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A B S T R A C T

Anticancer peptides (ACPs) key properties including bioactivity, high efficacy, low toxicity, and lack of
drug resistance make them ideal candidates for cancer therapies. To deeply explore the potential of ACPs
and accelerate development of cancer therapies, although 53 Artificial Intelligence supported computational
predictors have been developed for ACPs and non ACPs classification but only one predictor has been developed
for ACPs functional types annotations. Moreover, these predictors extract amino acids distribution patterns to
transform peptides sequences into statistical vectors that are further fed to classifiers for discriminating peptides
sequences and annotating peptides functional classes. Overall, these predictors remain fail in extracting
diverse types of amino acids distribution patterns from peptide sequences. The paper in hand presents a
unique CARE encoder that transforms peptides sequences into statistical vectors by extracting 4 different
types of distribution patterns including correlation, distribution, composition, and transition. Across public
benchmark dataset, proposed encoder potential is explored under two different evaluation settings namely;
intrinsic and extrinsic. Extrinsic evaluation indicates that 12 different machine learning classifiers achieve
superior performance with the proposed encoder as compared to 55 existing encoders. Furthermore, an
intrinsic evaluation reveals that, unlike existing encoders, the proposed encoder generates more discriminative
clusters for ACPs and non-ACPs classes. Across 8 public benchmark ACPs and non-ACPs classification datasets,
proposed encoder and Adaboost classifier based CAPTURE predictor outperforms existing predictors with an
average accuracy, recall and MCC score of 1%, 4%, and 2% respectively. In generalizeability evaluation
case study, across 7 benchmark anti-microbial peptides classification datasets, CAPTURE surpasses existing
predictors by an average AU-ROC of 2%. CAPTURE predictive pipeline along with label powerset method
outperforms state-of-the-art ACPs functional types predictor by 5%, 5%, 5%, 6%, and 3% in terms of average
accuracy, subset accuracy, precision, recall, and F1 respectively. CAPTURE web application is available at
https://sds_genetic_analysis.opendfki.de/CAPTURE.
1. Introduction

From the period of 2000 to 2023, millions of people have died
from just seven different types of cancers [1] including colorectal
cancer, lung cancer, liver cancer, breast cancer, stomach cancer, skin
cancer, and prostate cancer.2 According to the World Health Orga-
nization (WHO) report, cancer is responsible for one out of every
six deaths in the ongoing year [2]. Cancer induces uncontrolled cell
growth and possesses the capability to swiftly spread to other parts
of the body [3,4]. To mitigate the rapid spread of cancer, numerous
drugs and therapies have been developed [3,4]. However, traditional
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treatments such as chemotherapy inadvertently target healthy cells
along with fast-growing cancer cells [5]. Moreover, few treatment
methods including radiation and surgery are painful and also cause
adverse side effects such as cardiac toxicity, myelosuppression, and
gastrointestinal damage [6]. Hence, there is an urgent demand for
the development of alternative anti-cancer therapies that demonstrate
enhanced effectiveness.

Anticancer peptides (ACPs) have opened new horizons for early
detection and treatment of cancer [1]. ACPs are 5-to-50 amino acids [1]
based molecules that target cancer cells through various mechanisms.
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data mining, AI training, and similar technologies.
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ACPs can disrupt cellular membranes of cancer cells [7], deliver thera-
peutic drugs across physiological barriers [8], and induce programmed
death of cancer cells [7]. ACPs prevent the growth of cancer cell by
inhibiting angiogenesis through which new blood vessels are formed to
supply key nutrients to cancer cells [7]. ACPs also have the ability to re-
verse Epithelial-Mesenchymal Transition process through which cancer
cells gain invasive and migratory properties [7]. ACPs also have the po-
tential to enhance body’s natural immune response against cancer cells
as they can block pro-inflammatory responses which assist in cancer
progression [9]. Some cyclic nature ACPs such as ADH-1, apicidin, and
chlamydocin have demonstrated potential therapeutic activity against
cancer [10]. To accelerate and expedite research for unlocking more
ACPs functionalities and therapeutic potential for cancer treatment, an
accurate classification of ACPs followed by the categorization of their
target function types is an active area of research [3,4,11].

Researchers have employed diverse kind of experimental
approaches to identify ACPs and their functional types [12,13]. These
approaches include phage display [14], high-throughput screening [13–
15], and mass spectrometric analysis [16]. However, the identifica-
tion of ACPs and their functional types through wet-lab experimental
approaches proves time consuming, labor intensive and costly. The
substantial investment of time as well as resources required for the
identification of ACPs along with their functional types in wet-lab
experimental approaches hinder the widespread research into discovery
of potential candidates for anti-cancer therapies and further unlocking
their other hidden potential.

Following the constraints of experimental methods and to enable
widespread identification of anticancer peptides (ACPs) along with the
annotation of their functional types, to date, 53 Artificial Intelligence
(AI) based predictors have been developed. The working paradigm
of these predictors can be divided into two different stages namely
sequence encoding and classification. First stage makes use of sequence
encoding methods that extract amino acids distributional information
from peptides sequences and transform them into statistical vectors. At
second stage, classifiers learn discriminative patterns from statistical
vectors of training sequences and use this learning to accurately detect
anti-cancer sequences during inference. The more informative and
discriminative statistical vectors are the better the classifiers perform.
Hence, even a simple machine learning classifier can achieve promising
predictive performance with discriminative statistical vectors [17].
Whereas, a sophisticated classifier is bound to lack predictive perfor-
mance on account of less discriminative statistical vectors of peptide
sequences.

