can be changed to optimize a
defined criterion, for example, minimize joint velocities. Sweeping has been considered by Alizadeh et al. (2014).
The position of “dust” is obtained using computer vision and the behavior is adapted accordingly. Pervez et al.
(2017) train a sweeping behavior end-to-end from visual inputs to collect trash placed at various positions between
a fixed initial and goal position.

Handwriting: The goal of handwriting tasks is to resemble human writing as precise and smooth as possible.
Complete words have been reproduced and generalized on real robots: Manschitz et al. (2018) learn to generalize
a handwriting skill to unseen locations of a whiteboard which is defined as the target writing position. Berio et al.
(2016) learn to dynamically draw graffiti tags. In comparison to the above mentioned behavior, these drawings
particularly require fluid and rapid manipulation of the pen to produce elegant and smooth sequences of letters.
Precision is less important for this behavior.

5.1.3 Movable Objects (C)

Grasping: Grasping is a good example for a high diversity of similar but different task formulations. The problem
of grasping is usually tightly coupled with perception, but it can be separated into perception and movement
generation. Continuous feedback can be used to verify the grip although it can also be sufficient to perceive the
target before the grasp attempt. Problem formulation for grasping varies in the degree of automation and amount
of other methods used in the process. Sometimes perception is learned and movement generation is done with
other approaches and vice versa. Some approaches learn full reaching and grasping movements for known object
locations (Gräve et al., 2010; Kalakrishnan et al., 2011; Stulp et al., 2011; Amor et al., 2012), others just learn
to predict grasp poses (Lenz et al., 2015b; Johns et al., 2016; Pinto and Gupta, 2016). Steil et al. (2004) only
consider the problem of defining hand postures and Kroemer et al. (2009) the problem of learning hand poses
relative to objects. A full grasping movement includes a reaching trajectory, positioning the gripper at the correct
position, closing the gripper, and sometimes objects have to be moved in the right position before the gripper can
be closed. From the works that are mentioned here, Gräve et al. (2010); Steil et al. (2004); Stulp et al. (2011) do
not learn to use feedback from sensors, Kroemer et al. (2009) use features obtained from images, Kalakrishnan
et al. (2011) use force measurements, Lenz et al. (2015b) use RGB-D images, Johns et al. (2016); Mahler et al.
(2017) use depth images, and Lampe and Riedmiller (2013); Pinto and Gupta (2016); Levine et al. (2017) use
RGB images. Figure 5 illustrates possible inputs and outputs of a component that generates grasping behavior.
A classification proposed by Bohg et al. (2014) distinguishes between grasping of known, familiar, and unknown
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Figure 5: Learning grasping from sensory information. Exemplary sensor data that could be used to generate
grasping behaviors and possible outputs of a skill.

objects. Familiar means that the robot did not encounter the objects before, but has seen similar objects. Most
of the works that we present here fall into this category. For grasping, other factors that influence the difficulty
of the problem are the used hand or gripper and the objects that should be grasped. Very promising results are
shown by Levine et al. (2017); Mahler et al. (2017). A large variety of different objects can be grasped with a
two-finger gripper just based on images or depth images respectively. However, there are still many options for
improvements. The gripper can only grasp objects with top-down movements. In the real world, not all problems
can be solved with these kind of grasps. The gripper only has two fingers. Hands with more fingers have better
control over grasped objects. Using force feedback and tactile sensors would certainly improve grasping in some
situations. In a box full of objects, the approach of Levine et al. (2017) just picks a random object. In practice,
this should be a parameter of the behavior. Also, it is not clear where and in which orientation the gripper holds
the object. This does not seem to be a problem because most works just consider the grasping phase but not what
happens afterwards. In a real application, most probably the object will have to be placed in some other location.
Since the grasping is not as accurate as one would expect in many cases, knowing the orientation of the object
inside the gripper is a very useful information to prepare the placing behavior. This can be done either by in-hand
manipulation, which usually requires more fingers, or by adjusting the final target position of the arm taking into
consideration the object’s orientation.

Pick and place: A skill that is very similar to grasping is pick and place. Some works assume that picking the
object is already solved and learn only object placement (Ijspeert et al., 2013; Finn et al., 2017), others learn both
pick and place in one policy (Stulp et al., 2012; Rahmatizadeh et al., 2018; Chebotar et al., 2017b). Some works
only focus on movement execution (Ijspeert et al., 2013), others generalize from object features to trajectories
(Kroemer and Sukhatme, 2017), or even learn camera-based perception and action end-to-end for one specific
object (Finn et al., 2017; Chebotar et al., 2017b). A very interesting work from Stulp et al. (2012) considers
the special case of this problem under uncertainty. It assumes a state estimation approach to track the object’s
location which does not yield perfect results. In addition, a sequence of movements is learned. A variant of pick
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and place is placing coat hanger on a rack. Levine et al. (2016) learned to perform this task end-to-end from
camera images to motor torques.

The next level of difficulty for simple pick and place tasks is placing objects precisely, for example, stacking
boxes. An interesting work shows that this can be learned even with a low cost manipulator that has play in its
joints and a wobbling base (Deisenroth et al., 2015). While this can be easily interpreted as noise from a machine
learning perspective, other methods usually fail without any informative prior knowledge. In their study, perception
has not been learned but continuous feedback from a vision system has been used to generate appropriate action.
Duan et al. (2017) tackle a more difficult problem by learning a direct mapping from visual input to actions. In
their work, however, a more precise robotic system has been used.

In-hand manipulation: As objects cannot always be picked up in a specific configuration, in-hand manipulation
may be necessary to reposition the objects within a robot’s hand. In general, this is a dexterous manipulation skill
that requires a gripper with multiple fingers that can be driven individually. van Hoof et al. (2015) learn robot
in-hand manipulation with unknown objects by using a passively compliant hand with two fingers and exploiting
tactile feedback. They investigate an in-hand object rolling task and learn a control policy that generalizes to
novel rollable cylindrical objects that differ in diameter, surface texture and weight. In their work, dynamics and
kinematics of the compliant robot hand are unknown to the learning algorithm.

The hand used by Rajeswaran et al. (2018) has five fingers and has pneumatic actuation. They consider the
problem of learning in-hand rotation of elongated objects with and without the use of a wrist joint under varying
initial conditions. The object can either be in the hand at the start of the behavior or picked up and moved to the
desired configuration. Learning this skill is shown to be possible with only proprioceptive feedback. This includes
pressure measurements, positions, and velocities of each joint.

Andrychowicz et al. (2018) learn a very complex in-hand manipulation skill: changing the orientation of a cube
to any desired orientation in a robotic hand with five fingers. Two components are learned: a vision component
that computes the object’s pose from three camera images from significantly different, fixed perspectives and a
policy component that uses the finger tip positions and the object pose to generate motion commands for the
fingers. The finger tip positions are measured with a motion capture system which unfortunately makes the learned
skill in its current form not suitable for a humanoid robot outside of the lab.

Tumbling / tilting an object: The challenge in quasi-static manipulation tasks like tumbling or tilting objects
from one face to another is to control the position of the respective object over a period of time. Pollard and
Hodgins (2004) generalize a object-tumbling skill to novel object sizes, shapes and friction coefficients. Kroemer
and Sukhatme (2017) further enhance the difficulty by learning to tilt objects exactly around their defined pivotal
corners. This task requires a high accuracy during the whole skill execution because the object’s corner has to
stay continuously in contact with the desired pivot point.

5.1.4 Deformable Objects (D)

Knot tying and untying: Tying a knot is a behavior that is frequently required, for instance, during surgical
operations, in the household domain, for search and rescue, or for sailing where threads or ropes are often used.
van den Berg et al. (2010) demonstrate that a combination of behavior learning and optimal control can be used
to learn fast and smooth knot tying with two manipulators consisting of 14 motors. This would be a particularly
challenging task for planning algorithms that would have to reason about a three-dimensional soft body.

Similarly, untangling ropes and untying knots is required in the very same domains as well as for technical
applications in which cables unintentionally tangle up. Wen Hao Lui and Saxena (2013) learn to predict the rope
configuration and use it to choose several actions from a predefined set to untangle the rope.

Handling Garments: Corona et al. (2018) learn to handle garment, that is, arranging garment from an unknown
configuration to a reference configuration from which further steps can be executed, for example, folding it or
dressing a person. The difficult part is the prediction of suitable grasp points from camera images. A bimanual
setup has been used: one arm grasps a garment and presents it to an RGB-D camera, the garment is recognized,
and two grasping points for the arms are identified to bring the garment to a reference configuration. Jeans,
T-shirts, jumpers, and towels can be handled by the system.
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Colomé and Torras (2018) learn to fold a polo shirt with two robotic arms. Each arm has 7 DOF. Only
trajectories for two arms are learned. An accurate model of the polo shirt and its interaction with the grippers of
the arms is not available. The learned trajectories minimize wrinkles in the shirt and make it look as close to a
reference rectangle as possible.

Erickson et al. (2018) consider the problem of robot-assisted dressing: while a human is holding his arm up
and holds his posture strictly, a PR2 robot pulls a hospital gown onto the arm of human. Physical implications
of actions on people are learned from simulation. The learned model predicts forces on a person’s body from the
kinematic configuration and executed actions. The model is combined with model predictive control to solve the
task. Hence, neither action, nor perception are learned completely.

5.1.5 Divisible Objects (E)

Cutting: Cutting objects is a complex task as dynamics are induced during the process of object cutting. Cutting
tasks can be found in various domains. For example, Lioutikov et al. (2016) consider the task of cutting vegetables
in a kitchen scenario. In their work, the movement is divided into multiple steps, and afterwards executed
autonomously as a sequence. The learned behavior generalizes to changed cutting positions. However, they do
neither consider the required forces to cut the objects nor the involved dynamics. As a result, the cutting motion
has to be executed multiple times to finally slice the vegetable. Therefore, while Lioutikov et al. (2016) represent
cutting motions as discrete behaviors, they recommend to represent them as rhythmic behaviors in future work.
The difficulty of food-cutting tasks is further exacerbated, if vegetables with different stiffness and shape are
evaluated. In this case, the (non-linear) dynamics vary not only with time but also with different object types.
As the hand-designing of such dynamics models is infeasible, Lenz et al. (2015a) aim to learn the prediction of
these dynamics and the respective controllers directly from a dataset of about 1500 cuts. In the medical field,
Thananjeyan et al. (2017) investigate surgical pattern cutting of deformable tissue phantoms in the context of
laparoscopic surgery. As the task requires simultaneous tensioning and cutting, they learn a tensioning policy
which depends on the specific cutting trajectory and maps the current state of the gauze to output a direction
of pulling. Similar to the work from Lenz et al. (2015a), the dynamical deformation is difficult to observe or to
model analytically. Therefore, they directly learn the cutting policy in an end-to-end fashion.

A similar task is peeling which has been learned by Medina and Billard (2017). It is, however, modeled as
a sequence of reaching, peeling and retracting. Only with one arm the peeling motion for a zucchini has been
learned while another arm holds it.

