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Figure 1: (a) Previous work: Simplistic search displays with instructed search trajectory (b) Our work: Realistic search scenes
with free search trajectory, search target: Wrench, Outlook

ABSTRACT
Distinguishing target from non-target fixations during visual search

is a fundamental building block to understand users’ intended ac-

tions and to build effective assistance systems. While prior research

indicated the feasibility of classifying target vs. non-target fixa-

tions based on eye tracking and electroencephalography (EEG)

data, these studies were conducted with explicitly instructed search

trajectories, abstract visual stimuli, and disregarded any scene con-

text. This is in stark contrast with the fact that human visual search

is largely driven by scene characteristics and raises questions re-

garding generalizability to more realistic scenarios. To close this

gap, we, for the first time, investigate the classification of target vs.

non-target fixations during free visual search in realistic scenes. In

particular, we conducted a 36-participants user study using a large

variety of 140 realistic visual search scenes in two highly relevant

application scenarios: searching for icons on desktop backgrounds

and finding tools in a cluttered workshop. Our approach based on

gaze and EEG features outperforms the previous state-of-the-art
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approach based on a combination of fixation duration and saccade-

related potentials. We perform extensive evaluations to assess the

generalizability of our approach across scene types. Our approach

significantly advances the ability to distinguish between target and

non-target fixations in realistic scenarios, achieving 83.6% accuracy

in cross-user evaluations. This substantially outperforms previous

methods based on saccade-related potentials, which reached only

56.9% accuracy.
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1 INTRODUCTION
Visual search is ubiquitous in daily life. It occurs both when we

search for items such as tools in a cluttered physical environment,

but also in human-computer interaction when e.g. searching for
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a specific application icon. Due to its ubiquity, assistance during

visual search can potentially have a large impact on user satisfac-

tion and task completion times [6, 21]. For instance, an assistive

system that knows that the user is currently fixating on the icon

of an application they want to open can automatically launch this

application for the user, overcoming the Midas touch problem in

gaze-based interaction [14, 31]. On the other hand, a system that

is supposed to help the user in locating a tool in a cluttered en-

vironment only needs to be activated when the user has not yet

found the desired object. The foundation for such novel assistive

systems is the ability to distinguish fixations on the search target

(target fixations) from fixations that are not on the search target

(non-target fixations).
Previous work documented the feasibility to classify target from

non-target fixations based on electroencephalography (EEG) [9], as

well as a combination of EEG- and eye tracking features [8], with a

combination of saccade-related EEG potentials and a fixation dura-

tion feature being most promising. However, these previous studies

are limited in two key aspects: First, they utilized simplistic abstract

stimuli such as Landolt Cs and strings of symbols hidden by (’#’) on

uniform backgrounds, disregarding any scene context. Second, they

did not let users search freely for the target, but explicitly instructed

search trajectories. This is in stark contrast to application scenarios

where user search freely in a complex, structured scene such as

in a workshop, or on a computer desktop. Indeed, research in psy-

chology indicates that scene context has an important influence on

visual search [10, 15, 24, 25]. It therefore remains an open question

to what extent the results achieved with simple stimuli on uniform

backgrounds can be transferred to more realistic stimuli placed in

complex, cluttered scenes.

In our work we for the first time study the classification of tar-

get vs. non-target fixations from EEG and eye tracking recordings

during free visual search in complex scenes. In particular, we study

two highly application-relevant scenarios: searching for a tool in a

cluttered workshop, and searching for an icon on a desktop screen.

In a 36-participant user study we recorded gaze behavior and EEG

measurements of people performing a visual search task in 140

different, diverse scenes from these two scenarios. We present an

automatic approach to distinguish target from non-target fixations

based on state-of-the-art Common Spatial Pattern (CSP) EEG fea-

tures and a fixation duration feature. Our approach reaches 83.6%

accuracy in cross-user evaluation and clearly outperforms the ap-

proach based on saccade-related potentials used in previous work

for target vs. non-target fixation classification (56.9% accuracy)[8].