A brief summary of existing 53 predictors in terms of encoding
methods and classifiers is given in Supplementary Table 1. A close
analysis of Supplementary Table-1 reveals that among 53 predictors,
only 11 predictors make use of standalone sequence encoding meth-
ods while 42 predictors reaped the benefits of multiple sequence en-
coding methods. Main motivation behind the utilization of multiple
sequence encoding method was to fed the classifiers with statistical
vectors having 4 different types of amino acids information namely
correlational, distribution, compositional, and transitional. However,
statistical vectors generated by the integration of multiple sequence
encoding methods contain some irrelevant and redundant features that
hamper the classifiers performance. To remove such features, in 16
different predictors, researchers have used 10 feature selection methods
of 3 different types (filter, wrapper, embedded). However, it is difficult
to design a generic predictor by integrating feature selection methods
in predictive pipeline.

At classification stage, among 53 predictors, 32 predictors have
utilized traditional machine learning classifiers and 21 predictors have
utilized CNN, RNN, LSTM and Dense-Net architectures based predic-
tors. Prime reason behind the pre-dominant utilization of traditional
classifiers is the availability of limited annotated data. While develop-
ing computational predictors, main focus of researchers was to generate
2

more discriminative statistical vectors of peptides sequences that can t
help the classifiers to learn discriminative patterns and accurately clas-
sify peptides into ACP and non-ACP classes. However, statistical vectors
of existing sequence encoders lack discriminative patterns which is
why even sophisticated classifiers fail to accurately discriminate ACPs
from non-ACPs, indicating a lot of room for the development of new
predictors. Furthermore, for functional types annotations, there exist
only one predictor [11]. Following the need of a robust and precise
computational predictor for ACPs classification and their functional
types annotation, contributions of this manuscript are manifold:

(I) It presents a powerful sequence encoder CARE that transforms
peptides sequences into statistical vectors by extracting amino acids
four different types of information including correlation, distribution,
composition, and transition, (II) It compares proposed encoder per-
formance with 55 existing encoders performance under two different
evaluation settings namely intrinsic and extrinsic. An intrinsic evalua-
tion objective is to determine which sequence encoder captures amino
acids discriminative distribution in ACPs and non-ACPs sequences and
generate highly non-overlapping clusters for both classes. Whereas, an
extrinsic evaluation objective is to assess and compare the predictive
performance of 12 different machine learning classifiers by feeding
them with statistical vectors generated through proposed and 55 ex-
isting sequence encoders (III) In order to demonstrate the predictive
power and generalizeability of proposed encoder and Adaboost classi-
fier based CAPTURE predictor, its performance is compared with most
recent 36 ACPs and Non-ACPs classification predictors (IV) It compares
proposed CARE encoder, Label Powerset, and AdaBoost Classifier based
Predictive Pipeline Performance with State-of-the-art ACPs functional
types Predictor (V) To speed up the process of discovering new ACPs
long with their functional types, a web application is developed (https:
/sds_genetic_analysis.opendfki.de/CAPTURE).

aterials and methods

This section provides a concise overview of the 3 different modules
f proposed predictor CAPTURE, graphical representation of which is
rovided in Fig. 1. In Fig. 1, first module describes benchmark ACPs
atasets used for experimentation, necessary details of which are given
n Section 1.4. Second module demonstrates proposed peptide sequence
ncoder, necessary details of which are facilitated in Section 1.1. Third
odule describes classifiers and evaluation measures, necessary details

f which are given in Sections 1.3 and 1.5 respectively.

.1. Proposed sequence encoder

Proposed sequence encoder Comprehensive Amino Acid Relations
xplorer (CARE) is an extension of Quasi Sequence Order (QSO) [18].
SO encoder transforms raw peptides sequences into statistical vectors
y capturing two different types of information namely amino acids
orrelation and distribution. A comprehensive set of discriminative
atterns that enable the classifier to more precisely discriminative anti-
ancer peptides from non anti-cancer peptides, cannot be obtained
y using only correlational and distributional information of amino
cids. To generate highly discriminative statistical vectors offering
omprehensive patterns that more often exist in anti-cancer peptides
equences or in non anti-cancer peptide sequences, we extend QSO en-
oder to extract 4 different types of information including correlational,
istributional, compositional and transitional.

Correlational information is captured on the basis of physico-
hemical properties based distance between amino acids. To compute
he distance between amino acids, we use two pre-computed matrices
n which values of four different physico-chemical properties including
ydrophilicity, hydrophobicity, side chain volume, and polarity are
veraged on the basis of Manhattan distance. Distributional information
s captured by utilizing 20 unique amino acids occurrence frequencies
long with sequence correlational information. Compositional informa-

ion is acquired by using 20 unique amino acids consecutive two or
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Fig. 1. Three fundamental modules of proposed anti-cancer peptide prediction pipeline, (a) Experimental datasets collection, (B) Feature representation using novel encoder CARE.
(C) Assessing the performance of Adaboost classifier under the hood of 10-fold cross validation and multiple independent test sets.
three times occurrence frequencies along with sequence correlational
information. Transitional information is captured by computing 20
amino acids number of transitions from one to another amino acid
along with sequence correlational information. Furthermore, to more
deeply extract all 4 types of information, we divide peptide sequences
into same length sub-sequences, extract all 4 types of information
from each sub-sequence, and then concatenate extracted information
to represent peptide sequences into statistical vectors.