5.1.6 Movable Objects, Dynamic Behavior (F)

Batting, throwing and kicking: For many games some sort of batting or throwing behavior is required, for
example, hockey (Daniel et al., 2013; Chebotar et al., 2017a; Rakicevic and Kormushev, 2017; Paraschos et al.,
2018), golf (Maeda et al., 2016), minigolf (Khansari-Zadeh et al., 2012), billiard (Atkeson et al., 1997; Pastor
et al., 2011), baseball (Peters et al., 2005; Peters and Schaal, 2008), badminton (Liu et al., 2013), tennis (Ijspeert
et al., 2002), table tennis (Kober et al., 2010; Mülling et al., 2011; Kober et al., 2012; Mülling et al., 2013),
tetherball (Daniel et al., 2012; Parisi et al., 2015), darts (Kober et al., 2012), throwing (Gams et al., 2010; Ude
et al., 2010; Kober et al., 2012; da Silva et al., 2014; Gutzeit et al., 2018), and kicking (Böckmann and Laue,
2017; Hester et al., 2010; Asada et al., 1996). These are very dynamic manipulation behaviors because momentum
from the end-effector has to be transferred to the manipulated object. We can distinguish between settings where
a specific goal has to be reached by hitting or throwing an object directly (Chebotar et al., 2017a; Khansari-Zadeh
et al., 2012; Rakicevic and Kormushev, 2017; Paraschos et al., 2018; Gams et al., 2010; Ude et al., 2010; da Silva
et al., 2014; Gutzeit et al., 2018) or indirectly (Daniel et al., 2013; Atkeson et al., 1997), or the distance or velocity
has to be maximized (Pastor et al., 2011; Peters et al., 2005; Peters and Schaal, 2008). Sometimes performing
the motion was enough (Maeda et al., 2016; Liu et al., 2013; Ijspeert et al., 2002; Daniel et al., 2012; Böckmann
and Laue, 2017). Winning the game was the goal in the case of tetherball (Parisi et al., 2015), or scoring a goal in
the case of soccer (Hester et al., 2010; Asada et al., 1996). An extension to the problem of hitting a specific goal
is to hit a given goal from a target space, for example, along a line (Khansari-Zadeh et al., 2012), from an area
(Kober et al., 2012; Gams et al., 2010; Ude et al., 2010; da Silva et al., 2014; Rakicevic and Kormushev, 2017;
Gutzeit et al., 2018), or from a discrete set of targets (Kober et al., 2012). In some cases specialized machines
have been used, for example, Atkeson et al. (1997) use a simple billiard robot or Liu et al. (2013) use a badminton
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robot with three DOF. In contrast, Pastor et al. (2011) use a humanoid robot to play billiard or Mülling et al.
(2013) use robotic arms to play table tennis. In some works, only serve motions (Liu et al., 2013) or hitting static
objects (Peters et al., 2005; Hester et al., 2010) are learned, in other works a moving object has to be hit (Mülling
et al., 2013; Parisi et al., 2015). Perception and state estimation is not learned in any of the presented works,
hence, behaviors that rely on perception and state estimation of moving targets (Parisi et al., 2015; Mülling et al.,
2013) can be considered as deliberative. Most of these problems, however, have been solved without exterioceptive
sensors. Kicking a ball with a legged humanoid represents a particular challenge because the robot has to keep
balance. Böckmann and Laue (2017) execute a learned kick with manually implemented balancing and Hester
et al. (2010) learn to perform a kick that avoids falling over while scoring a goal. State estimation uncertainty
and noise is an issue if perception is involved in the skill although this has not been mentioned explicitly in the
works of Parisi et al. (2015); Mülling et al. (2013) in which state estimation methods have been used. Hence, we
assume this has not been considered to be a significant problem. Learning the perception part of these behaviors
has not been considered so far and would significantly increase the difficulty of the problems.

More dynamic manipulation behaviors: In ball-in-a-cup, a ball is attached to a cup by a string. The goal is
to move the cup to catch the ball with it. A robot has to swing the ball up and catch it. The movements of the
ball are very sensitive to small pertubations of the initial conditions or the trajectory of the end-effector (Kober
et al., 2008). Successful behaviors are learned so that they take into account the ball position (Kober et al., 2008;
Kober and Peters, 2009) to compensate for perturbations, however, the perception part is not learned in any of
these works. Kober et al. (2008) state that it is a hard motor learning task for children.

Another remarkable work is published by Kormushev et al. (2010b). The goal is to flip a pancake with a frying
pan. It is a dynamic task and the pancake is susceptible to the influence of air flow which makes it very hard to
predict its trajectory.

Zhao et al. (2018) learn nunchaku flipping, which is a very dynamic behavior. A nunchaku is a weapon that
consists of two sticks that are connected by a chain. A hand with haptic sensors and five fingers has been used.
Zhao et al. (2018) emphasize that the task requires compound actions that have to be timed well, contact-rich
interation with the manipulated object, and handling an object with multiple parts of different materials and
rigidities.

Balancing: A typical balancing example which is often used as a sample problem is balancing an inverted
pendulum. Marco et al. (2016); Doerr et al. (2017) investigate this problem in a real-world manipulation scenario by
utilizing a robotic arm with seven DOF to balance an inverted pendulum. In their work, they learn parametrizations
of a PID controller or a linear-quadratic regulator (LQR), respectively, while a motion capture system is used to
track the angle of the balanced pole.

5.1.7 Granular Media and Fluids (G)

Scooping: For humans, reasoning about fluids and granular media is no more difficult than reasoning about
rigid bodies. Not many researchers try to tackle these problems with robots. Schenck et al. (2017) learn scoop
and dump actions of granular media. Both are executed in sequence and they are encoded with nine parameters
that tell the robot where and how to scoop and where to dump the granular media. The problem that is solved
is to scoop pinto beans from one tray and dump it to another tray to create a desired shape in the target tray. A
Gaussian-shaped pile and the letter “G” have been selected as target shapes. The robot was allowed to execute
100 scoop and dump actions. A depth camera is used to measure the current state of the granular media. The
part of the behavior that has been learned is a model that predicts the effect of actions which will then be used
to select good actions.

Pouring: An application which requires (weak) dynamical movements with moderate precision is pouring liquids
from a bottle into a cup. Learning focuses on the generalization of the movement to new goals (position of the
cup (Pastor et al., 2008)), changed initial positions (position of the bottle (Chi et al., 2017)), or different object
shapes and sizes (Brandl et al., 2014; Tamosiunaite et al., 2011). Tamosiunaite et al. (2011) learn both, the shape
of the trajectory and the goal position to generalize a trajectory to a different bottle. Similar to the pick-and-
place applications detailed above, the elementary pouring problem can also be extended to a pick-and-pour task
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(Caccavale et al., 2018; Chi et al., 2017). In contrast to the above mentioned works which acquire the pouring
trajectories from human demonstrations, robotic pouring behaviors can also be learned in an end-to-end fashion
directly from videos (Sermanet et al., 2018).

5.1.8 Collision Avoidance (H)

Robotic manipulation behaviors can result in collisions with the robot’s own body, other agents or the environment.
The latter is often termed obstacle avoidance, where the obstacles can be both static or dynamic. While static
objects in the environment can be modeled well within a world model, dynamic obstacles are often circumnavigated
with reactive behaviors. Both, collision and obstacle avoidance are important in real-world manipulation scenarios.
Koert et al. (2016) learn adaptation of trajectories in case of unforeseen static obstacles represented by a point
cloud that has been obtained from a depth camera.

5.1.9 Miscellaneous (I)

There are also some more unusual behaviors that have been learned but we will not discuss them in detail. Among
these are archery (Kormushev et al., 2010c), which is similar to throwing a ball or darts but does not involve an
accelerating trajectory, playing with the Astrojax toy (Paraschos et al., 2018), playing maracas (Paraschos et al.,
2018), drumming (Ude et al., 2010), and calligraphy (Omair Ali et al., 2015).

5.2 Locomotion Behaviors
The design of locomotion behaviors is a challenge that increases with the kinematic complexity of the robot, its
inherent stability, and the terrain to be traversed. Machine learning techniques can be used to provide solutions
to locomotion problems, even with fundamental principles of robot locomotion not yet fully understood (Aguilar
et al., 2016).

Locomotion problems can be organized hierarchically based on the controlled entities (single or multiple legs,
joints of the robot body) as shown in Figure 6. On the lowest level, a PID controller may generate actuator
commands to control the joints of a robot leg or the motors of its wheels to reach or maintain a certain position,
velocity, or torque. By variation of its parameters, a joint controller can achieve meaningful reactive movements
without knowledge of the kinematic structure. As an example, each joint can independently compensate for
internal friction or a certain reflex can be triggered locally at joint level (Kuehn et al., 2014). We exclude the
level of joint control as it is only modifying a given behavior generated on higher levels. Single leg behaviors, such
as the swing movement, can be defined in the Cartesian space of the end-effector and thus require an inverse
kinematics and / or dynamics transferring the behavior’s output into joint space. Behaviors that command the full
body such as balancing or walking often use other behaviors that only control single legs. High-level locomotion
behaviors concatenate, combine, and steer full-body behaviors. For example, navigation behavior for a humanoid
robot controls the goal of a walking behavior. High-level behaviors could as well be controlled by other behaviors
or overall objectives.

5.2.1 Walking (A)

The prime example of the category locomotion is walking. Walking is a very diverse robotic behavior learning
problem. Its diversity stems on the one hand from the variety of different walking machines: six-legged (Maes and
Brooks, 1990; Kirchner, 1997), quadrupedal (Kohl and Stone, 2004; Kolter et al., 2008; Birdwell and Livingston,
2007; Kolter and Ng, 2009; Kalakrishnan et al., 2009; Zucker et al., 2011; Bartsch et al., 2016), or biped systems
(Benbrahim and Franklin, 1997; Matsubara et al., 2005; Geng et al., 2006; Kormushev et al., 2011c; Missura and
Behnke, 2015) have been considered for this paper. On the other hand, the problem formulation can be made
more difficult by requiring the system to walk up stairs (Kolter and Ng, 2009) or walk on irregular or rough terrain
(Kolter et al., 2008; Kalakrishnan et al., 2009; Zucker et al., 2011). In principle, the problems of walking as fast
(Kohl and Stone, 2004), straight (Birdwell and Livingston, 2007), energy-efficient (Kormushev et al., 2011c), or
stable (Missura and Behnke, 2015) as possible can be distinguished. While six-legged and quadrupedal systems are
stable enough to prevent falling over in most situations and, hence, qualify for static behaviors, bipedal systems
are often unstable and it is a hard problem to prevent them from falling over. Hence, bipedal walking can be
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Figure 6: Hierarchy of behaviors with focus on locomotion. Inspired by Arkin (1998, page 49). For different
levels of abstractions exemplary behaviors are presented. Concrete movements of the body, a single extremity or
joint are found on lower levels in this hierarchy. While machine learning may be used on all levels and intersections,
this work focuses on behavior learning above the level of joint control.

considered a dynamic learning problem. Walking is a rhythmic and active behavior. It is an elementary skill that
can be used in many application domains, however, walking robots are in competition to wheeled robots which
are much more energy-efficient and precise in flat terrain. While walking itself is a rhythmic behavior, precise foot
placement is usually a discrete behavior. Precise foot placement is required for climbing stairs (Kolter and Ng,
2009) and walking on rough terrain (Kolter et al., 2008; Kalakrishnan et al., 2009; Zucker et al., 2011) on a lower
level of behavior abstraction (see Figure 6). Those behaviors also combine learning methods with other planning
and control methods. Bipedal robots are usually leaner than other walking machines and they are able to move like
humans and in the same environment, for example, go through very narrow paths (Benbrahim and Franklin, 1997).
Because bipedal walking is not statically stable per se, controllers have to compensate disturbances continuously.
Either static stability or dynamic stability can be the goal of a bipedal walk. Often the problem of learning bipedal
walking is restricted by supporting structures to the sagittal plane to simplify the balancing problem (Benbrahim
and Franklin, 1997; Matsubara et al., 2005; Geng et al., 2006) but not always (Kormushev et al., 2011c; Missura and
Behnke, 2015). However, behaviors are often prestructured to restrict and, hence, simplify the learning problem.
For example, Missura and Behnke (2015) only learn the balancing part of the walk. Using sensory feedback is
particularly important for bipedal walking. Apart from proprioceptive sensors (Matsubara et al., 2005), ground
contact sensors have been used (Geng et al., 2006). Robustness to slightly irregular surfaces and changes of the
robots dynamics have also been considered (Matsubara et al., 2005) for bipedal walking.

A more difficult version of bipedal walking is riding a pedal racer. In principle, it is comparable but it is crucial
to exert a controlled force on the pedals. Hence, Gams et al. (2014) use a 6-DOF force-torque sensor in each foot
of the bipedal robot to generate feedback to the learned behavior.
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5.2.2 Dribbling (B)

Walking or running while controlling a ball is called dribbling. It can be used, for example, in basketball, handball,
or soccer. Latzke et al. (2007) learned dribbling for soccer with a humanoid toy robot by “walking against the
ball”. The walking behavior is very simple because it only uses three motors. The goal is to learn how to score
a goal with dribbling, starting from ten different initial ball positions at the middle of the field. Only high-level
control, that is, setting a walking direction has been learned. Positions of the ball and the goal are obtained from
a world model.

5.2.3 Jumping (C)

If the walking robot is too small and the terrain too rough, jumping is sometimes necessary. Kolter and Ng
(2009) show that this can be used to climb up large stairs with a small quadrupedal robot. With the same robot,
Theodorou et al. (2010) learn to jump across a gap by maximizing the distance of the jump while jumping straight
to prevent falling over. Unfortunately, Theodorou et al. (2010) could not evaluate their approach on the real
system.