Furthermore, we perform extensive evaluations on the impact of

scene type on classification performance. Our results indicate that

to reach maximum performance it is crucial to train on data from

the same scene domain, and adding data of additional scenes during

training did not lead to improvements.

2 RELATEDWORK
The present work is related to studies investigating scene influences

on visual search as well as to previous approaches to classifying

target vs. non-target fixations.

2.1 Visual Search and Scene Context
Traditionally, cognitive research on visual search focused on highly-

controlled, but artificial target and non-target stimuli that were

presented in specific spatial configurations on blank backgrounds

[17, 41, 44]. However, starting in the late 2000s, an increasing num-

ber of studies investigated search for real objects in naturalistic

scenes [10, 24, 42]. This research argues that when viewing a scene,

observers can quickly derive the "gist" of that scene via a non-

selective pathway, that is, a pathway that does not rely on identifi-

cation of individual objects [48]. The information extracted from

this scene gist, in turn, guides attention based on syntactic and

semantic principles [46, 47]. Syntactic guidance refers to physical

constraints that describe structurally plausible locations for specific

objects. For example, if we assume that observers are searching for

a hammer in the left scene depicted in Figure 1(b), the observers

will likely not search for the hammer in front of the gray brick

wall or in front of the red cupboard because the hammer would

fall to the ground due to gravity. Instead, observers would more

likely search on horizontal surfaces or on vertical surfaces where

tools can be attached (like a pegboard). Semantic guidance refers to

the meaningfulness of an object in a specific location. For example,

observers would be more likely to search for the hammer on the

pegboard or the workbench than on the floor. While it is physically

possible for the hammer to lie on the floor, it is more likely that the

hammer is stored on the pegboard or the workbench. In addition

to syntactic and semantic guidance, contextual cueing enhances

visual search by leveraging learned associations between targets

and their environments [18, 19, 34]. When observers repeatedly

encounter similar contexts, they form implicit memories of these

spatial layouts, allowing them to locate targets more quickly in

future searches. For instance, repeatedly finding a hammer on a

pegboard will cue the observer to search there more efficiently,

demonstrating how learned context can optimize search perfor-

mance.

Search for desktop icons can be considered an intermediate sce-

nario that shows some characteristics of traditional visual search

paradigms but other characteristics of visual search in naturalistic

scenes: On the one hand, desktop icons are aligned according to

an imaginary grid and the icons are artificial stimuli with only

symbolic meaning. On the other hand, the icons are usually not

presented on a blank background but on a scenic background as de-

picted in the right panel of Figure 1(b). Moreover, icons can also be

grouped together by semantic principles (for example the icons of

different web browsers or of different video gamesmight be grouped

together). Consequently, eye-tracking research has shown that both

factors characterizing traditional visual search paradigms such as

icon distinctiveness/complexity [16] or inter-icon distance [15] as

well as factors characterizing search within naturalistic scenes such

as semantics [25] play a role in visual search for desktop items.

2.2 Target vs. Non-Target Fixation Classification
While inferring the identity, category, or appearance of visual search

targets has received some attention in research [3, 23, 27, 37, 40],

few works addressed the task of whether a specific user fixation

falls on a target or non-target [8, 9]. Kamienkowski et al. [26] inves-

tigated electrophysiological responses to targets and non-targets
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in a visual search paradigm by using EEG epochs locked to fixation