To more precisely understand the working paradigm of proposed en-
coder, consider a generic sequence 𝑆 = 𝐴𝐴1, 𝐴𝐴2,… ....𝐴𝐴𝑛 where 𝐴𝐴𝑖
represents a particular amino acid from 20 unique amino acids. First
of all, to compute correlational information, proposed CARE encoder
generates sub-sequences of given sequence and represents each sub-
sequence in terms of bi-mers separated by different Lag values. Here,
number of sub-sequences and Lag values are two hyperparameters of
proposed encoder. We tweak number of sub-sequence value from 1 to 5.
3

Here sub-sequence value 1 means that proposed encoder takes complete
peptide sequence and extracts all 4 types of information. Whereas, sub-
sequence value 2 means that proposed encoder segregates the peptide
sequence into 2 equal length sub-sequences and extracts all 4 types
of information from both sequences separately. Sub-sequence value
3 means that proposed encoder divides the peptide sequence into 3
equal length sub-sequences and extracts all 4 types of information from
three sub-sequences separately. Similarly, all 4 types of information is
extracted from sub-sequences generated by sub-sequence value 4 and
5 respectively. As proposed encoder captures correlation information
at sub-sequence level, so it manages to capture importance of different
regions of peptide sequence.

With an aim to capture different level of details, we tweak the
Lag value from 1 to 5 for each sub-sequence value. For instance, for
sub-sequence value 1, tweaking the Lag value from 1 to 5 produces
five different chains of bi-mers, showing bi-mers at different distances
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within the sequence. This leads to produce five different sets of unique
bi-mers, shown in Eq. (1).

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐴𝐴1𝐴𝐴2, 𝐴𝐴2𝐴𝐴3, 𝐴𝐴3𝐴𝐴4,… ...𝐴𝐴𝐿−1𝐴𝐴𝐿 with Lag 1
𝐴𝐴1𝐴𝐴3, 𝐴𝐴2𝐴𝐴4, 𝐴𝐴3𝐴𝐴5,… ...𝐴𝐴𝐿−2𝐴𝐴𝐿 with Lag 2
𝐴𝐴1𝐴𝐴4, 𝐴𝐴2𝐴𝐴5, 𝐴𝐴3𝐴𝐴6,… ...𝐴𝐴𝐿−3𝐴𝐴𝐿 with Lag 3
𝐴𝐴1𝐴𝐴5, 𝐴𝐴2𝐴𝐴6, 𝐴𝐴3𝐴𝐴7,… ...𝐴𝐴𝐿−4𝐴𝐴𝐿 with Lag 4
𝐴𝐴1𝐴𝐴6, 𝐴𝐴2𝐴𝐴7, 𝐴𝐴3𝐴𝐴8,… ...𝐴𝐴𝐿−5𝐴𝐴𝐿 with Lag 5

(1)

Then for each set of bi-mers, coupling factor which aims to capture
the distance between two amino acids is computed for every bi-mer in
order to extract correlation information. Following Chou et al. [18], we
have used two pre-computed amino acid distance matrices (dimensions
→ 20 × 20 = 400) provided by Schneider et al. [19] and Grantham
et al. [20]. In these matrices, values of four different physico-chemical
properties including hydrophilicity, hydrophobicity, side chain volume,
and polarity are averaged on the basis of Manhattan distance. The
computation of coupling factor for every bi-mer_k based on two amino
acids 𝐴𝐴𝑘, 𝐴𝐴𝑗 using Schneider and Grantham’s amino acid distance
matrices can be mathematically expressed as:

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟[𝑏𝑖𝑚𝑒𝑟𝑘] = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥𝑖 (𝐴𝐴𝑘, 𝐴𝐴𝑗 )2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥𝑖 ∈ {𝑆𝑐ℎ𝑛𝑒𝑖𝑑𝑒𝑟, 𝐺𝑟𝑎𝑛𝑡ℎ𝑎𝑚}
(2)

Afterward, for each bi-mers sequence, bi-mers correlational values
are summed up and divided by the length of the sequence to get nor-
malized correlation information. As correlational values are acquired
from two different amino acid distance matrices, hence, five normal-
ized correlation values are obtained for five bi-mers sequences using
Schneider et al. [19] matrix and five normalized correlation values are
obtained using Grantham et al. [20] matrix using Eq. (3).

Normalized Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖][𝐿𝑎𝑔𝑘]

=
∑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ−1

𝑚=1 (𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟[𝑏𝑖𝑚𝑒𝑟]𝑘)
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ − 1

.
(3)

Here, 𝐿𝑎𝑔𝑘 denotes specific chain of bi-mers having certain se-
quence length. Afterward, five Schneider and five Grantham matrix
based floating point values are separately summed up to get two
different values using Eq. (4). In this way, we capture the overall
correlation of bi-mers at five distinct Lag values using two different
average values of 4 unique physico-chemical properties.

Overall Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖]

=
5
∑

𝑘=1
Normalized Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖][𝐿𝑎𝑔𝑘].

(4)

Afterward, these estimated normalized correlation values are opti-
mized by taking a weight factor of 0.25 using Eq. (5).

Optimized Normalized Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖][𝐿𝑎𝑔𝑘]

=
𝑤𝑒𝑖𝑔ℎ𝑡 × Normalized Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖][𝐿𝑎𝑔𝑘]

1 +𝑤𝑒𝑖𝑔ℎ𝑡 × Overall Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖]
.

(5)

We integrate correlational information with distributional infor-
mation of amino acids. To achieve this, in second step, we count
the occurrence frequency of every amino acid inside a sequence us-
ing Eq. (6) and normalized the resulting value with sequence overall
correlation values computed using Eq. (4).

Distribution[𝐴𝐴𝑗 ]

=
𝐴𝐴𝑗 occurrence frequency in sequence

𝑤𝑒𝑖𝑔ℎ𝑡 × Overall Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖] + 1
.

(6)

In third step, proposed CARE encoder captures compositional in-
formation by considering consecutive two times as well as three times
occurrence frequencies of amino acids within sequences using Eqs. (7)
and (8). To illustrate better, Fig. 1 describes the process of estimating
composition information of amino acids. More specifically, consecutive
two times occurrence frequency of amino acid A in a given hypothetical
4

a

sequence is 4 and consecutive three times occurrence frequency of
amino acid A is 1. Proposed CARE encoder incorporates composition
information of amino acids present in given sequences using a 40-
dimensional vector, where initial 20-dimensions denote consecutive
two times occurrence frequency and other 20-dimensions represent the
consecutive three times occurrence frequency of a distinct amino acid.