5.2.4 Standing Up (D)

A stand-up behavior is important for any biped robot acting in the real world. In general, the difficulty is that there
exists no static solution as there is no joint linking the robot to the ground. For many robots, a robot-specific,
pre-programmed stand-up movement is used instead of acquiring the skill by learning. However, Morimoto and
Doya (2001) learn a dynamical stand-up policy both in simulation and on a real two joint robot. The robot
(incrementally) learns a skill to stand up dynamically by utilizing the momentum of its body mass. An inclination
sensor measures the current state of the system and motor torques are produced by the learned motor skill. The
hierarchical learning architecture learns to generate postures by means of an upper level policy and the movements
to achieve the next posture (sub-goals) by means of a lower level policy.

5.2.5 Balancing (E)

Keeping balance is a fundamental locomotion requirement and has been achieved with various approaches by
modifying different aspects of the motion. For example, balancing a walking humanoid by modifying the gait
(Missura and Behnke, 2015), using arm motions (Kuindersma et al., 2011) or control motor torques (Vlassis et al.,
2009) to balance a robot on two wheels. Often behavior learning is combined with classical control approaches:
Kuindersma et al. (2011) use an existing balance controller for normal balancing and only activate arm motions for
postural recovery when the inertial measurement unit (IMU) detects perturbations through impacts of an external
weight.

5.2.6 Collision Avoidance (F)

Learning collision avoidance seems to play a secondary role in manipulation (see paragraph Manipulation: Collision
Avoidance). There are, however, many works in the context of locomotion, where it is mainly related to navigation
problems. The publications discussed in this paragraph directly use images and vision systems. They present
learned reactive collision avoidance behaviors. In the field of navigation, Tai et al. (2016) learn a collision avoidance
strategy based on depth images in an indoor obstacle avoidance scenario. They use a mobile, wheeled robot that
learns to move in corridors with a set of discrete actions. However, the robot only encounters static obstacles.
Loquercio et al. (2018) investigate a civilian drone flight application. In their work, the drone learns to safely
fly in the streets of a city by mapping each single input image directly to a drone steering angle and a collision
probability to react to unforeseen obstacles. The behavior for navigation and obstacle avoidance is trained for
urban environments from the viewpoint of bicycles and cars but can be generalized to novel situations like indoor
environments or high altitudes without retraining. The outputs of the perception model are not directly used to
control the drone but converted to movement commands with fixed rules. Similarly, Gandhi et al. (2017) also learn
to navigate an unmanned aerial vehicle while avoiding obstacles. They use negative experiences, that is, a visual
dataset of more than 11,500 crashes in various environments with random objects, in conjunction with positive
data to learn to fly even in cluttered, dynamic indoor environments. The behavior is learned end-to-end by taking
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camera images and outputting probabilities of the motion commands go “left”, “right”, or “straight”. Kahn et al.
(2017) learn uncertainty-aware collision avoidance, that is, given a camera image and a sequence of controls the
learned model will output a collision probability together with an estimate of uncertainty. The approach proceeds
cautiously in unfamiliar environments and increases velocity in areas of higher confidence. Model predictive control
is used to generate actions, while the cost model incorporates collision probability and uncertainty. The approach
has been tested with a quadrotor and an RC car.

5.2.7 Navigation (G)

Assuming the robotic system knows how to walk or drive, where should it move? High-level locomotion behaviors
like navigation and exploration are concerned with local direction generation, for example, navigation through
complex natural environments (Silver et al., 2010), navigation to visually presented targets (Zhu et al., 2017),
navigation to targets with known relative location (Pfeiffer et al., 2017), lane following (Chuang et al., 2018),
reducing state estimation uncertainty in navigation (Oßwald et al., 2010) and navigating to a target position
(Conn and Peters, 2007). Most of the works discussed here are concerned with wheeled robots but are in principle
transferable to walking robots. Classical navigation through natural terrain has been considered by Silver et al.
(2010). They use planning to generate driving directions but the generation of cost maps for the planner are
learned. The cost maps are generated based on perceptual data: static data sources like satellite images or
onboard sensors like cameras and LiDAR. Zhu et al. (2017) consider the problem of visual navigation: actions
in a 3D environment are predicted based on the current image from the robot’s camera and an image of the
target. The predicted actions result in a minimum path length to reach the goal. They show that navigation to
different targets in a scene can be learned without retraining. The approach has been tested on a wheeled robot
in an office environment. Pfeiffer et al. (2017) learn navigation to a given relative target location end-to-end from
2D-laser range findings without a map. Steering commands are directly generated by the learned behavior. The
goal was to navigate safely through obstacle-cluttered environments with a mobile platform. A similar problem is
to learn lane following from camera images end-to-end. This has been done by Chuang et al. (2018). Oßwald et al.
(2010) consider the problem of navigation with a humanoid robot that has noisy actuators and sensors. Motion
commands are executed more inaccurately with walking robots compared to wheeled robots and camera images
are affected by motion blur. A navigation behavior has to trade off quality of pose estimation and walking speed.
A vision-based pose estimation has been used and navigation actions (forward, rotate left / right, stand still) for
the robot have been learned and take into consideration distance and angle to the goal and pose uncertainty. The
goal is to reach the destination reliably and as fast as possible. Conn and Peters (2007) solve a classical grid-world
navigation problem in the real world. The laser scan data and orientation information is used by the behavior to
generate one of the commands stop, turn left, turn right, or move forward.

As a side note, we would like to mention here that autonomous driving behaviors for cars also fall into the
category of navigation. These behaviors can also be learned as shown by Chen et al. (2015); Bojarski et al.
(2016). Because this topic is very broad and it is not of utmost importance for humanoid robots, we will not
further investigate it here. The behaviors are often very specific for the domain, for example, Bojarski et al. (2016)
present an approach to learn lane and road following and Chen et al. (2015) learn driving in a car racing game.

5.2.8 Exploration (H)

Exploration behaviors use (lower level) locomotion behaviors to gain knowledge on the robot’s environment. Cocora
et al. (2006) successfully transfer exploration behavior from other environments to a new environment to find the
entrance of an office. The general problem that they try to solve is navigating to a room with an unknown
location. While searching for it, only labels for neighboring rooms are provided to the robot. The required
exploration behavior is achieved by learning an abstract navigation policy choosing actions based on the provided
local knowledge. Kollar and Roy (2008) learn an exploration behavior for an unknown environment to maximize
the accuracy of a map that is built with simultaneous localization and mapping (SLAM).

A special case of exploration behaviors are sampling routines aimed at acquiring relevant sensory input often
referred to as active sensing or active perception. Chen et al. (2011) state that “active perception mostly encourages
the idea of moving a sensor to constrain interpretation of its environment” For example, a camera usually has a
limited field of view, thus, the goal of an active sensing behavior is to move the part of the robot to which the
camera is attached (or the whole robot) to reduce uncertainty about the scene.
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Kwok and Fox (2004) demonstrate how active sensing can be learned in the domain of robotic soccer: a
quadrupedal robot has to determine its own location, the location of the ball, and the location of opponents on
a soccer field with a camera to finally score a goal. The behavior considers the current estimate of the world
state and its uncertainty from the state estimation component. It generates head motions to change the camera
position. The robot is trained to score a goal. The active sensing behavior is executed while the normal soccer
behavior is running.

5.3 Other Behaviors
Some behaviors cannot generally or not at all be classified as locomotion or manipulation. We will discuss these
behaviors in this section.

5.3.1 Human-robot Interaction

Human-robot interaction has become a feasible application through safe, compliant robot control and design.
Robots can come into physical contact with humans in these scenarios. Robots that assist humans with their
tasks are particularly appealing in the household and manufacturing domains. They can hold objects for a human
(Ewerton et al., 2015), hand over objects to a human (Ewerton et al., 2015; Maeda et al., 2017), assist a human
in putting on a shoe (Canal et al., 2018), lift (Evrard et al., 2009) or carry objects in collaboration with a human
(Berger et al., 2012; Rozo et al., 2015), or drill screws placed by a human (Nikolaidis et al., 2013), hence,
show collaborative behavior. They can even interact socially with humans, for example, by giving a high five
(Amor et al., 2014) or shaking hands (Huang et al., 2018). These behaviors are dynamic because they have
to be synchronized with the human. Challenging tasks are the recognition of the human’s intention and acting
accordingly. Some authors focus on the intention recognition: Amor et al. (2014) only consider the problem of
recognizing one interaction scenario by observing the human’s motion, whereas Ewerton et al. (2015); Maeda
et al. (2017) consider the problem of distinguishing between several possible interaction scenarios. In these works,
only marker-based motion capture systems have been used to provide motion data from the human counterpart.
The presented behaviors are active, discrete manipulation behaviors and perception has not been considered.
What makes carrying special is that it is a collaborative behavior which requires continuous observation of the
co-worker’s state and intention because both agents are indirectly physically connected during the whole activity.
Carrying an object in collaboration of a robotic arm and a human might require exerting a specific force on the
object, and therefore, a method to measure the forces. Rozo et al. (2015) use a 6-axis force/torque sensor for
this. In their application, the object can only be carried if both agents apply a force in opposite directions. In
contrast, Berger et al. (2012) consider collaborative carrying as a whole body problem with a humanoid. They
adapt the walking direction of a robot according the movement of its human counterpart. Deviations from learned
expected movements are recognized and the motion is adjusted accordingly. In this case only part of the perception
is learned. Carrying behavior is often done with the robot following the human leader. They can be considered
passive. The similar problem of lifting an object in collaboration has been considered by Evrard et al. (2009). They
additionally learn to recognize if the robot should take the leader or follower role during task execution. Hence, the
learned behavior can be both active or passive. Canal et al. (2018) provide an example of a deliberative system,
where low-level actions have been learned and high-level symbolic planning is used to organize communication
and interaction with a human. They study the application of assisting a human in putting on a shoe. The social
acceptance of robots is an important aspect for future robots interacting with humans. One of the key factors in
this context are natural motions, that is, the robot should not only reach a certain pose of the end-effector but also
execute the motion in a human-like manner. To achieve this, Huang et al. (2018) present a hybrid space learning
approach that learns and adapts robot trajectories in Cartesian and joint space simultaneously while taking into
account various constraints in both spaces. They evaluate their approach on a humanoid robot in a hand-shaking
task, consisting of a discrete reaching and a rhythmic waving motion, and adapt the movement to different areas
for shaking hands. Nikolaidis et al. (2013) present results in a simplied human-robot collaboration scenario. The
scenario should model the human-robot interaction challenges that occur in a hybrid team of a human and a robot
that has to drill screws. The human has to place screws and the robot drills them. Although in the real world
scenario there are no real screws and not a real drill, the robot learns to execute its motions in an order favored by
the human. The problem of perceiving the human’s current state is simplified by using a motion capture system.
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5.3.2 Behavior Sequences

The very specific task of unscrewing a light bulb is a good example for sequential tasks that need to be decomposed
into smaller subtasks to achieve the overall objective. Manschitz et al. (2016) infer an unknown number of such
subtasks automatically from demonstrations of the overall task and learn how to sequence the subtasks in order
to reproduce the complete task. In their work, the taught task sequence consists of approaching the light bulb,
closing the end-effector, unscrewing the bulb by rotating the wrist stepwise (after each turning, the fingers are
opened and the wrist is rotated back), pulling the light bulb out of the holder and finally putting it into a box.

Besides the applications of pouring, cutting and wiping, another typical kitchen task is cooking (see also pancake
flipping described in paragraph More dynamic manipulation behaviors) or, more specifically, food preparation. The
preparation of food requires very structured behaviors with a fixed chronological order of actions. Therefore, the
complete task has to be segmented into smaller sub-tasks. The order of these sub-tasks is typically managed by a
higher-level monitoring system. Caccavale et al. (2018) picked the tasks of coffee and tea preparation to present
their work on learning the execution of structured cooperative tasks from human demonstrations (respectively,
though only in simulation, Caccavale et al. (2017) investigated pizza preparation). A similar approach was presented
by Figueroa et al. (2016) on pizza dough rolling task with the goal to achieve a desired size and shape of the pizza
dough.

5.3.3 Soccer Skills

Soccer is one of the most extensively studied games in robotics. Besides walking, dribbling and kicking, more
high-level skills have been learned with simpler robotic systems or in simulation. For example, Müller et al. (2007)
learn ball interception on a wheeled robot with known poses and velocities of the ball and the robot, Riedmiller
et al. (2009) learn an aggressive defense behavior also based on these information and the pose and velocity of the
opponent but only in simulation, Riedmiller and Gabel (2007) learn cooperative team behavior also in simulation.
Another example of a low-level behavior that has been learned for robotic soccer is capturing a ball with the chin
of a dog-like robot (Fidelman and Stone, 2004).