onset – so-called fixation-related potentials (FRPs). More specifi-

cally, they compared FRPs in a visual search task where participants

were allowed to freely scan the search display with event-related

potentials (ERPs) observed in typical experimental designs where

participants are asked to keep their gaze fixed (and targets and non-

targets are presented in a temporal sequence). The authors showed

that a typical difference between target and distractor-elicited ERPs

also occurs for target and distractor-elicited FRPs (more specifically,

a P300-like late effect at parietal electrodes). Based on this finding

by Kamienkowski et al., Brouwer et al. [9] proposed a method to

classify target vs. non-target fixations by using FRPs. In their study,

participants were presented with search displays containing six

Landolt Cs arranged in a circular pattern, each with one of four

possible orientations: a gap at the top, bottom, left, or right (see

bottom Figure 1(a)). Importantly, participants were instructed to

scan this search display in a particular, pre-defined order. The find-

ings revealed a mean accuracy of 62%, as determined by Cohen’s

kappa, in classifying individual FRPs as either target or non-target

among 11 participants.

In a follow-up work, Brouwer et al. [8] employed a monitoring

task where participants identified the location of the target in differ-

ent cognitive load conditions. Their study setup presented a matrix

(see top Figure 1(a)) to monitor 15 systems represented by a string

of hashes (‘####’). Targets would randomly be activated, changing

their state from ‘####’ to either ‘#OK#’ or ‘#FA#’. Participants had to

indicate which systems failed (i.e. ‘#FA#’) by pressing a button. The

authors collected data from 21 users and created a balanced dataset

with target- and non-target fixations. Based on fixation duration

and event-related potentials (ERPs) locked to the onset of a sac-

cade (saccade-related potentials, SRPs) and an SVM classifier they

achieved an average accuracy of 65% in within-user evaluations.

While these previous works illustrate the potential of using EEG-

and eye-tracking to classify target from non-target fixations, they

are limited in two crucial aspects when considering realistic ap-

plication scenarios. First, the stimuli utilized in previous works

were simple geometrical shapes or characters presented on a blank

scene. In contrast, we designed a large variety of realistic visual

search scenes in two highly relevant application scenarios: search-

ing for icons on desktop backgrounds and finding tools in a cluttered

workshop. Second, participants did not search freely for the target,

i.e. Brouwer et al. [9] used a pre-defined search trajectory, and in

Brouwer et al. [8] participants were asked to always immediately

fixate on the highlighted item. In contrast, our study used a search

paradigm where participants were allowed to freely make saccades

and fixations across the whole image in order to find the target (as

typical for visual search in everyday-life scenarios).

3 DATA RECORDING
Participants. We recruited 36 volunteers (17 female and 19 male)

aged between 19 and 32 years old (µ = 23.47 , σ = 2.69 ). All partici-

pants reported normal or corrected to normal vision, and none had

prior exposure to the study design. The study was approved by our

institution’s Ethics and Hygiene Board.

Hardware Setup. To display visual stimuli, we used a monitor

with a resolution of 1920 x 1080 and screen brightness of 300 cd/m2.

Figure 2: Examples of the Workshop and Desktop visual
scenes we created for our study. In total, we created 140
unique scenes.

We used the Enobio 20 channel system
1
by Nonelectrics to record

EEG signals with a sampling frequency of 500 Hz. Electrodes were

placed according to the 10-20 international electrode placement

system. To record eye-tracking data, we used wireless Tobii pro

Nano
2
attached to the monitor’s lower bezel with a sampling fre-

quency of 60 Hz. The distance from the screen was approximately

27.54
◦
of visual angle. The device was calibrated using 5-point cali-

bration at the start of the experiment for each participant, using

two coordinate systems. One is a 2D system that spans the monitor

with (0, 0) in the top right corner of the experiment setup monitor

screen and (1, 1) in the bottom left. The second is a 3D coordinate

system for the experiment room, which measures the distance from

the eye to the eye-tracker. We synchronized eye-tracking, EEG and

events of the study procedure using labstreaminglayer [1].