Composition[𝐴𝐴2
𝑗 ]

=
Consecutive Two Times 𝐴𝐴𝑗 occurrence

𝑤𝑒𝑖𝑔ℎ𝑡 × Overall Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖] + 1
.

(7)

Composition[𝐴𝐴3
𝑗 ]

=
Consecutive Three Times 𝐴𝐴𝑗 occurrence

𝑤𝑒𝑖𝑔ℎ𝑡 × Overall Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖] + 1
.

(8)

In fourth step, CARE encodes transition information by character-
izing the 20 unique amino acids shift from one to another amino acid
within sequences using Eqs. (9) and (10). To illustrate better, Fig. 1
describes the process of estimating transition information of a specific
amino acid 𝐴 with respect to 19 other amino acids. More specifically,
count of amino acid 𝐴 for the case where other 19 amino acids are
coming after this amino acid is shown by 1-0 transition. Whereas, count
of amino acid 𝐴 for the case where 19 distinct amino acids are coming
before this amino acid is shown by 0–1 transition.

Transition[!𝐴𝐴𝑗 ][𝐴𝐴𝑗 ]

= 0 − 1 Transition Count
𝑤𝑒𝑖𝑔ℎ𝑡 × Overall Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖] + 1

.
(9)

Transition[𝐴𝐴𝑗 ][!𝐴𝐴𝑗 ]

= 1 − 0 Transition Count
𝑤𝑒𝑖𝑔ℎ𝑡 × Overall Correlation[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖] + 1

.
(10)

Using Eqs. (9) and (10), proposed CARE encoder incorporates tran-
sition information of a amino acid present in given sequences using
a 40-dimensional vector. In this vector, 20-dimensions denote the 1-
0 transition information and other 20-dimensions represent the 0–1
transitions of a distinct amino acid.

In fifth step, all four different kinds of amino acid features are
concatenated, which can be mathematically expressed using Eq. (11).
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𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛[𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥𝑖][𝐿𝑎𝑔𝑘]⊕
Distribution[𝐴𝐴𝑗 ]⊕
Composition[𝐴𝐴2

𝑗 ]⊕
Composition[𝐴𝐴3

𝑗 ]⊕
Transition[!𝐴𝐴𝑗 ][𝐴𝐴𝑗 ]⊕
Transition[𝐴𝐴𝑗 ][!𝐴𝐴𝑗 ]

(11)

With an aim to extract more comprehensive information about
mino acids distribution, composition, and transition, we divide pep-
ide sequences into same length sub-sequences denoted by 𝑙. To better
llustrate, let us consider an imaginary peptide sequence 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3,
, 𝐴𝐴𝑛 and 𝑙 = 3. As shown in Fig. 1, given peptide sequence will be

egregated into 3 equal length sub-sequences, where statistical vectors
ased on distribution, composition, and transition information will be
enerated for each sub-sequence separately. In this way, instead of get-
ing 20-dimensional distributional information vector, 40-dimensional
omposition, and 40-dimensional transition vectors, 20 × 𝑙 dimensional

distributional information vector and 40 × 𝑙 compositional and transi-
tional information vectors will be generated. These statistical vectors
are concatenated to generate final statistical vectors. These statistical
vectors will have the dimension of [(20 × 𝑙) × 5 + 𝑙𝑎𝑔] × 𝑛, where 20
enotes unique amino acids, ‘𝑙’ represents number of sub-sequences, 5
enotes number of ways through which different features are captured,

nd 𝑛 represents the number of physico-chemical properties.
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1.2. An overview of existing encoders

According to our best of knowledge, 55 unique protein sequence
encoders have been developed that transform amino acid sequences
into statistical vectors. These sequence encoders can be categorized into
14 different types based on the information they capture, such as amino
acids distribution, gap based amino acid distribution, amino acids
groups distribution, autocorrelation, co-variance, local–global context-
aware, sequence order, binary, physico-chemical properties, traditional
networks, pre-trained deep neural network, optimize physico-chemical
properties, substitution matrix, and Fourier transformation based en-
coders.

Amino acid distribution encoders such as Kmer [21,22], DPC [21,
22], TPC [21,22], ANF [23], EAAC [24,25], EGAAC, DDE [22], are
type of protein sequence encoders that capture the frequency or pro-
portion of each individual or group of amino acids called k-mers in a
protein sequence. This type of encoder reflects the overall composition
of a single amino acid or k-mers in a protein sequence, providing
information about the relative abundance or scarcity of specific amino
acids or k-mers. Gap based amino acid distribution encoders such as
CKSAPP [26,27], Adaptive skip Dipeptide composition (ASDC) [28],
and CKSAAGP [25,29] segregate the protein sequences into bi-mers
with distinct gap values and capture the distribution of unique bi-mers.
The gap value determines the distance between the amino acids that are
considered as a pair, impacting the local context-aware representation
of the protein sequence. Different gap values can provide different
insights into the arrangement and distribution of amino acids pairs in
the protein sequence. A smaller gap value focuses on capturing short-
range interactions, while a larger gap value allows the encoders to
capture long-range associations within the sequence.