5.3.4 Adaptation to Defects

A kind of learned behavior that does not fit into any category because it is more general and can be used in
combination with any underlying behavior is presented by Cully et al. (2015). The robot learned to adapt to
defects. A walking behavior of a six-legged robot as well as pick and place with a manipulator with redundant
joints have been considered.

6 Discussion
While we scanned the presented works, we made several interesting observations that we will summarize in this
section. Some statements certainly depend on the machine learning method that is used, which we will indicate,
but most of our statements apply universally.

6.1 What Makes the Domain Difficult?
Learning on physical robots is difficult. There are numerous reasons why much more machine learning is focused
on only perception or is done in artificial environments, for example, physical simulations. We will summarize them
here.

Robotic behaviors cannot be executed indefinitely often. Robots suffer from wear and tear and hardware is
often expensive (Kober et al., 2013). Robots can break. Robots can break things. Robots require maintenance,
for example, battery changes and hardware repairs (Kohl and Stone, 2004). Training data is often sparse. Learning
methods must be effective with small datasets (Kohl and Stone, 2004). The main reason why human supervision is
usually required is that many behaviors require physical contact between robot and environment. Hence, imperfect
behavior might break either the robot or the environment (Conn and Peters, 2007; Englert and Toussaint, 2018).
Robots change their properties over time. Reasons can be wear or changing temperatures (Kober et al., 2013).
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Figure 7: Sketch of a robust grasping trajectory from top view. The ellipse indicates the uncertainty of the
objects estimated position. A grasp that moves along the axis of highest variance of the estimate (blue trajectory)
will succeed with a higher probability than a grasp that moves along the axis of lowest variance (red trajectory).

Behaviors cannot be executed faster than real time. There is no way to speed this up like in simulations (Fidelman
and Stone, 2004) besides adding more robots which require more maintenance work. Simulation is difficult.
Dynamics of many robots and their environments are very complex and are difficult to model. Kohl and Stone
(2004) write “robots are inherently situated in an unstructured environment with unpredictable sensor and actuator
noise, namely the real world.” Curse of dimensionality is an issue. Humanoid robots can have as many as forty
or more state space dimensions (Morimoto and Doya, 2001). Behaviors have to be able to deal with partial
observability, uncertainty, and noise (Kober et al., 2013). They are also often hard to reproduce (Kober et al.,
2013).

Learning behaviors for robots in the real world is difficult for all those reasons. Some of them can be mitigated
in laboratory conditions but this domain is still one of the hardest for todays machine learning algorithms.

6.2 When Should Behaviors Be Learned?
One of the main questions that we would like to answer with this article is which behaviors we should learn given
the availability of alternative approaches and difficulties applying machine learning to real robotic systems. It is
often intuitively clear to machine learning and robotics researchers but the intuition is often not underpinned by
scientific evidence. The field is so diverse that it is easy to miss something.

We see several strengths of learned behaviors that have been mentioned quite often:

• Handling uncertainty and noise.

• Dealing with inaccurate or non-existing models.

• Learning can be better than hand-crafted solutions.

• They are easier to implement.

• They are often simple, sufficient or optimal heuristics.

We will back up these findings with sources in the following paragraphs. Machine learning is also considered to be
the direction to real artificial intelligence or as Asada et al. (1996) put it: “The ultimate goal of AI and Robotics is
to realize autonomous agents that organize their own internal structure in order to behave adequately with respect
to their goals and the world. That is, they learn.”

Uncertainty and noise are two predominant problems in robotics. Sensors and actuactors undoubtedly have
to suffer from noise. Noise, from the perspective of a robot, is part of nature and it is an intrinsic property
of these devices. Mason (2012) points out that uncertainty played a central role in robotics research since its
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beginning. Information about the world is usually incomplete and knowledge is not certain. This is the reason
why probabilistic methods (see, for example, Thrun et al. (2005)) are so popular in the robotics community.
Stulp et al. (2011, 2012) show that state estimation uncertainty in a pick and place problem can be compensated
with an adapted motion. We illustrate how a compensatory motion can address the problem of state estimation
uncertainty in Figure 7. An example of incomplete information is presented by Levine et al. (2017), where just
a single RGB camera is used to learn grasping end-to-end. The distance and the three-dimensional structure of
objects cannot be inferred from only one camera. However, objects are in the same distance to the robot when
they are at the same position in the image. Hence, the system must implicitly learn the objects’ distance. Laursen
et al. (2018) explicitly design a method to help users in creating robust and uncertainty-tolerant trajectories for
assembly operations which have previously been defined in simulation. Deisenroth et al. (2015) use a low-cost
robotic manipulator and show that their method can compensate for actuator noise. Carrera et al. (2012) state
that learning offers the adaptability and robustness that is required to solve their problem of turning a valve. Kober
et al. (2008) learn a coupling of perception and action to handle perturbations of trajectories. Gullapalli et al.
(1994) learn peg-in-a-hole insertion. They have sensor noise in position encoders and in a wrist force sensor and
demonstrate that reinforcement learning can be used to generate robust insertion behavior. Johns et al. (2016)
consider the problem of grasp pose prediction and state that “issuing commands to align a robot gripper with that
precise pose is highly challenging in practice, due to the uncertainty in gripper pose which can arise from noisy
measurements from joint encoders, deformation of kinematic links, and inaccurate calibration between the camera
and the robot.” They develop a method that explicitly addresses these uncertainties. Finally, Oßwald et al. (2010)
state that execution of motion commands is noisy on a humanoid robot due to backlash in joints and foot slippage
and pose estimation during walking is more difficult because of motion blur. They explicitly learn a high-level
navigation behavior that reduces pose estimation uncertainty that arises from the noise.

When there is no model of the robot or the world or existing models are too inaccurate, machine learning can
compensate for that. This has been shown in the context of dynamic behaviors. It is hard to model dynamics
correctly but it is often not required. For example, Mülling et al. (2013) use a state estimation to predict ball
trajectories in table tennis but neglected the spin of the ball. Parisi et al. (2015) use a simplified model of the
forward dynamics of a robotic arm with springs. The learned behavior was able to work with the simplified model.
Kormushev et al. (2011c) consider the problem of energy minimization in a walking behavior that is used with a
robot that has springs in its legs. They claim that it is nearly impossible to solve the problem analytically “due
to the difficulty in modeling accurately the properties of the springs, the dynamics of the whole robot and various
nonlinearities, such as stiction.” In general, soft bodies and soft-body dynamics are difficult to model but that
would be required, for example, for cutting and knot tying behaviors. Englert and Toussaint (2018) write that a
“main issue is that the external degrees of freedom can only be manipulated through contacts, which are difficult to
plan since a precise and detailed physical interaction model is often not available. This issue motivates the use of
learning methods for manipulation skills that allow robots to learn how to manipulate the unknown environment.”
Colomé and Torras (2018) state that for problems that involve manipulation of non-rigid objects accurate models
are usually not available. Hence, they use machine learning to solve the task of folding a polo shirt.

Direct comparisons of machine learning and hand-crafted approaches have been done by Kohl and Stone
(2004); Kwok and Fox (2004); Kober et al. (2008); Parisi et al. (2015). These works show that learning is able
to yield better behaviors than model-based or hand-tuned solutions. However, this result has to be read carefully
because it is certainly subject to publication bias. To our knowledge, there is almost no publication in which
machine learning for robotic behaviors and another method are compared with the result that machine learning is
worse. Only Bargsten et al. (2016) compare machine learning with dynamic model identification to learn a model
of inverse dynamics with the result that the machine learning method is worse because it does not generalize well.
Although it has to be noted that the dynamic model identification is also a data-driven method with incorporated
physical prior knowledge. It is also not directly related to our survey because we excluded low-level control.

Learning approaches are often easier to implement because they are often general approaches and do not
require problem-specific models. Sometimes it is easier to specify the problem and not the solution. A reward for
reinforcement learning, for example, can encode the problem specification. Examples of problems where it is easy
to define the reward are walking as fast or straight as possible, jumping as far as possible, throwing as close to a
target as possible, or grasping: we could apply random perturbations after the grasp and measure if the gripper
still holds the object. While “walk as fast as possible” alone might not be a sufficient reward function, additional
components of the reward function are usually intuitive and part of the problem specification: we can penalize
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6.2 When Should Behaviors Be Learned?

behaviors that let the robot fall down or exert high forces on parts of the robot. Kormushev et al. (2010b) also made
an interesting observation: they found that the solution to the pancake flipping problem that has been discovered
by learning contains an unexpected compliant catching behavior in the end of the movement. This prevents
the pancake from bouncing off the pan. They conclude “such undesigned discoveries made by the RL algorithm
highlight its important role for achieving adaptable and flexible robots”. Imitation learning is another method that
is particularly easy to use from an end users perspective. It enables users to teach robots new behaviors without
requiring expert knowledge or programming skills (Alizadeh et al., 2014). We do not want to deny that tuning
hyperparameters of a machine learning algorithm is a complex task and requires expert knowledge, but Parisi et al.
(2015) found that tuning hyperparameters can be less time intensive than building a mathematical model for a
given task. Amor et al. (2014) justify the use of machine learning in the context of human-robot interaction:
“programming robots for such interaction scenarios is notoriously hard, as it is difficult to foresee many possible
actions and responses of the human counterpart”. Matsubara et al. (2005) learn a walking behavior and point
out the drawback of classical, model-based approaches. These require precise modeling of the dynamics of the
robot and the environment. Fidelman and Stone (2004) state that their paper “is concerned with enabling a robot
to learn high-level goal-oriented behaviors. Coding these behaviors by hand can be time-consuming, and it often
leads to brittle solutions that need to be revised whenever the environment changes or the low-level skills that
comprise the behavior are refined.” Levine et al. (2017) start with the assumption that “incorporating complex
sensory inputs such as vision directly into a feedback controller is exceedingly challenging” and show with their
approach that learning complex emergent behavior can be done without much prior knowledge. Considering more
the long-term perspectives of robotics and artificial intelligence, the following two works are relevant. Cully et al.
(2015) consider the problem of adapting to hardware defects, similar to injuries of animals. They found that “while
animals can quickly adapt to a wide variety of injuries, current robots cannot ’think outside the box’ to find a
compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose
only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage,
an impracticality for complex robots.” Kirchner (1997) considers the problem of an autonomous robot that adapts
its behavior online: “if we face the general problem to program real robots to achieve goals in real world domains,
then, sooner or later, we will surely be confronted with problems for which a solution is not at hand and probably
can not even be formulated off-line. In other words there are situations that the robot might encounter during
interaction with the real world, that we are not able to foresee and we are therefore unable to precompile an
appropriate set of reactions for it. Yet, the robot needs to find the set of reactions by itself. For this, learning is
a necessity for real world robots.”

Before we elaborate on the the last point, we will draw an analogy to behaviors of biological systems. Most
behavior learning algorithms that have been used in the works that have been presented here do not guarantee
optimality. We can consider the learned behaviors to be heuristics. Heuristics are often computationally efficient.
That, however, does not make them second-best strategies. In real world situations, where an agent is embodied
in a physical system with sensors and actuators with noise and uncertainty, heuristics often yield useful behaviors.
An often mentioned example for heuristic behavior is the gaze heuristic that is used to catch a ball that is high
up in the air (Gigerenzer and Brighton, 2009): “Fix your gaze on the ball, start running, and adjust your running
speed so that the angle of gaze remains constant.” The player will be at the position where the ball comes down.
Other variables can be ignored, for example, distance, velocity, and spin of the ball, air resistance, and speed
and direction of the wind. Gigerenzer (2008) explains why heuristics are useful in the case of human behavior.
These arguments are also applicable in the case of robotic behaviors. An optimal solution to a real-world problem
is often computationally intractable, for example, NP-hard or so ill-defined that we do not know exactly what
we should optimize for. In addition, real-world problems demand for robustness of behaviors. More information
and computation is not always better according to Gigerenzer (2008). Reasoning often results in less successful
behavior because of errors in the model. Robustness sometimes even requires to ignore or forget information. From
the papers that we read about learning robotic behaviors, the following publications back up these statements.
van den Berg et al. (2010) consider the problem of cutting, which would be hard to model completely but has simple
solutions. Benbrahim and Franklin (1997) state: “The fact that walking is most of the time done unconsciously
suggests that maybe it does not require constant heavy computing in normal walking conditions.” Kuindersma et al.
(2011) learn balancing behaviors with arm motions and point out: “This general problem also has several attributes
that make it interesting from a machine learning perspective: expensive evaluations, nonlinearity, stochasticity,
and high-dimensionality. In our experiments, a low-dimensional policy space was identified . . . ”.