Stimuli. We designed 70 realistic scenes in Unity [22] version

2020.3.41f1 to simulate workshop environments, such as assem-

bly units, manufacturing and production facilities, industrial labs,

garage and repair workshop inspired by [38]. In addition we synthe-

sized 70 desktop backgrounds with a wide range of differences in

visual features like including texts/abstract patterns/human figures

with diverse designs, colors, and motifs (Figure 2 for examples)

based on publicly available code by [32]. When constructing the

workshop scenes, we depicted different levels of clutter by arrang-

ingmachinery components, tools, workbenches, and other elements

to resemble a typical workplace environment. To introduce differ-

ent levels of complexity, we placed tools in various locations (inside

cupboards, on the floor, and in unexpected areas) and orientations

within the scenes. Our target stimulus could be one of five tools:

Hammer, Pliers, Saw, Screwdriver, and Wrench. On average, each

workshop scene comprised 250 objects, with the minimum and

1
https://www.neuroelectrics.com/solutions/enobio/20

2
https://www.srlabs.it/en/scientific-research/hardware-products/tobii-pro-nano/
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Figure 3: Outline of our approach to classify target from non-target fixations. We evaluate on seven experimental conditions
for within and cross-user using EEG, Gaze, and Early fusion.

maximum numbers of objects being 64 and 455, respectively. These

numbers do not include the structural objects like walls, doors,

furniture etc. When designing the desktop scenes, we crafted di-

verse icons scattered throughout the background. We implemented

a random selection method for determining the number of icons

present. Our target stimulus could be an icon such as Google Drive,

Facebook, Dropbox, Minecraft, Zoom, and many more. We used a

unique target icon for each of the 70 scenes. The number of icons

placed in each desktop scene varied between a minimum of 50 and

a maximum of 97, with an average of 73 icons. Each target was

surrounded by an invisible bounding box which was later used to

register participants mouse clicks on the target, as well as to define

the ground truth of target- and non-target fixations. This boundary

provides a buffer of around 10 pixels, which helps to account for

any slight inaccuracies in locating the target.

Procedure. Participants were presented with a general overview

of the study. We showed them the setup and explained EEG and

eye-tracking sensors to ensure they were comfortable tracking

their physiological data. Next, we enabled participants’ to give their

informed consent and asked them to complete a demographics

questionnaire. Participants were seated in a comfortable chair, and

the distance between the user and the screen was 60 cm. Next, the

experimenter fitted the EEG cap on the participants’ heads, filling

the electrodes with gel. Overall, the preparation time was about 20

minutes. After visually inspecting the signal quality, we proceeded

with the data recording, ensuring that electrode impedances re-

mained below 15 kΩ throughout the experiment. Our study design

followed prior research [8, 9] and introduced the target stimulus

before prompting the search task. A single trial of the experiment

consisted of 3 steps. In Step 1, we displayed the instructions for

starting the study: ’Press enter to start’, followed by a 5 s counter.

In Step 2, we showed the target tool/desktop icon for 5 s. In the last

Step 3, the participant searches for the displayed target tool/desktop

icon in the scene until the tool/icon is found. Figure 1(b) showed

the workshop and desktop search scan path. Participants were

instructed to click on the target using a mouse only after locating

it. This minimized distractions with the mouse pointer and any

influence of the hand movement artifact on EEG during the search

phase. Participants were allowed to skip the search by pressing the

’S’ key if they could not find the target.

The 140 unique scenes were divided into four sessions, with

breaks in between sessions. The initial two sessions featured work-

shop scenes, while the remaining two consisted of desktop scenes.

The sequence of scenes and the target objects within each session

were randomized. On average, the experiment lasted 120 minutes

per participant.

4 METHOD
In this section, we outline the pre-processing and feature extrac-

tion procedures for both EEG and eye-tracking data. We describe

our experimental evaluation and baseline for both within-user and

cross-user analyses. Figure 3 provides an overview of the data

recording procedure, signal processing, and experimental evalua-

tion conditions.