Amino acid group distribution encoders such as CTDC [30–34],
CTDD [30–34], CTDT [30–34], GAAC [25,29], GDPC [25,29], GTPC
[25,29], KSCTriad [25,29], CTriad [35] categorize the amino acids
into different groups based on specific physico-chemical properties such
as hydrophobicity, charge, or polarity. These encoders capture the
distribution of amino acid groups in the protein sequence, providing
insight into the overall physicochemical properties of the sequence.
Autocorrelation encoders such as Geary [36], Moran [37,38], NM-
Broto [39] capture the relatedness between amino acids or k-mers
in a protein sequence. These encoders compute the correlation co-
efficients between different amino acids or k-mers based on their
physico-chemical properties such as hydrophobicity or charge. These
encoders provide information on the pairwise interactions and de-
pendencies of amino acids within the protein sequence, allowing for
the identification of specific functional motifs. Covariance encoders
such as auto-covariance [40–42], auto-crosscovariance [40–42], bi-
autocovariance [40–42] measure the joint variability of two amino
acids or k-mers in a protein sequence.

Covariance encoders provide information about how two amino
acids or k-mers vary together. If the covariance is positive, it means that
when one amino acid or k-mer tends to be above its mean, the other
amino acid or k-mer is also likely to be above its mean. On the contrary,
a negative covariance indicates that when one amino acid or k-mer is
above its mean, the other one is likely to be below its mean. Unlike
correlation encoders, which measure the strength and direction of a
relationship between two amino acids or k-mers, covariance encoders
do not indicate the strength of the relationship, only the direction of
the relationship between the two amino acids or k-mers.

Local-Global context aware protein encoders such as WSRC-local
[17], WDRC-global [17], WSRC-local–global [17], consider composi-
tion and transition of amino acids, proving key information about dis-
tribution as well as changes of amino acids in different segments of pro-
tein sequences. Sequence order category encoders such as PAAC [43],
APAAC [44], QSOrder [45–47], SOCNumber [45–47], consider the
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distribution as well as order or arrangement of amino acids in a protein
sequence on the basis of different distances. Different distances encom-
pass different levels of local or global interactions between specifically
arranged amino acids. Binary encoders [28,48–53] working paradigm
typically involve converting the amino acid sequences into statistical
vectors having 0s and 1s.

Physico-chemical properties and network based encoders such as
AAIndex [54] and AESNN3 [48,49] respectively substitute amino acids
with pre-computed numerical values. Optimized physico-chemical
properties based encoder such as ZScale [55] utilizes physicochemi-
cal properties to characterize amino acids. It makes use of different
strategies like principal component analysis (PCA), Partial least squares
(PLS), and Multiple Linear regression to eliminate less informative
properties and retain only highly informative properties of amino
acids. Traditional network based encoders such as complex network,
enhanced complex-network use network-based approaches to charac-
terize protein sequences by representing them as graphs or networks,
where nodes represent amino acids and edges represent interactions or
relationships between them.

The functional paradigm of Fourier transformation-based sequence
encoders, such as MappingClass-eiip-fourier and MappingClass-integer-
fourier, involves the utilization of Electron-Ion Interaction Potential
values or integer values to replace individual amino acids. By applying
Fourier transformation, these encoders aim to enhance the encoding of
hidden patterns and trends, including frequent components, in protein
sequences. On the other hand, substitution matrix-based encoders like
BLOSUM62 [56] generate matrices that assign scores to amino acid
substitutions based on their observed frequencies in related protein
sequences. This scoring system provides a measure of the similarity
between different amino acids. Higher scores are assigned to more
similar amino acid substitutions, indicating a greater likelihood of their
occurrence in related proteins.

1.3. Machine learning classifiers

At classification stage, we utilize traditional machine learning clas-
sifiers to design two different predictive pipelines namely binary classi-
fication and multi-label classification. In binary classification predictive
pipeline for ACPs and non-ACPs sequences classification, we assess
the performance impact of proposed sequence encoder CARE using 12
most widely used machine learning classifiers including Naive Bayes
(NB) [57], Gaussian Process (GP) [58], Extra-Tree (ET) [59], Random
Forest (RF) [59], Bagging (BG) classifier [59], Decision-Tree (DT) [59],
Adaboost (AB) [59], Gradient Boost (GB) [59], Extreme Gradient Boost
(XGB) [59], Logistic Regression (LR) [60], Support Vector Machine
(SVM) [61], and K-Nearest Neighbour (KNN) [62].

On the other hand, in multi-label classification predictive pipeline,
for ACPs functional types annotation, we utilize proposed encoder
along with label powerset method and Adaboost classifier. As binary
classifiers cannot handle multi-label peptide sequences, hence Label
Powerset [63] serves as a data transformation approach that treats
each unique combination of functional types as a separate class. Dis-
criminative statistical vectors of raw sequences are generated through
CARE encoder, multi-label sequences are transformed to unique class
sequences through label powerset, and functional types annotation is
performed using transformed data and AdaBoost classifier.

1.4. Benchmark datasets

Selection of comprehensive datasets is an important task for the
development and evaluation of a computational predictor. Supplemen-
tary Table-2 illustrates the details of unique datasets across which
existing predictors are evaluated. Overall 40 different datasets have
been developed, and several datasets are quite similar as they vary in
terms of only few sequences. A brief description about these datasets
is given in Supplementary file. Overall, datasets belong to two differ-
ent categories namely extracted and derived. In extracted category,
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Fig. 2. Statistics of 15 benchmark binary ACPs and AMPs datasets where green color denotes positive sequences and orange color denotes negative sequences.
datasets are developed by acquiring sequences from public databases,
while in derived category, datasets are developed by combining ex-
isting datasets. A thorough analysis of Supplementary Table-2 indi-
cates that from 2020-to-2023, 27 ACPs predictors are evaluated across
different combinations of following datasets: ACP-Mixed-80 [11,64],
𝐴𝐶𝑃 2.0_𝑀𝑎𝑖𝑛, 𝐴𝐶𝑃 2.0_𝐴𝑙𝑡𝑒𝑟𝑎𝑛𝑡𝑒 [65], Set-1 and Set-2 [66], ENNACT
core [67], ACP539 [68], and ACP344 [69]. From these 8 datasets,
5 datasets including ACP-Mixed-80 [11,64], 𝐴𝐶𝑃 2.0_𝑀𝑎𝑖𝑛, 𝐴𝐶𝑃 2.0_
𝐴𝑙𝑡𝑒𝑟𝑎𝑛𝑡𝑒 [65], Set-1 and Set-2 [66] belong to derived datasets category.
These 5 derived datasets have comprehensively solved the issues of
short length sequences, repeated sequences, and annotation conflicts
among different datasets. The remaining 3 datasets including ENNACT
core [67], ACP539 [68], and ACP344 [69] belong to a category where
datasets are developed by acquiring sequences from databases. These
datasets are reliable and authoritative as they do not contain redundant
sequences and annotation conflicts.