23



 

 
 

 

6 Discussion

We will conclude with another view on the question why machine learning should be used. More than two
decades ago, Thrun and Mitchell (1995) already tried to answer the same question. They distinguish between
model-based approaches (with a model of the robot and the world) and learning. In a way we can consider every
approach that does not use machine learning to be model-based because it either uses an explicit model (for
example, planning, reasoning, or optimal control) or an implicit model (for example, behavior definitions with
finite state machines or hard-coded motions). Learned behaviors also build models but learned models directly
encode real experience. Thrun and Mitchell (1995) identify four bottlenecks of model-based methods. There is a
knowledge bottleneck: knowledge has to be provided by a human. While this is not totally accurate anymore
because robots are, for example, able to build detailed maps of their environment on their own, this is still an issue
because a programmer still has to define how the data is interpreted: what is rigid and what is soft, which objects
are movable and which are fixed? There is an engineering bottleneck: it requires a lot of time to implement
and generate these explicit models. For example, realistic modeling and physics simulation of soft bodies, divisible
bodies, deformable objects, fluids, or granular media are still difficult. There is a tractability bottleneck: many
realistic problems are computationally complex or even intractable which results in slow responses. For example,
Kuindersma et al. (2016) report times of 1.5 or 10 minutes to plan simple jumping motions. There is a precision
bottleneck: the robot must be able to execute plans accurately enough. This is still an issue and is becoming
more relevant with flexible and compliant robots.

While all of the mentioned points are still valid, some of them also apply to state-of-the-art machine learn-
ing. The knowledge bottleneck is an issue if pre-structured policies or models are used, for example, dynamical
movement primitives (Ijspeert et al., 2013). The tractability bottleneck has a counterpart in machine learning:
a lot of experience might be required. As we have seen, simple heuristics are often sufficient, which means that
neither pre-structuring or restricting the policies or models necessarily results in bad performance, nor will learning
require much data. The precision bottleneck is related to the reality gap (Jakobi et al., 1995) that is a problem
if behaviors are learned in simulation and transferred to real systems. For example, Kwok and Fox (2004) report
this problem.

6.3 An Analogy: Shifting from Deliberative to Reactive Behaviors
An often quoted statement from Whitehead (1911, page 61) is the following: “It is a profoundly erroneous truism
... that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case. Civilization
advances by extending the number of important operations which we can perform without thinking about them.”
Skilled human behavior is trained and repeated often. Such a learned behavior is good because we do not waste
many computational resources. We are able to execute it fast and precisely. Norman (2013, pp. 100-101) states:
“Conscious thinking takes time and mental resources. Well-learned skills bypass the need for conscious oversight
and control: conscious control is only required for initial learning and for dealing with unexpected situations.
Continual practice automates the action cycle, minimizing the amount of conscious thinking and problem-solving
required to act. Most expert, skilled behavior works this way, whether it is playing tennis or a musical instrument,
or doing mathematics and science. Experts minimize the need for conscious reasoning.” In other words (Shadmehr
and Wise, 2005, page 2): “motor learning matters because it allows you to act while directing your attention and
intellect toward other matters. Imagine that you needed to attend to all of the routine aspects of your reaching
or pointing movements. Motor learning provides you with freedom from such a life.” Exactly the same statement
could be made for robotic behaviors. Learning individual skills also simplifies reasoning and planning because
planning can take place purely on a high level and solve the problem of combining individual skills.

An argument in favor of learning robotic behaviors is this analogy to well-learned human behavior. As we have
seen, learned behaviors are mostly reactive behaviors or heuristics. This is the precise opposite of the very useful
combination of mapping, state estimation, and planning which we categorize as deliberative behavior. While state
estimation and planning works without previous interaction with the environment, learned behaviors can be faster
and can have a higher performance if enough data is available or trials are allowed. While deliberative behavior
can be a safe first solution, it can be replaced by learned and reactive behaviors. This is actually very similar to
what humans do.

In summary, there is an analogy between humans and robots: learned behavior can perform better while
requiring less computational resources in comparison to high-level reasoning in certain problem domains.
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6.4 When Should Behaviors Not Be Learned?

6.4 When Should Behaviors Not Be Learned?
Imagine you are a robot and you are in a critical situation that you have never seen before. Dismukes et al. (2015)
have an advice for you: “identify and analyze decision options” and “step back mentally from the moment-to-
moment demands ... to establish a high-level ... mental model that guides actions”. Oh, you learned all of your
behaviors end-to-end and you do not know how to build a high-level mental model? Tough luck!

Not everything should be learned. Learning in robotics often aims at reproducing the quality of human behavior
that cannot be reached by conventional approaches. Humans are much better than robots at many tasks that
require interpreting complex sensory data, involve noise and uncertainty, and fast and dynamic behavior. They
are the best examples of a learning, physical agent that we have seen so far. It is probably hard to achieve better
results than a human if we try to use the same design principles for robots. Also humans make errors all the time
and the frequency of errors can even increase under external factors like stress (Dismukes et al., 2015). While we
do not think that robots are prone to stress, we think that in learned robotic behaviors often unexpected failures
might occur. A robot might encounter a situation that does not occur in the training set (“distributional shift”,
see Amodei et al. (2016)) or the agent learns continuously which means that it also forgets. Sometimes it makes
sense to rely on logical reasoning and model-based approaches. Ironically, Dismukes et al. (2015) propose the
same for humans to reduce errors under stress. It is the quoted advice from the previous paragraph.

If a precise model of the world is available, planning and optimal control often generate new behaviors faster
and do not require physical interaction with the real world before they provide a solution. For example, collision
avoidance based on distance sensors and planning or reactive behaviors can be close to perfect so that it is
applicable in industrial scenarios (de Gea Fernández et al., 2017). If collision avoidance is learned, there is no
guarantee for safety. Particularly, there will be no safe collision avoidance during the learning phase, in which
imperfect behaviors will be explored on the real system. Tassa et al. (2012) show that, even if the model is
not accurate, model-predictive control (MPC; online trajectory optimization) with a finite horizon can be used to
generate intelligent and robust get-up and balancing behaviors. It has to be noted though, that optimal control
and reinforcement learning are related (Sutton et al., 1992). In this article we make the distinction between
reinforcement learning that needs experience and optimal control that needs a model. Machine learning and
optimal control can be combined (Levine et al., 2016; Erickson et al., 2018).

Learning systems are typically not good at repetitive tasks and tasks that demand for high precision, for
example, tasks that have to be executed in a factory. If the same car has to be produced several thousand times in
precisely the same way, it is worth the effort to let a human design the process step by step. In a lot of situations it
is even better to build specialized machines instead of using robots. Robots and behavior learning only is required
if the system is confronted with changing requirements and environments.

Coordination of behaviors is a rather difficult task for machine learning at the moment. Whole-body control
(Sentis and Khatib, 2006) is quite successful in this domain. It allows to prioritize tasks and solves everything
online in a high frequency on the system. If, for example, an existing walking and object manipulation behavior
should be combined so that the robot keeps its balance, whole-body control is the method of choice. Whole-body
control is effective because it uses domain-specific knowledge: the Jacobian of the robot. In order to exhibit similar
behavior, a learned behavior would implicitly have to approximate the Jacobian. However, configuring whole-body
control is challenging. Weighting and prioritizing subtasks such that the result “solves the task” is a difficult,
manual task.

Perception for dynamic problems is challenging at the moment. It can be learned for static behaviors like
grasping (Levine et al., 2017) or visual servoing (Levine et al., 2016) but it is nearly impossible at the moment
to learn a catching behavior for a ball end-to-end because the learned model has to solve difficult perception,
tracking, and prediction problems while it must respond very fast. Birbach et al. (2011) impressively show how
computer vision and state estimation can be used to track ball trajectories with an error of 1.5 cm in the predicted
catch point. The perception takes about 25 ms and tracking about 10 ms per step. A ball catch rate of 80 % has
been reached on a humanoid upper body.

Learned behavior can show emergent properties. While this is sometimes good, for example, in the case of the
pancake flipping task (Kormushev et al., 2010b), it can also be disastrous. For example, in reinforcement learning
or similar disciplines learning algorithms often exploit ill-posed problem definitions. This is called “reward hacking”
(Amodei et al., 2016, pages 7–11) and it is not necessarily immediately visible. This problem can be particularly
challenging if the behavior should be used in a variety of different contexts and environments.
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6 Discussion

Interestingly, “playing soccer” is one of the most complex high-level behaviors that robots are able to perform
today and it is not learned. On the contrary, it is not even solved by methods that fall into the category of
artificial intelligence. Hand-crafted behavior is the state of the art for about two decades. Röfer (2018) state that
“In the domain of RoboCup, real-time requirements and limited computational resources often prevent the use of
planning-based approaches”. Between 2009 and 2017 three distinct teams won the RoboCup Standard Platform
League (SPL), which is carried out every year. All of them used rather static behaviors: B-Human, UT Austin
Villa, and rUNSWift. Few information about the behaviors used by UT Austin Villa is available but the report
accompanying their code release (Barrett et al., 2013) suggests that behavior is hand-crafted. rUNSWift’s behavior
is hand-crafted and written in Python (Ashar et al., 2015). B-Human used XABSL (Loetzsch et al., 2006) and
currently uses CABSL (Röfer, 2018) to describe behaviors. Both languages are used to define hierarchical finite
state machines for the robots’ behavior. Only in 2018 a team using a “dynamic strategy”, Nao-Team HTWK,
won the RoboCup SPL. They represent the problem of positioning players that are not close to the ball as an
optimization problem and solve it (Mewes, 2014). That, however, is only a part of the whole soccer behavior.

6.5 Complexity of Systems Is Increasing
Over the years, complexity of robotic systems and the posed problems increased. A complex six-legged walking
robot had 12 DOF (Maes and Brooks, 1990) at the beginning of the 90s. In 2016, a quadrupedal robot with two
arms for manipulation had to handle 61 DOF (Bartsch et al., 2016). Controlling such a complex robot is still a
challenging problem. Most of the presented works in the field of manipulation only have to handle six or seven
DOF while complex robots control 17 (Kormushev et al., 2011c) or 24 DOF (Bartsch et al., 2016) to generate a
walking behavior or 24 DOF for in-hand manipulation (Rajeswaran et al., 2018; Andrychowicz et al., 2018). For
comparison, a well-studied biological system is the human body. It has an estimated total number of 244 DOF
and a conservatively estimated number of 630 skeletal muscles (Zatsiorsky and Prilutsky, 2012). It is, hence, a
much more complex system to control than any of the robots that have been used in the works that we refer to
in this survey. There is still a long way to go to reach the same level of flexibility and agility.

Not only the actuation capabilities are improving but also the complexity of used sensors increased considerably
in almost three decades of behavior learning research on real robots. In early applications only very simple sensors
have been used, for example, four light sensors (Kirchner, 1997). Alternatively, the perception problem has been
decoupled from the action problem to solve it with computer vision and state estimation (Mülling et al., 2013; Parisi
et al., 2015). In more recent works, raw camera images have been used directly by the learned behavior (Lampe
and Riedmiller, 2013; Levine et al., 2016, 2017) and RGB-D cameras have been used (Lenz et al., 2015b). RGB-D
cameras are probably the most complex sensors that are used in learned behaviors today. Robotics research in
general is already more advanced and we will see other complex sensors in addition to rather conventional cameras.
For example, current robotic systems can have advanced tactile sensor arrays based on fiber-optic sensing principles
(Bartsch et al., 2016).

6.6 Limited Versatility of Learned Skills
The works on bipedal walking are particularly interesting, since they allow a direct comparison of the application
on real robots and the application in simulation and computer graphics. Peng et al. (2017) learned bipedal walking
on two levels: a low-level walking behavior and a high-level behavior that generates the walking direction. The
high-level behavior incorporates information about the surrounding terrain and has been used to follow trails,
dribble a soccer ball towards a target, and navigate through static and dynamic obstacles. The low-level behavior
only knows about the internal state of the walker and the desired goal of the high-level behavior and was trained
to be robust against disturbances and terrain variations. Also Peng et al. (2018) demonstrate how imitation and
reinforcement learning can be used to generate realistic acrobatic movements: performing a cartwheel, backflip,
frontflip, roll, vault, dancing, kicking, punching, standing up, etc. Those skills are then combined to a complex
sequence of behaviors. In comparison, learned biped walking behaviors on real robots are usually only tested in
controlled environments in the lab (Benbrahim and Franklin, 1997; Matsubara et al., 2005; Geng et al., 2006;
Kormushev et al., 2011c; Missura and Behnke, 2015).