4.1 Preprocessing
Eye data pre-processing. Visual search tasks often rely on the

analysis of fixations, which are the periods during which humans

extract visual information [7, 37, 38]. We implemented the I-VT

filter-based velocity-threshold fixation detection approach [33] and

used the default values of the parameters described below. Overall,

we adhere to the seven-step approach outlined by [43]: Gap fill-
in helps replace missing samples caused by participants blinking,

looking away, or any other unforeseen disturbances causing short

gaps in the data. Eye selection averages the position data from the

left and the right eye. We applied Noise reduction, low-pass filtering
to smooth out the noise while preserving the features using the

moving median approach. We then used the Velocity calculator to
associate each gaze sample with a velocity. To classify the sample

as either a part of fixation or not, we used the I-VT classifier. Later,
we applied Merge adjacent fixations to correct erroneously split fix-

ations due to noise. Lastly, using Discard short fixations, we discard
fixations that are too short to be relevant in visual search with a

threshold of 60msec.

EEG data pre-processing. We cleaned the EEG data by applying

high-pass filters with a cutoff frequency of 1-Hz, along with a notch
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Table 1: List of extracted features with PyEEG and added statistical features

Feature name Description

Power spectral intensity distribution of signal power over frequency

bands: delta, theta, alpha, beta, and gamma

Petrosian Fractal Dimension ratio of number of self-similar pieces versus

magnification factor

Hjorth mobility and complexity mobility represents the proportion of the

standard deviation of the power spectrum

Complexity represents the change in frequency

Higuchi Fractal Dimension computes fractal dimension of a time

series directly in the time domain

Detrended Fluctuation Analysis designed to investigate the long-range

correlation in non-stationary series

Skewness measure of asymmetry of an EEG signal

Kurtosis used to determine if the EEG data has peaked

or flat with respect to the normal distribution

Minimum, Maximum, and Standard deviation measure of variability of an EEG signal

filter between 48 Hz and 52 Hz, and a low-pass filter with a cut-

off frequency of 40 Hz [28]. Following this, we removed any bad

channels and interpolated them using the spherical interpolation

method. We set the threshold for channel correlation rejection to

0.8 [12, 39]. Then, we referenced all channels to a common av-

erage [29]. To minimize correlation between electrodes, we per-

formed independent component analysis using the Second Order

Blind Identification (SOBI) algorithm [12], followed by automatic

rejection of components labeled as muscle, heart, and eye artifacts,

using a 95% threshold. We epoched the pre-processed EEG data

from the beginning of the target fixation through its duration, and

did the same for the non-target fixation.

4.2 Feature Extraction
We utilized EEG and eye-tracking pre-processed data to compute

feature sets from the target and non-target fixations in each trial,

allowing us to customize our approach to obtain better results than

the baseline.

Eye-tracking features. Similar to the previous work by Brouwer

et al. [8], our approach utilizes fixation duration, defined as the

time that eye fixation was on the stimulus. As pointed out in the

previous work, fixation duration is the most crucial feature for

detecting targets compared to non-target fixations. In preliminary

experiments, we utilized larger feature sets based on Sharma et al.

[38], but did not observe improvements over fixation duration alone.

EEG features. For EEG-based features, we utilized two different

feature extraction approaches. Firstly, we used PyEEG - an open-

source Python module for EEG feature extraction [2] that operates

in the frequency and time domains. Additionally, we incorporated

statistical features, resulting in a total of 15 features per channel -

similar to [38]. The EEG-based features and their corresponding cal-

culations are described in detail in Table 1. Secondly, we used Com-

mon Spatial Pattern (CSP) to extract features from EEG data, which

maximizes the discriminative capacity of the features [11, 38, 39].

The spatial filter used in CSP is computed by solving a general-

ized eigenvalue problem. The resulting spatial filters distinguish

between 2 classes of EEG data and extract spatial patterns of brain

activity associated with specific tasks. We used 15 CSP features in

addition to the default parameters from the MNE toolbox [20].