In the same time span, 17 predictors are evaluated across dif-
ferent combinations of following datasets: ACP240, ACP740 [70],
Tyagi et al. [71] Main and Alternate, Vijayakumar [72] ACPMain and
ACPIndependent. ACP240 and ACP740 datasets contain annotation
conflicts [64], other datasets such as Tyagi et al. [71] Main and
Alternate datasets, Vijayakumar [72] ACPMain and ACPIndependent
are already well accommodated by 5 aforementioned derived datasets,
so they do not need to be used separately. Considering, experimentation
criteria of most recent studies [11], we have used 8 highly reliable
and most widely used benchmark ACPs datasets to comprehensively
evaluate the potential of proposed CAPTURE predictor.

The prime reason of using these 8 benchmark datasets is manifold.
First, it covers almost all the datasets used in the literature so far
and used by 27 predictors since 2020. Second, as mixed datasets such
as 𝐴𝐶𝑃 2.0_𝑀𝑎𝑖𝑛, 𝐴𝐶𝑃 2.0_𝐴𝑙𝑡𝑒𝑟𝑎𝑛𝑡𝑒 [65], ACP-Mixed-80 [11,64], Set-
1 and Set-2 [66] were prepared by the comprehensive processing of
more than 20 different datasets, hence, these datasets contain decent
number of correct peptide sequences. Third, these datasets have correct
length (less than 50 amino acids) peptide sequences and contain no
sequences of very huge lengths that may become outliers for machine
learning classifier. Fourth, these datasets have no redundancy at all
which is crucial to avoid homology bias as well high similarity between
sequences. Fifth, these datasets have been developed using a balanced
CD-HIT similarity threshold which assist to prevent over-estimation of
6

classifier performance. Statistics of all 8 ACPs datasets are described in
Fig. 2-B.

Apart from type specific anti-cancer peptides classification datasets,
we have used 7 different anti-microbial peptides (AMPs) datasets in-
cluding PBP, QSP, CPP, ABP, AAP, AVP, and AIP [73–79] to assess the
generalizeability of proposed CAPTURE predictor for identifying anti-
cancer charateristics from generic AMPs sequences. Statistics of all 7
AMPs datasets are described in Fig. 2-A.

To facilitate the development of anti-cancer functional types pre-
dictors, there exist only one public benchmark dataset developed by
Deng et al. [11]. Authors prepared this dataset by acquiring anti cancers
peptides sequences and their associated functional types annotations
from CancerPPD database [80]. The label space of this dataset involves
7 functional types including blood, breast, colon, cervix, lung, skin,
and prostate. Statistics and sequence-to-functional type distribution of
ACP-Functional dataset are shown in Fig. 3.

1.5. Evaluation metrics

Following the evaluation criterion of existing ACPs classification
predictors [11,65,68], proposed CAPTURE predictor performance is
assessed using 7 distinct evaluation metrics namely Accuracy (ACC),
Precision (PRE), Recall (REC) or Sensitivity (SEN), F1-score, Specificity
(SPE), Matthews correlation coefficient (MCC), and area under the
receiver operating characteristic (AU-ROC). These evaluation metrics
are discussed extensively in literature [11,65,68], so here we only
provide their mathematical expressions.

𝑓 (𝑥) =
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Accuracy (ACC) = (𝑇𝑃 + 𝑇𝑁 )∕(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 )
Precision (PRE) = 𝑇𝑃 ∕(𝑇𝑃 + 𝐹𝑃 )
Recall or Sensitivity (SEN) = 𝑇𝑃 ∕(𝑇𝑃 + 𝐹𝑁 )
Specificity (SPE) = 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 )

F1-Score = 2 × 𝑃𝑅𝐸 × 𝑅𝐸𝐶
𝑃𝑅𝐸 + 𝑅𝐸𝐶

MCC = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁∕𝑄
Q =

√

(𝑇𝑃 + 𝐹𝑁 )(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁 )

(12)

Here, 𝑇𝑁 and 𝑇𝑃 denote the number of accurately predicted non-ACPs
and ACPs respectively. On the other hand, 𝐹𝑁 and 𝐹𝑃 denote the
number of in-correctly predicted non-ACPs and ACPs respectively. It is
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Fig. 3. (a) Descriptive statistic of benchmark acpfunctional dataset with division of sequences in terms of label cardinality (b) Count of sequences in each functional type (c)
Dense bi-functional type confusion matrix (d) Dense tri-functional type confusion matrix.
a
f

important to mention that the higher the values of these 7 evaluation
metrics are, the greater the classifier performance is.