Walking is just one example of how skills that have been learned on real robots are often not versatile. Another
example is grasping: the currently most impressive work, published by Levine et al. (2017), is applicable to a large
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6.7 Limited Variety of Considered Problems

variety of objects but only if the camera is in a certain angle to the objects and only vertical pinch grasps have
been considered. Other behaviors, for example, tee-ball (Peters et al., 2005; Peters and Schaal, 2008), pancake
flipping (Kormushev et al., 2010b), plugging in a power plug (Chebotar et al., 2017a), flipping a light switch
(Buchli et al., 2011), do not even include the position of the manipulated object in their control loop. Many of
the learned behaviors are hence still only applicable under controlled lab conditions.

6.7 Limited Variety of Considered Problems
In natural learning agents (also known as animals), there is evidence that the same learning mechanisms can
be evolved and used to solve a variety of tasks: “A major role of the early vertebrate CNS [central nervous
system] involved the guidance of swimming based on receptors that accumulated information from a relatively
long distance, mainly those for vision and olfaction. The original vertebrate motor system later adapted into the
one that controls your reaching and pointing movements.” (Shadmehr and Wise, 2005, page 9)

In behavior learning for robots, however, often the same simple problems are tackled again and again with only
minor variations but with a large variety of different learning algorithms. Learning efforts often focus on grasping,
walking, and batting. Certainly, these problems are not solved yet (Johns et al. (2016): “Robot grasping is far
from a solved problem.”). Furthermore, solving the exact same problem again is good for benchmarking. Yet, the
variety of problems solved by learning is low. We should also try to solve a larger variety of problems to discover
and tackle new challenges in behavior learning and to improve our set of tools. Examples are given in the outlook.

Most of the considered problems are also low-level motor skills. While this seems to be too simple at first,
there is also a justification for it. Shadmehr and Wise (2005, page 1) state that motor learning, that is, learning
of low-level behavior, uses the same basic mechanisms as higher forms of intelligence, for example, language and
abstract reasoning. However, the goal should be to demonstrate that learning is possible and useful at all levels
of behavior and to actually use its full potential.

6.8 Reasons for Current Limitations
What hinders robots from learning the same skills as humans with a similar performance these days? There are
several reasons. We identify the main reasons as algorithmic, computational, and hardware problems.

One of the most advanced fields of artificial intelligence is computer vision based on deep learning. In some
specific benchmarks, computer vision is better than humans but it is not as robust as a human which has been
demonstrated with adversarial examples (Szegedy et al., 2013). In addition, semantic segmentation, tracking
objects in videos, object detection with a large amount of classes are examples for very active research topics in
which humans are a lot better. Computer vision is one example of a domain which behavior learning builds upon.
When we learn grasping (Levine et al., 2017) or visual servoing (Levine et al., 2016) end-to-end, we make use of
the results from computer vision research. While we do not reach human-level performance in these areas, we can
hardly surpass it in real-world behavior learning problems. Also reinforcement learning algorithms are not yet at the
point where they are sample-efficient enough to learn complex behaviors from a reasonable amount of data. One
of the most impressive works in this field at the moment is from Andrychowicz et al. (2018). They learned complex
in-hand manipulation skills to rotate a cube into any desired orientation. Approximately 100 years of experience
were used during the training process. Still the robustness of the skill is not comparable to an average human:
on average 26.4 consecutive rotations succeed when 50 is the maximum length of an experiment. Certainly no
human spent 100 years on learning exclusively in-hand manipulation to reach a much better level of performance.

Many state-of-the-art algorithms in machine learning have also high demands on processing power during
prediction phase (Silver et al., 2016; Levine et al., 2017; Andrychowicz et al., 2018) which makes them slow in
reaction time, maybe not even suitable for autonomous systems that have to budget with energy, and training on
a robotic system might be infeasible.

Probably the main reason why so many researchers do not learn complex skills for robots in reality is that
robots break too easily. Absence of training data from dangerous situations is a problem. It motivated Gandhi
et al. (2017) to record a datasets of drones crashing into obstacles. In contrast, humans fail and fall all the
time and gain lots of negative experiences. There is probably not a single professional soccer match that has
been played over the full length in which no player is falling down unexpectedly and, yet, most players are not
seriously injured. Humans are colliding all the time with objects when they move things around, for example, while
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7 Outlook

eating at an overly full dinner table. The difference is that humans are flexible, soft, and lightweight. A human is
lightweight compared to similarly strong robots. Humans’ force to weight ratio is much better. The best Olympic
weight lifters can move weights that are more than twice as heavy as they are. Humans are extremely flexible.
As already mentioned, they have about 244 DOF and 630 skeletal muscles (Zatsiorsky and Prilutsky, 2012) and
most of their body is soft while one of the most complex robots today has 61 DOF and consists mostly of stiff
and rigid parts (Bartsch et al., 2016) that are at the same time very fragile. A new actuation paradigm is required
for robots that solve dynamic, partially observable problems. Haddadin et al. (2009) propose to use elastic joints
in the domain of robot soccer. Elastic joints make robots more robust, collaboration or competition with humans
safer, and they would enable higher maximum joint speeds. Controlling elastic joints is more complex though. In
addition, humans have many sensors (tactile, acoustic, vestibular) that are used to recognize unexpected events
and they can react accordingly: they learned to fall or to stop moving the arm before they pull down the bottle
from the dining table.

7 Outlook
We will conclude with several advices that we find are important and an outlook on future behavior learning
problems that could be tackled.

7.1 Ways to Simplify Learning Problems
Kirchner (1997) states: “we believe that learning has to be used but it needs to be biased. If we attempt to solve
highly complex problems, like the general robot learning problem, we must refrain from tabula rasa learning and
begin to incorporate bias that will simplifies [sic] the learning process.”

Ways to simplify the learning problem are to not learn everything from scratch (knowledge transfer), not
everything end-to-end (combination with other methods), to learn while a safe, deliberative method is operating,
or to learn in a controlled environment (bootstrapping).

Knowledge transfer: Knowledge can be transferred from similar tasks, similar systems, or similar environments.
In the optimal case multiple almost identical robots are used to learn the same task in the same environment (Gu
et al., 2017; Levine et al., 2017). Levine et al. (2017) also show that data transfer from one robot to another robot
in the same environment, solving a similar task, is beneficial (if actions are represented in task space). Levine et al.
(2016) also show that pretraining is a key factor for success when very complex behaviors are trained end-to-end.

In our opinion, more research should be done on lifelong learning. It could lead to robust, sample-efficient
artificial intelligence that is able to solve a multitude of tasks and, hence, share knowledge. Lifelong learning
is defined by Silver et al. (2013): “Lifelong Machine Learning, or LML, considers systems that can learn many
tasks over a lifetime from one or more domains. They efficiently and effectively retain the knowledge they have
learned and use that knowledge to more efficiently and effectively learn new tasks.” We believe that this can be
much more efficient than learning everything from scratch. Coming back to the example of in-hand manipulation
(Andrychowicz et al., 2018), perceiving the object’s pose or several strategies used in the manipulation behavior
are components that could be shared with many other tasks that are related to manipulation of movable objects.

We have to find ways to share knowledge between similar and dissimilar robots and between similar and
dissimilar tasks. In theory, sharing knowledge between robots in form of training sets or pretrained models is much
easier than sharing knowledge between humans that can only absorb knowledge through their senses. Bozcuoglu
et al. (2018) propose a similar approach: they share ontologies and execution logs on the cloud platform openEASE.
The knowledge can be transferred to other environments or other robots. The same approach could be used to
share pretrained models or training data to learn behaviors.

Combination with other methods: Combining existing approaches for perception and state estimation with
machine learning has been shown to be effective by Mülling et al. (2013); Parisi et al. (2015). Similarly, combining
existing approaches for planning and machine learning has been shown to be effective by Lenz et al. (2015b).
Also model predictive control has been combined with a learned uncertainty-aware perception model by Kahn
et al. (2017). Nemec et al. (2017) combine machine learning and structured search with physical constraints.
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7.2 Comparability and Reproducibility

To generate walking behaviors, often classical models like a linear inverted pendulum (Kajita et al., 2001) are
used, a zero moment point (Vukobratović and Borovac, 2005) is computed. Mostly, only parts of complex walking
behaviors are learned. We think this is still a valid method to verify and understand what is happening on the
system, to reduce the amount of physical interaction with the world that is required to learn the behavior and
to obtain solutions that are more safe. Geng et al. (2006) confirm this for their application. They state that:
“Building and controlling fast biped robots demands a deeper understanding of biped walking than for slow robots.”
Englert and Toussaint (2018) state: “One way to reduce ... difficulties is by exploiting the problem structure and
by putting prior knowledge into the learning process.” Although Loquercio et al. (2018) show remarkable results
of an almost end-to-end learning approach for collision avoidance on a drone. They do not want to replace “map-
localize-plan” approaches and believe that “learning-based and traditional approaches will one day complement
each other”. An example of a promising idea that shows how established methods can be combined with machine
learning is the incorporation of Kalman filters in a neural network. This approach has been presented by Kassahun
et al. (2008).

However, we have to make sure that we do not artificially limit the amount of learnable behaviors by introducing
too strong constraints or too simple models. For example, requiring the zero moment point (ZMP) to be in a
support polygon is a strong restriction. It is an artificially constructed, simple model of dynamical stability, that
is developed to avoid at all costs that expensive robots fall and break. It limits the capabilities of a robot, for
example, running would be very hard to implement with a ZMP approach. Furthermore, Yang et al. (2017)
state that this approach prohibits advanced balancing behaviors. Making basic physical knowledge available to
the learning algorithm can be beneficial without restricting the amount of learnable behaviors though. As an
alternative to the ZMP approach, we can compute the centroidal momentum (Orin and Goswami, 2008; Orin
et al., 2013) and make it available to the learning algorithm. When a translation from joint space to Cartesian
space is required or useful, we can use the Jacobian. For dynamics we can make use of the equations of motion.

Boostrapping: An obvious situation where the combination of behavior learning with another method is safer is
manipulation with a superimposed collision avoidance behavior. While the robot is learning to grasp, it can safely
be guided around obstacles. These “safety mechanisms” could also be used to bootstrap learning and collect data
safely before we shift to the pure learned behavior that might perform better. It is even possible to use additional
equipment or a controlled environment to provide additional information to bootstrap learning. This has been
done, for example, by Levine et al. (2016) to reduce the required amount of data. Englert and Toussaint (2018)
also demonstrate that a combination of optimal control, episodic reinforcement learning, and inverse optimal
control in the training phase can be safe and efficient. The problem of safe exploration has also been discussed in
more detail by Amodei et al. (2016, pages 14–17).

7.2 Comparability and Reproducibility
Shadmehr and Wise (2005) convey the idea that the same computational principles that allow earlier forms of
life to move in their environment later enabled higher forms of intelligence like language and reasoning. The
intelligence of animals and humans evolves with the complexity of the problems that it solves. An example for
this is confirmed by Faisal et al. (2010): the production of early prehistoric (Oldowan) and later (Acheulean)
stone tools has been investigated. Oldowan tools are simpler and their production require less complex behaviors.
The production of Acheulean tools requires the activation of brain regions associated with higher-level behavior
organization. The development of more complex behavior coordination could even be linked to the development
of more complex forms of communication. The development of complex manipulation behaviors required more
intellectual capacities. These could also be applied to another domain – in this case: language. This is an
important finding for us as roboticists. Translating this to our work, this means more complex problems require
the development of better behavior learning algorithms. These algorithms could potentially also be used in other
domains for which they have not been directly designed. Hence, advancing at both frontiers could benefit the
whole field.