Saccade-related potentials. To compare our work with Brouwer

et al. [8], we also adapted their saccade-related potential (SRP)

approach. The original approach extracts EEG data for 1s starting

from the highest velocity point of the saccade leading to the current

fixation. With our eye-tracker’s sampling frequency of 60 Hz, it was

challenging to accurately determine the peak saccade velocity. As

a solution, we opted to select the temporal midpoint of the saccade

as the event onset point.

4.3 Classification
Similar to previous work in fixation detection, we used Support

Vector Machines (SVM) [8]. We treated kernel as a hyperparameter

and chose the best option from linear, polynomial, and radial basis

function (rbf) kernel based on the validation set performance, along

with𝐶 values of (0.1, 1, 10) and 𝛾 values of (0.1, 1, scale, auto) in the

case of the rbf kernel. We first performed a min-max scaling on the

input features to harmonize the scale of features within- and across

modalities. To fuse feature sets (eye-tracking and EEG features) we

used early fusion, i.e. simple concatenation of feature vectors.

5 EVALUATION
This section outlines themetric used to evaluate model performance

and the experimental evaluation scenario. Additionally, we compre-

hensively describe our findings regarding specific scene domains

and generalization across different scene domains.

5.1 Ground Truth and Evaluation Metric
We extract target fixations by collecting the first fixation inside the

target bounding box for a given search trial. All prior fixations in

a given trial constitute the non-target fixations for this trial. This

procedure leads to a heavily unbalanced class distribution – in line

with previous work [8], we randomly sub-sample the non-target

fixation class to create a balanced class distribution on training and

testing sets. As a result, the random baseline is at 50% accuracy

in all evaluation scenarios. For each train-test split, we performed
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Figure 4: Comparison of within- and cross-user evaluations, training and testing on both workshop and desktop scenes. Error
bars indicate 95% confidence interval.

parameter tuning via grid search cross-validation only on the train

data and used the test set only for prediction. In all evaluation

scenarios, our evaluation metric is accuracy averaged over 10-fold

cross-validation.

5.2 Evaluation Scenarios
We investigate a wide variety of evaluation scenarios to compre-

hensively test the generalization ability of our target vs. non-target

fixation classification approach. While previous work only evalu-

ated in within-user scenarios [8, 9] (i.e. training and testing on the

same user only), we also study cross-user prediction (i.e. splitting

training and test sets by users). Furthermore, we study the gener-

alization of our approach across scene domains. For example, we

evaluate to what extent a classifier trained on data from desktop im-

ages is able to classify target vs. non-target fixations on workshops,

and vice versa.

5.3 Overall Results
In Figure 4 we present the result of our approach trained and tested

on both scene domains (desktops and workshops).

Our approach based on Eye and EEG (CSP15) features achieved

the best performance both in the within-user as well as the cross-

user scenario. In the within-user evaluation, our approach reaches

the best accuracy of 78.9%, clearly outperforming the method from

Brouwer et al. [8] (53.4% accuracy). The fixation duration feature

already reaches a performance of 70.8% on its own, while the EEG

(CSP15) features perform slightly better at 72.5% accuracy. EEG (Py-

EEG) features perform far worse than CSP based features reaching

52.1% accuracy. Interestingly, with fusion, results improve slightly

leading to an accuracy of 60.9%, but still far below the eye based

fixation duration feature. Overall, CSP15 feature set seems to be

very promising.

For cross-user evaluation, the pattern of results is very similar.

However, while the fixation duration feature reaches the same ac-

curacy as in within-user prediction, the EEG-based features namely,

CSP15 achieve higher accuracies. In line with the within-user eval-

uation, the PyEEG feature set performs worse, showing significant

differences compared to our best-performing CSP515 feature set.
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Figure 5: Effect of the number of objects on classification
accuracy for the best performing case, cross-user with early
fusion. The shaded region shows the confidence interval.

The best results are again obtained by our method with 83.6% accu-

racy.