ACPs functional types annotation is a multi-label classification
task. ACPs sequences may belong to multiple functional types at the
same time and multi-label classification predictor cannot be evalu-
ated through binary evaluation measures. Following the evaluation
criterion of existing ACPs functional types annotation predictor [11],
we use both example based and label based evaluation metrics. The
example based evaluation metrics such as accuracy, subset accuracy,
precision, F1-score, recall, and Hamming loss are first estimated for
every sequence and later averaged to get the final performance value.
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(13)
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⎩

|𝐷|
Here, |𝐷| denotes the number of sequences present in the dataset
nd L denotes number of functional types. 𝑌𝑖 denotes set of predicted
unctional types for sequence 𝑖, and 𝑍𝑖 denotes true set of functional

types for sequence 𝑖. The mathematical operator ∪ and ∩ denote the
union and intersection of two sets respectively. The 𝛥 symbol represents
the symmetric difference among predicted and actual functional types.
If 𝑌𝑖 and 𝑍𝑖 are same then [Y_i == Z_i] = 1, otherwise 0.

On the other hand, label based evaluation metrics are estimated for
every functional type instead of every sequence. It mainly includes two
different methods in order to aggregate the values of the functional
types: macro-average, and micro-average. While the macro-average
approach computes each evaluation metric independently for every
functional type and later perform the average to obtain the final per-
formance value. Micro-average approach first estimates true negatives,
true positives, false negatives, and false positives for all functional types
and later computes all evaluation metrics.
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(14)
Here, evalMetric includes accuracy, recall, precision, and F1-score.
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2. Experimental setup

Proposed novel sequence encoder CARE is implemented using
Python programming language. The existing 55 encoders implemen-
tations are taken from iLearnPlus [81]. All 12 distinct classifiers im-
plementations are taken from Scikit-Learn [82] library. Proposed CAP-
TURE predictor web server is implemented using Django framework
[83]. We have optimized different hyperparameters of encoders and
12 different classifiers. To find optimal values of different hyperpa-
rameters, we have splitted the datasets into training and test sets.
Using training data, we search the optimal values of hyperparameters
from range of values through Grid search. Using optimal value of
hyperparameters, we compute the results on test sets of all datasets. To
ensure the reproduceability of the results, proposed CARE encoder and
AdaBoost classifier initial and optimal hyperparameters values across
all 16 datasets are provided in Supplementary Table-3.

3. Results

This section performs an extensive performance comparison of pro-
posed CARE encoder with 55 existing encoders using 12 different
machine learning classifiers. It also assess the potential of proposed and
top performing existing encoders for generating highly non-overlapping
clusters for distinct classes. It performs a detailed performance compar-
ison of proposed CAPTURE predictor with 37 existing ACPs and non-
ACPs classification predictors across 8 benchmark datasets. It evaluates
the generalizeability of proposed CAPTURE predictor for identifying
anti-cancer characteristics from generic AMPs sequences, and compares
it with 3 existing predictors. It evaluates and compares the perfor-
mance potential of proposed CAPTURE predictor for functional types
annotation classification with state-of-the-art predictor.

3.1. Extrinsic performance comparison of the proposed peptide sequence
encoder with existing sequence encoders

In order to truly illustrate the effectiveness of proposed CARE
encoder, we compare the performance of proposed CARE encoder with
55 existing encoders of 14 different categories using benchmark ACP-
Mixed-80 dataset and 12 different machine learning classifiers. From
55 existing encoders, 7 encoders belong to amino acids distribution,
4 belong to gap based amino acid distribution, 8 belong to amino
acids groups distribution, 3 belong to correlation, 3 belong to co-
variance, 3 belong to local–global context-aware, 5 belong to sequence
order, 15 belong to binary, 1 belong to physico-chemical properties, 1
belong to optimized physico-chemical properties, 3 belong to network,
1 belong to substitution matrix, and 2 belong to Fourier transformation
based paradigms. Results of proposed and all existing encoders in
terms of different evaluation metrics across 12 different classifiers on
benchmark ACP-Mixed-80 dataset are given in Supplementary Table-4.

A thorough performance analysis of Supplementary Table-4 indi-
cates that from amino acids distribution, gap based amino acid distri-
bution, and amino acids groups distribution encoders, Kmer, Adaptive
skip Dipeptide composition, and CTDC achieve better performance
respectively. From correlation and co-variance, NMBroto and auto-
covariance mark top performance, whereas, from local–global context-
aware, sequence order, and binary encoders, WSRC-local–global, QSOr-
der, OPF-10 bit achieve top performance. From physico-chemical prop-
erties based encoders, AAINDEX produces better performance than
ZScale. From network, and Fourier based encoders, AESNN3, complex-
network, and MappingClass-integer-fourier achieve best performance
respectively. To assist the readers, from 55 encoders of 14 different
categories, here in Fig. 4, we have picked top performing encoders
from each category and compared their accuracy values with the
performance of proposed CARE encoder.

It is evident in Fig. 4 from all top performing existing encoders,
QSOrder encoder achieves the top average accuracy of 75% due to its
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aptitude to capture sequential and distributional information. Whereas,
from 14 top performing existing encoders, co-variance based encoder
auto-covariance marks lowest performance across most classifiers. Co-
variance based encoders only capture linear associations and neglect
non-linear relationships like spatial arrangement of the amino acids,
that are important for comprehending how relative positions of spe-
cific amino acids largely contribute to the peptide function. Second
worst performance is achieved by Fourier-transformation based en-
coder MappingClass-integer-fourier. Fourier-transformation based en-
coders fail to capture the distinctive patterns and abrupt changes
in amino acids within peptide sequences. These encoders make the
assumption that peptide sequences adhere to a consistent pattern. How-
ever, this assumption overlooks the complexity and variability present
in peptide sequences.