Artificial intelligence has advanced by setting challenging benchmark problems. For example, the problem of
playing chess against a human or the RoboCup initiative that has a similar goal but combines AI with robotics
(Kitano et al., 1997): “The Robot World-Cup Soccer (RoboCup) is an attempt to foster AI and intelligent robotics
research by providing a standard problem where a wide range of technologies can be integrated and examined.”
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In recent years we have seen major advances in reinforcement learning also because clearly defined benchmarks
are available, for example, the Atari learning environment (Bellemare et al., 2015) and OpenAI Gym (Brockman
et al., 2016). These benchmarks make comparisons of existing approaches easier. It is also simpler to reproduce
results because it is easy to check if a reimplementation of an algorithm gives the same result as in the original
publication. Hence, we recommend to define benchmarks for robotic behavior learning.

A problem is that often similar problems are solved but with varying conditions, for example, in the context
of grasping we observed that the objects are often different although there are standardization efforts: the YCB
object and model set is an example (Calli et al., 2015a,b, 2017). These efforts have to be fostered and supported.
Also new benchmarks have to be created. We can also learn here from the diagnosis and treatment of human
patients. An example for a “benchmark” for humans is the box and block test (Mathiowetz et al., 1985): the
patient has to move colored blocks from one box to another as fast as possible. We think that a set of benchmark
problems should be selected, standardized, formalized, and described in detail so that results are easily comparable.

Games and sports are particularly good candidates for benchmark problems because they have a clear set of
rules, standardized material, they are usually easy to understand, and offer a variety of challenging problems. We
have seen that a large number of behavior learning problems already come from this domain. Mostly subproblems
like kicking or batting a ball have been extracted and learned. More advanced benchmarks would also include
tasks with less strict rules, for example, setting a table.

Benchmarking in the context of robotics, however, is difficult because software can usually not be tested
in isolation. Simulations could be used to address this problem but they often lead to solutions that are not
transferable to reality, neither the learned behavior nor the learning algorithm. The RoboCup Standard Platform
League (SPL) solves this problem by requiring that each competing team uses the same hardware. This is not
an optimal solution because most robots are expensive and research institutes are usually not able to buy a new
robot just to compete in a specific benchmark. We can offer no perfect solution for this problem. We can only
propose that a cheap robotic platform that is sufficient enough for a variety of benchmarks should be developed.

7.3 The Future of Behavior Learning Problems
Mason (2012) writes: “What percentage of human’s manipulative repertoire have robots mastered? Nobody can
answer this question.” We can say exactly the same about any other category of robotic behaviors. At least we
now have a rough overview of which behaviors have been learned. We will now try to talk about what is still
missing.

At the moment, most behaviors are learned in isolation. On a complete system, the learned behavior will
interfere with high-level behaviors and other behaviors on the same level that might even have higher priority, for
example, balancing or collision avoidance. There might even be other learned behaviors, for example, a learned
walking behavior and a learned throwing behavior could be executed in parallel. Executing multiple behaviors
in parallel has effects on the whole system. These problems are neglected if behaviors are learned in isolation.
Throwing a ball while walking makes the balancing part of the walking behavior more difficult and grasping an
object while collision avoidance is active might result in different reaching trajectories. Sometimes combining two
behaviors might require one of these behaviors to be changed completely. For example, in the case of throwing
while running, the whole locomotion and balancing behavior might have to be altered to absorb high forces that
are exerted during the throw.

Figure 8 illustrates two possible roadmaps for walking behaviors. Currently, we are able to learn walking with
quadrupedal or six-legged robots. There a two alternative routes illustrated that we could take from there: the “ball
sports route” and the “parkour route”. Ball sports in this example include soccer, basketball, or handball. It is to
some extent possible to learn bipedal walking, which requires more advanced balancing behavior than walking with
more legs. Fast bipedal running is already a much more complex task because it is a highly dynamic behavior that
cannot easily be solved with classical stability criteria and control approaches. Running and dribbling a ball requires
to solve a much more complex perception problem and precise foot placement or hand movements. Combining
this behavior with the requirement to throw or kick a ball will introduce a difficult coordination problem: throwing
will have an impact on the balancing part of the running behavior. A good solution will predict this impact and
counteract already while the throw is performed. However, throwing a ball to a fixed goal is easy in comparison
to passing the ball to a teammate. In this case, the robot has to anticipate the behavior of the teammate to pass
the ball to a location where the teammate will be able to make use of it. Another future research direction could

30



 

 
 

 

7.3 The Future of Behavior Learning Problems

running

dribbling

running and throwing

running and passing

rough terrain

climbing

parkour

walking

bipedal

balancing

dynamics

perception

coordination

interaction

perception

balancing

whole-body control

dynamics
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Figure 8: Roadmaps for walking robots. Sources: running from Stephane Kempinaire (URL:
http://www.mynewsdesk.com/se/puma-nordic/images/puma-aw14_ff_bolt-325510; license: CC BY 3.0),
dribbling from flickr user tsavoja (URL: https://www.flickr.com/photos/tsavoja/4106568938/; license:
CC BY-SA 2.0), throwing while running from flickr user RFEBM Balonmano (URL: https://www.flickr.
com/photos/125948220@N02/14826033503/; license: CC BY-SA 2.0), passing while running from flickr user
Terry Gilbert (URL: https://flic.kr/p/QDhaKN; license: CC BY 2.0), parkour from flickr user THOR (URL:
https://www.flickr.com/photos/geishaboy500/3090363361/; license: CC BY 2.0), all other photos are
from DFKI RIC and can be found at https://robotik.dfki-bremen.de/

be over climbing to parkour. Legged robots unfold their full potential in rough and irregular terrain, where precise
perception of the environment, foot placement and robust balancing is required. This has been learned already to
some extent. A more difficult scenario would be climbing up a mountain with steep slopes, where not only feet
but all body parts must be controlled, for example, a humanoid would have to use its arms. The robot must be
flexible enough to balance on steep and rough terrain. A next possible step would be one of the most difficult
sports that humans are able to perform: parkour. It requires to “understand” the environment, that is, know what
you can do with it to find the fastest and direct way by overcoming obstacles. The whole body is involved and it
is often required to turn off basic safety mechanisms, for example, to perform a double kong vault where the body
is almost turned upside down with the hands on the obstacle directing momentum and the feet above the head to
get out of the way.

There are low-hanging fruits to increase the spectrum of learned behaviors. Examples are the locomotion
behaviors running, climbing ladders, jumping over obstacles, jumping precisely or jumping as high as possible with
one or two legs, front or back flip, swimming, and paddling. In the kitchen domain stirring, chopping, opening
cans or bottles. In the household domain the problems of folding sheets or clothes can be very challenging because
these problems are very hard to model. In the manufacturing domain the skills of hammering, sawing, sewing,
splitting wood, shoveling, drilling, and tool use in general are relevant. While perception has been fully learned,
for example, for grasping and collision avoidance, this has not been considered so far for very dynamic problems
like catching balls, batting or kicking balls, etc. There is a limited amount of publication concerned with learning
high-level game playing in real physical games, for example, to learn coordination of multiple robots in soccer. For
interaction with humans, performing gestures and other physical interaction behaviors, for example, various forms
of hand shaking could be learned. Interesting balancing problems often come from sports like surfing, skating, or
skiing.
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There are not many learned behaviors that require advanced spatio-temporal and causal reasoning beyond
unscrewing a light bulb. Assembling furniture, tidying up a room, cooking a complete meal, or solving puzzles are
examples for these kind of problems.

Creating a system that solves not just one problem but a variety of complex tasks is even more difficult. It
involves integration of hardware components, software components, and behaviors. Building complex systems is a
challenge in itself, but it is required to create more sophisticated complex behaviors.

Learned behaviors can usually not be explained. Robots cannot reason about them. They cannot explain why
they selected a certain action or why it works. We have not yet seen robots that combine existing learned behaviors
to new sequences or combinations of behaviors to solve tasks that they have not seen before.

Given the current development in behavior learning and in computer vision, we expect that the next big steps will
be made by deep learning and by solving more and more complex perception problems. This direction of artificial
intelligence research has its justification in Moravec’s paradox: “it is comparatively easy to make computers exhibit
adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills
of a one-year-old when it comes to perception and mobility” (Moravec, 1988, p. 15). However, we emphasize
that for complex behaviors not only complex perception but also complex control is required. It is not sufficient to
control a 7 DOF arm to realize a versatile, flexible, and autonomous humanoid robot. We should strive towards
pushing the limits in terms of kinematic complexity like the work of Andrychowicz et al. (2018), who control a
complex, human-like hand.

In summary, there is still a long way to go to build robots that are able to perform as good as humans in these
tasks but we think that learning behaviors is one of the best ways that we have to acquire these skills when the
robotic hardware is sufficient enough. Mason (2012) formulated a conjecture about robotics research: “[..] it is
just possible that our field is still in its infancy. I do not have a compelling argument for this view, but it is telling
that we have no effective way to measure our progress toward long-range goals.” Our outlook on which skills we
should try to master by behavior learning in the future, particularly the discussion of the roadmap displayed in
Figure 8, also is a confirmation of this.
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Table 2: Overview of learned behaviors.

Behavior Publication Pe
rc

ep
tio

n
†

Ac
tio

n
†

D
el

ib
er

at
iv

e
‡

Re
ac

tiv
e

‡

D
isc

re
te

Rh
yt

hm
ic

St
at

ic

D
yn

am
ic

Ac
tiv

e

Pa
ss

iv
e

Lo
co

m
ot

io
n

M
an

ip
ul

at
io

n

flipping a light switch Buchli et al. (2011) 7 3 3 7 3 7 3 7 3 7 7 3

open door 3 7 3 7 3 7 7 3

Kalakrishnan et al. (2011) 3 3 7 3 · · · · · · · ·
Gu et al. (2017) 3 3 7 3 · · · · · · · ·
Kormushev et al. (2010a, 2011a) 3 3 7 3 · · · · · · · ·
Nemec et al. (2017) 7 3 3 7 · · · · · · · ·
Chebotar et al. (2017b) 3 3 7 3 · · · · · · · ·
Englert and Toussaint (2018) 7 3 7 7 · · · · · · · ·

valve turning Carrera et al. (2012) 7 3 3 7 3 7 3 7 3 7 7 3

crank-turning Petric et al. (2014) 3 3 7 3 7 3 3 7 3 7 7 3

screw cap on bottle Levine et al. (2016) 3 3 7 3 3 7 3 7 3 7 7 3

peg-in-a-hole 3 7 3 7 3 7 7 3

Gullapalli et al. (1994) 3 3 7 3 · · · · · · · ·
Ellekilde et al. (2012) 7 3 3 7 · · · · · · · ·
Levine et al. (2016) 3 3 7 3 · · · · · · · ·
Kramberger et al. (2016) 3 3 3 7 · · · · · · · ·

` power plug Chebotar et al. (2017a) 7 3 7 7 · · · · · · · ·
` connect a pipe Laursen et al. (2018) 7 3 3 7 · · · · · · · ·

ironing Kormushev et al. (2010a, 2011a) 3 3 7 3 3 7 3 7 3 7 7 3

whiteboard cleaning Kormushev et al. (2011b) 3 3 7 3 3 7 3 7 3 7 7 3

grinding / polishing Nemec et al. (2018) 3 3 7 3 3 7 3 7 3 7 7 3

wiping
Urbanek et al. (2004) 7 3 7 7 7 3 3 7 3 7 7 3

Gams et al. (2014) 7 3 7 3 7 3 3 7 3 7 7 3

sweeping
Alizadeh et al. (2014) 7 3 3 7 3 7 7 3 3 7 7 3

Pervez et al. (2017) 3 7 7 3 3 7 7 3 3 7 7 3

handwriting 3 7 7 3

Manschitz et al. (2018) 7 3 7 7 3 7 3 7 · · · ·
Berio et al. (2016) 7 3 7 7 3 7 7 3 · · · ·

calligraphy Omair Ali et al. (2015) 3 3 7 7 3 7 7 3 3 7 7 3

grasping 3 7 3 7 3 7 7 3

Steil et al. (2004) 7 3 7 7 · · · · · · · ·
Kroemer et al. (2009) 7 3 7 3 · · · · · · · ·
Gräve et al. (2010) 7 3 7 7 · · · · · · · ·
Stulp et al. (2011) 7 3 7 7 · · · · · · · ·
Kalakrishnan et al. (2011) 3 3 7 3 · · · · · · · ·
Amor et al. (2012) 7 3 3 7 · · · · · · · ·
Lampe and Riedmiller (2013) 3 3 7 3 · · · · · · · ·
Lenz et al. (2015b) 3 7 3 7 · · · · · · · ·
Pinto and Gupta (2016) 3 7 3 7 · · · · · · · ·
Johns et al. (2016) 3 7 3 7 · · · · · · · ·
Levine et al. (2017) 3 3 7 3 · · · · · · · ·
Mahler et al. (2017) 3 3 7 3 · · · · · · · ·