Figure 5 shows how the classification accuracy of a test set varies

with the number of objects in a scene for the best performing case

i.e. cross-user with early fusion. As the number of objects in the

scene increases, the accuracy generally remains stable, highlighting

the fact that there is no major impact of number of objects on the

classification accuracy.

5.4 Scene-Domain Generalization
In the following, we present the results of our experiments across

scene domains using the best performing EEG based CSP15 feature

set.

Testing on workshop scenes. Figure 6 shows the results obtained
with different training scenarios when testing on the workshop

domain. For both the within-user and the cross-user scenario, we

investigate three different training setups: Training on workshop

scenes (same domain), training on desktop scenes (domain trans-

fer), and training on both industrial and desktop scenes. While

the pattern of results is mostly similar to Figure 4, we can make

several interesting observations. As expected, the same-domain

evaluation scenario (training on workshops) achieves better results
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Figure 6: Comparison of within- and cross-user with best performing EEG features and testing only on workshop scenes using
SVM. Error bars indicate 95% confidence interval.
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Figure 7: Comparison of within- and cross-user with best performing EEG features and testing only on desktop scenes. Error
bars indicate 95% confidence interval.

compared to the cross-domain scenario (training on desktops) in

both within-user as well as cross-user evaluations. However, also

the cross-domain scenario still reaches accuracies far above the

random baseline of 50%. The overall best accuracy in the within-

user scenario is achieved by our approach trained on workshops

with 75.4% accuracy. The best accuracy in the cross-user scenario

is also achieved by our approach trained on workshops with 81.9%

accuracy. Interestingly, training on both domains fails to clearly

improve even over training on the desktop domain.

Testing on desktop scenes. In Figure 7 we present the results when
testing on desktop scenes. Again, our method trained on the same

domain achieved the best performance both in the within-user

evaluation (79.2% accuracy) as well as in the cross-user evaluation

scenario (83.0% accuracy). In comparison to testing on workshop

scenes, the eye feature achieves much higher performance, e.g.

75.4% vs. 66.3% accuracy for same-domain training in the cross-user

scenario. Furthermore, while EEG (CSP15) features consistently out-

performed the eye feature when testing on workshop scenes, this is

not always the case when testing on desktop scenes. For example,

in the same-domain training scenario (train on desktop) and within-

user evaluation, EEG (CSP15) only reaches 66.9% accuracy whereas

the fixation duration features already achieves 75.1% accuracy. Nev-

ertheless, combining EEG (CSP15) features with the eye feature

always results in clear performance improvements, highlighting

the importance of a multi-modal approach.

6 DISCUSSION
In this section, we discuss the obtained results and focus on our

method’s performance and potential applications.

6.1 On Performance
Our approach to distinguish target- from non-target fixations based

on EEG and eye-tracking achieved an impressive accuracy of more

than 80% in many evaluation scenarios, clearly outperforming the

saccade-related potential approach from [8]. In line with previous

work [5, 35, 38] this underlines the effectiveness of the Common

Spatial Pattern (CSP) features for practical EEG classification tasks.

Our results also indicate that the specificity of the training data in

term of scene domain is crucial. We consistently reached higher
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performance when training on the same scene domain compared to

a different domain or even compared to extending the same-domain

training set with an additional domain. In contrast to many previous

works on EEG signal classification [30, 38], our EEG-based classi-

fiers consistently reach higher performance in the cross-user than

in the within-user evaluation scenarios. One in important factor is

of course training set size. While training sets in the within-user

scenario consist of ≈ 150-200 samples, in the cross-user scenario

they are much larger with ≈ 6200-6400 samples. An additional

explanation for this result could also be that EEG signatures of

target- versus non-target distinction are more person-independent

compared to some other classification targets, such as e.g. emo-

tions [36, 49].

6.2 Applications
The primary goal of our work is to contribute towards solving the

Midas touch problem. Methods that can reliably distinguish be-

tween target and non-target fixations have numerous applications.

For example, in the domain of human-computer interaction, these

methods allow new ways for users to interact with their devices.

Instead of using a mouse or touch pad in order to navigate through

a file system, users could simply fixate on specific folders and files.

Moreover, such methods can be used for efficient guidance sys-

tems: If the system is able to detect the target fixation of the user,

it can understand the user’s intentions and provide guidance for

the next step. For instance, if the user is searching for a particular

item on an e-commerce website, once the system detects that the

user has found the desired item, it can suggest other related items

or offer discounts on the purchase. This not only enhances the

user’s experience but also helps the business by increasing sales.

Another potential application for such systems would be in the

domain of forensic investigations. Cognitive research has invested

much effort into the development of methods that allow to identify

search targets that the user wants to conceal. For example, suspects

that are presented with a line-up might search the line-up for their

accomplices but keep it to themselves if they found any. Meth-

ods that allow another person to identify these concealed targets

are subsumed under the term concealed information test [4] and
typical approaches are based on users’ response times, eye move-

ments or electrophysiological responses. Thus, a system that is able

to integrate these measures to successfully detect even concealed

search targets would substantially improve the reliability of the

concealed-information test.

6.3 Limitations and Future Work
In our paper, we for the first time investigated the classification of

target versus non-target fixations in free visual search in realistic

scenes. As it is the first study of its kind, it naturally has a number

of limitations which need to be addressed in future work. While

we chose two highly application-relevant scene domains, namely

desktop scenes and cluttered workshops, a larger variety of scenes

will be needed in the future to more thoroughly understand scene

influences and to build models that generalize better across scenes.

Another limitation concerns the practicability of our approach.

Despite progress in the development of easy-to-use EEG systems

(dry electrodes, mobile amplifiers, etc.), these systems still lack the

signal-to-noise ratio that stationary systems with wet electrodes

provide. However, preparing EEG recordings with the latter set-ups

can be time-consuming and tedious, thus reducing user acceptance

and adoption.

While our approach based on the analysis of data from a single

fixation already reached a convincing performance, we suspect

that results can be improved by modelling the temporal aspects

of search behaviour adequately. While we did investigate a LSTM-

based approach receiving input from several previous fixations

we were not yet able to outperform the single-fixation approach

presented in this paper. As a result, we leave temporal modelling

of the fixation sequence for target- vs. non-target classification

to future work. Furthermore, exploring and comparing different

fusion methods like late and hybrid fusion and regression based

analysis could provide new possibility to enhance performance

[13, 45]. By experimenting with various strategies to combine data

from multiple sources or features, we may discover more effective

ways to classify fixations. Future research should focus on how

these methods impact performance and consider combining them

with temporal modeling to achieve better results.

Finally, our user study was screen-based. While this is perfectly

adequate for the desktop scene domain, the workshop scenes are

an approximation of a real-world situation. We took great care to

construct realistically looking environments to elicit natural search

behavior, but a domain gap to the real world will always be present

when using the computer screen as a display device. Future work

should investigate target- vs. non-target classification in closer-to-

real-life scenarios. A first step will be virtual reality interactions,

but ultimately a data recording in a physical environment will be

needed to evaluate the domain gap.

7 CONCLUSION
In this work, we presented the first study on the automatic classi-

fication of target- versus non-target fixations during free search

behavior in realistic visual scenes. We conducted a 36-participant

user study in which participants searched for target objects within

scenes from two application-relevant domains: cluttered workshops

and computer desktops. We presented a classification method built

on eye tracking and EEG features and showed clear performance

improvements over previous approaches that were developed in ar-

tificial and highly-controlled search scenarios. Our results highlight

the importance of a match between scene domains at training and

test time. This underlines the importance of taking scene into ac-

count when building systems to distinguish target- from non-target

fixations.
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