pick & place 3 7 3 7 3 7 7 3

Stulp et al. (2012) 7 3 7 7 · · · · · · · ·
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Table 2: Overview of learned behaviors (continued)
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Ijspeert et al. (2013) 7 3 3 7 · · · · · · · ·
Rahmatizadeh et al. (2018) 7 3 3 7 · · · · · · · ·
Chebotar et al. (2017b) 3 3 7 3 · · · · · · · ·
Kroemer and Sukhatme (2017) 7 3 3 7 · · · · · · · ·
Levine et al. (2016) 3 3 7 3 · · · · · · · ·
Finn et al. (2017) 3 3 7 3 · · · · · · · ·

block stacking 3 7 3 7 3 7 7 3

Deisenroth et al. (2015) 7 3 3 7 · · · · · · · ·
Duan et al. (2017) 3 3 7 3 · · · · · · · ·

in-hand manipulation 3 7 7 3

van Hoof et al. (2015) 7 3 7 3 3 7 3 7 · · · ·
Rajeswaran et al. (2018) 3 3 7 3 3 7 3 7 · · · ·
Andrychowicz et al. (2018) 3 3 3 7 3 7 3 7 · · · ·

tumbling / tilting objects
Pollard and Hodgins (2004) 7 3 3 7 3 7 3 7 3 7 7 3

Kroemer and Sukhatme (2017) 7 3 7 7 3 7 3 7 3 7 7 3

hockey 3 7 7 3 3 7 7 3

Daniel et al. (2013) 7 3 7 7 · · · · · · · ·
Chebotar et al. (2017a) 7 3 7 3 · · · · · · · ·
Rakicevic and Kormushev (2017) 7 3 7 7 · · · · · · · ·
Paraschos et al. (2018) 7 3 7 7 · · · · · · · ·

knot tying van den Berg et al. (2010) 7 3 7 7 3 7 3 7 3 7 7 3

knot untying Wen Hao Lui and Saxena (2013) 3 7 7 7 3 7 3 7 3 7 7 3

folding a shirt Colomé and Torras (2018) 7 3 7 7 3 7 3 7 3 7 7 3

holding garment Corona et al. (2018) 3 7 3 7 3 7 3 7 3 7 7 3

dressing assistance Erickson et al. (2018) 7 7 3 7 3 7 3 7 3 7 7 3

cutting 3 7 7 3

Lioutikov et al. (2016) 7 3 7 7 3 7 3 7 · · · ·
Lenz et al. (2015a) 3 7 3 7 7 3 7 3 · · · ·
Thananjeyan et al. (2017) 7 3 3 7 3 7 3 7 · · · ·

peeling Medina and Billard (2017) 7 3 7 7 7 3 3 7 3 7 7 3

scooping Schenck et al. (2017) 3 7 7 3 3 7 3 7 3 7 7 3

pouring 3 7 7 3 3 7 7 3

Pastor et al. (2008) 7 3 3 7 · · · · · · · ·
Tamosiunaite et al. (2011) 7 3 7 7 · · · · · · · ·
Brandl et al. (2014) 3 3 7 7 · · · · · · · ·
Chi et al. (2017) 7 3 7 7 · · · · · · · ·
Sermanet et al. (2018) 7 3 7 7 · · · · · · · ·
Caccavale et al. (2018) 7 3 3 7 · · · · · · · ·

collision avoidance Koert et al. (2016) 7 3 3 7 3 7 3 7 3 7 7 3

golf Maeda et al. (2016) 7 3 7 7 3 7 7 3 3 7 7 3

minigolf Khansari-Zadeh et al. (2012) 7 3 3 7 3 7 7 3 3 7 7 3

billiard 3 7 7 3 3 7 7 3

Atkeson et al. (1997) 7 3 3 7 · · · · · · · ·
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Table 2: Overview of learned behaviors (continued)
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Pastor et al. (2011) 7 3 7 7 · · · · · · · ·
baseball Peters et al. (2005) 7 3 7 7 3 7 7 3 3 7 7 3

badminton Liu et al. (2013) 7 3 7 7 3 7 7 3 3 7 7 3

tennis Ijspeert et al. (2002) 7 3 3 7 3 7 7 3 3 7 7 3

table tennis 3 7 7 3 3 7 7 3

Kober et al. (2010) 7 3 3 7 · · · · · · · ·
Mülling et al. (2011) 7 3 3 7 · · · · · · · ·
Kober et al. (2012) 7 3 3 7 · · · · · · · ·
Mülling et al. (2013) 7 3 3 7 · · · · · · · ·

tetherball 3 7 7 3 3 7 7 3

Daniel et al. (2012) 7 3 7 7 · · · · · · · ·
Parisi et al. (2015) 7 3 3 7 · · · · · · · ·

darts Kober et al. (2012) 7 3 7 3 3 7 7 3 3 7 7 3

throwing 3 7 7 3 3 7 7 3

Gams et al. (2010) 7 3 7 7 · · · · · · · ·
Ude et al. (2010) 7 3 7 7 · · · · · · · ·
Kober et al. (2012) 7 3 7 7 · · · · · · · ·
da Silva et al. (2014) 7 3 7 7 · · · · · · · ·
Gutzeit et al. (2018) 7 3 7 7 · · · · · · · ·

kicking 3 7 7 3 3 7 7 3

Böckmann and Laue (2017) 7 3 3 7 · · · · · · · ·
Hester et al. (2010) 7 3 3 7 · · · · · · · ·
Asada et al. (1996) 7 3 3 7 · · · · · · · ·

ball-in-a-cup 3 7 7 3 3 7 7 3

Kober et al. (2008) 7 3 7 3 · · · · · · · ·
Kober and Peters (2009) 7 3 7 3 · · · · · · · ·

pancake flipping Kormushev et al. (2010b) 7 3 7 3 3 7 7 3 3 7 7 3

nunchaku flipping Zhao et al. (2018) 3 3 7 3 3 7 7 3 3 7 7 3

archery Kormushev et al. (2010c) 7 3 7 7 3 7 3 7 3 7 7 3

astrojax Paraschos et al. (2018) 7 3 7 7 7 3 7 3 3 7 7 3

maracas Paraschos et al. (2018) 7 3 7 7 7 3 7 3 3 7 7 3

drumming Ude et al. (2010) 7 3 7 7 7 3 7 3 3 7 7 3

balancing on wheels Vlassis et al. (2009) 7 3 3 7 7 7 7 3 7 3 7 7

postural recovery Kuindersma et al. (2011) 7 3 7 7 7 7 7 3 7 3 7 7

balancing inv. pendulum 7 7 7 3 7 3 7 3

Marco et al. (2016) 7 3 7 3 · · · · · · · ·
Doerr et al. (2017) 7 3 7 3 · · · · · · · ·

walking
` six legs 7 3 3 7 3 7 3 7

Maes and Brooks (1990) 7 3 7 7 · · · · · · · ·
Kirchner (1997) 3 3 7 3 · · · · · · · ·

` quadrupedal 7 3 3 7 3 7 3 7

Birdwell and Livingston (2007) 7 3 3 7 · · · · · · · ·
Kohl and Stone (2004) 7 3 3 7 · · · · · · · ·
Bartsch et al. (2016) 7 3 7 3 · · · · · · · ·

` biped 7 3 7 3 3 7 3 7
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Table 2: Overview of learned behaviors (continued)
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Benbrahim and Franklin (1997) 7 3 7 3 · · · · · · · ·
Matsubara et al. (2005) 7 3 7 3 · · · · · · · ·
Geng et al. (2006) 3 7 7 3 · · · · · · · ·
Kormushev et al. (2011c) 7 3 3 7 · · · · · · · ·
Missura and Behnke (2015) 7 3 3 7 · · · · · · · ·

walking up stairs Kolter and Ng (2009) 7 3 7 7 3 3 7 3 3 7 3 7

walking on rough terrain 3 7 3 7

Kolter et al. (2008) 3 7 3 7 3 3 3 7 · · · ·
Kalakrishnan et al. (2009) 3 7 3 7 3 3 3 7 · · · ·
Zucker et al. (2011) 3 7 3 7 3 3 3 7 · · · ·

pedal racer Gams et al. (2014) 3 3 7 3 7 3 7 3 3 7 3 7

jumping 7 3 3 7 3 7

Kolter and Ng (2009) 7 3 7 7 3 3 · · · · · ·
Theodorou et al. (2010) 7 3 7 7 3 7 · · · · · ·

dribbling Latzke et al. (2007) 7 3 3 7 7 3 7 3 3 7 3 7

standing up Morimoto and Doya (2001) 3 3 7 3 3 7 7 3 3 7 3 7

collision avoidance 3 7 3 7 3 7

Tai et al. (2016) 3 3 7 3 · · 3 7 · · · ·
Loquercio et al. (2018) 3 7 7 3 · · 3 7 · · · ·
Gandhi et al. (2017) 3 3 7 3 · · 3 7 · · · ·
Kahn et al. (2017) 3 7 3 7 · · 7 3 · · · ·

ball interception Müller et al. (2007) 7 3 3 7 7 7 7 3 3 7 7 7

defense behavior Riedmiller et al. (2009) 7 3 3 7 7 7 7 3 3 7 7 7

cooperative behavior Riedmiller and Gabel (2007) 7 3 3 7 7 7 7 3 3 7 7 7

capturing a ball Fidelman and Stone (2004) 7 3 3 7 3 7 7 3 3 7 7 3

visual navigation Zhu et al. (2017) 3 3 7 3 3 7 3 7 3 7 3 7

navigation Silver et al. (2010) 3 7 3 7 3 7 3 7 3 7 3 7

navigation Conn and Peters (2007) 3 3 7 3 3 7 3 7 3 7 3 7

navigation Pfeiffer et al. (2017) 3 3 3 3 3 7 3 7 3 7 3 7

lane following Chuang et al. (2018) 3 3 7 3 3 7 3 7 3 7 3 7

navigation and estimation Oßwald et al. (2010) 7 3 3 7 3 7 7 3 3 7 3 7

navigation with exploration Cocora et al. (2006) 7 3 3 7 3 7 3 7 3 7 3 7

exploration Kollar and Roy (2008) 7 3 3 7 3 7 3 7 3 7 3 7

active sensing Kwok and Fox (2004) 7 3 3 7 3 7 3 7 3 7 7 7

unscrewing a light bulb Manschitz et al. (2016) 3 7 7 3 3 7 3 7 3 7 7 3

coffee / tea preparation Caccavale et al. (2018) 7 3 3 7 3 7 3 3 3 7 7 3

pizza preparation Caccavale et al. (2017) 7 3 3 7 3 7 3 7 3 7 7 3

pizza dough rolling Figueroa et al. (2016) 7 3 7 3 3 7 3 7 3 7 7 3

high five Amor et al. (2014) 7 3 7 3 3 7 7 3 3 7 7 3

hand shaking Huang et al. (2018) 7 3 7 7 3 3 7 3 3 7 7 3

hand-over
Ewerton et al. (2015) 7 3 7 3 3 7 7 3 3 7 7 3
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7.3 The Future of Behavior Learning Problems

Table 2: Overview of learned behaviors (continued)
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Maeda et al. (2017) 7 3 7 3 3 7 7 3 3 7 7 3

holding Ewerton et al. (2015) 7 3 7 3 3 7 7 3 3 7 7 3

carrying
Rozo et al. (2015) 3 3 7 3 3 7 7 3 7 3 7 3

Berger et al. (2012) 3 7 7 3 3 7 7 3 7 3 7 3

lifting
Evrard et al. (2009) 7 3 7 3 3 7 7 3 3 3 7 3

putting on a shoe Canal et al. (2018) 7 3 3 7 3 7 7 3 3 7 7 3

collaborative drilling Nikolaidis et al. (2013) 7 3 3 7 3 7 7 3 3 7 7 3

† Perception and Action: Refers to the part of the behavior that has
been learned.
‡ Deliberative and Reactive: Refers to the complete behavior. Behaviors
are considered to be deliberative if models of the world or the robot in the
world are constructed.
Symbols:

` Indicates that the behavior is an instance of the more general behavior above.
3 Behavior has this property.
7 Behavior does not have this property.

We cannot state that the behavior generally has this property.
· Property is inherited from the behavior category.
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