Apart from these two categories, other types of existing sequence
encoders also have some disadvantages. Amino acid distribution and
gap-based amino acid distribution encoders, do not effectively cap-
ture the sequential arrangement of amino acids. Additionally, group-
based amino acid distribution encoders tend to oversimplify peptide
sequences due to their shorter lengths, potentially missing important
functional characteristics of peptides. Moreover, these encoders heav-
ily depend on the criteria used for grouping amino acids, making
it challenging to find a general criteria that works well for differ-
ent datasets. Physico-chemical property-based encoders like AAIndex
and network-based encoders like AESNN3 use pre-computed values,
which limits their ability to capture comprehensive relationships and
interactions between amino acids within peptide sequences. Tradi-
tional network-based encoders, such as complex network, also fail
to capture comprehensive hierarchical and non-linear relationships.
Sequence order-based encoders like QSOrder struggles to capture long-
range interactions between amino acids. On the other hand, contextual
information-aware encoders focus on frequent local and global features
but lack to capture discriminative local and global features. In addi-
tion, these encoders have a deficiency in capturing the comprehensive
correlation and distribution information of amino acids.

Binary encoders only consider the presence or absence of individual
amino acids or groups within peptide sequences, and thus fail to
capture the diverse properties of individual amino acids. Optimized
physico-chemical properties and substitution matrix-based encoders
such as ZScale and BLOSUM62 struggle to accurately capture the
diversity present in peptide sequences.

In a nutshell, existing sequence encoders lack to capture compre-
hensive discriminative amino acids relations that can distinguish ACPs
sequences from and non-ACPs sequences. By precisely capturing 4
different types of amino acids relations such as correlation, distribution,
composition, and transition, proposed CARE encoder outperforms all
55 encoders of 14 different categories across most machine learning
classifiers in terms of most evaluation metrics. Overall, CARE encoder
achieves best performance with Gradient Boosting classifier and it
outperforms top performing existing predictor QSOrder by an average
accuracy margin of 3%. A similar performance increment trend for
proposed CARE encoder in terms of other evaluation metrics is evident
in Supplementary Table-4.

3.2. Intrinsic performance comparison of the proposed and existing se-
quence encoders

The main objective of intrinsic performance comparison between
proposed CARE encoder and 14 existing top-performing encoders is
to determine which encoder can create highly disjoint clusters for
ACPs and non-ACPs classes. Precisely, the more qualitative statistical
representations are, the more non-overlapping clusters will be gener-
ated. To visualize the statistical representations of both the proposed
and existing encoders, we utilize the t-distributed stochastic neighbor
embedding (TSNE) method to reduce the dimensions of all encoders to
two, as depicted in Fig. 5.
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Fig. 4. Accuracy comparison of proposed care encoder and top performing existing encoders of 14 different categories across 12 different classifiers. Here encoders are shown on
X-axis and classifiers are shown on Y-axis.

Fig. 5. Intrinsic performance comparison of proposed CARE encoder with 14 top performing existing encoders of different categories using benchmark ACP-Mixed-80 dataset.
Peptide sequences of ACP class are represented with orange circles and peptide sequences of Non-ACP class are represented with blue circles.
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Fig. 5 clearly demonstrates that all 14 existing top-performing en-
coders exhibit significant overlap in the clusters produced for ACPs
and non-ACPs classes. None of these encoders manage to extract and
encode comprehensive discriminative information about the distribu-
tion of amino acids for both classes which leads to the generation of
low-quality statistical representations and overlapping clusters. Since
the quality of the statistical representation greatly affects the perfor-
mance of classifiers, these representations cannot be utilized to achieve
great predictive performance. Whereas, graphical analysis of statistical
representation produced by the proposed CARE encoder indicates a
clear difference because it formulates highly disjoint clusters for ACPs
and non-ACPs classes. The high-quality clusters demonstrate the CARE
encoder’s ability to capture comprehensive discriminative information
about the distribution of amino acids in both classes, which proves
effective in distinguishing ACPs class sequences from non-ACPs class
sequences.

3.3. Proposed and existing predictors performance comparison for ACPs
and non-ACPs classification

We compare the performance of proposed CAPTURE predictor with
37 existing predictors across 8 benchmark ACPs and non-ACPs classifi-
cation datasets. Performance values of proposed and existing predictors
across 8 datasets in terms of 7 different evaluation measures are pro-
vided in Supplementary Excel File. To illustrate better, only accuracy,
MCC, and F1 score of proposed predictor and existing predictors are
shown in Table 1.

A first look on Table 1 indicates that proposed CAPTURE is the first
predictor that is comprehensively evaluated on 8 different datasets.
Whereas, 37 existing predictors are evaluated only on few bench-
mark datasets. Among 8 datasets, 3 datasets namely ACP-Mixed-80,
ACP2.0_Main, ACP2.0_Alternate are balanced as they have same num-
ber of ACPs and non-ACPs sequences. Across these datasets, 22 existing
predictors have been evaluated and 3 predictors manage to produce
decent performances including ACPred-LAF [64], iACP-FSCM [94],
and ACPred-BMF [104] respectively. Proposed CAPTURE predictor
outperforms previous best ACPred-LAF [64] predictor on ACP-Mixed-
80 dataset by a significant recall margin of 12%, precision and MCC
margin of 6%, AU-ROC and accuracy margin of 3%. Similarly, on
ACP2.0_Main dataset, CAPTURE predictor outperforms iACP-FSCM
[94] by recall margin of 14%. On ACP2.0_Alternate dataset, proposed
CAPTURE predictor outperforms ACPred-BMF [104] predictor by ac-
curacy and MCC margin of 1%. Unlike CAPTURE predictor, there is
a significant gap of 18% in the sensitivity and specificity figures of
iACP-FSCM predictor [94] that shows its biaseness towards type II error
because it lacks to accurately predict non-ACP sequences on balanced
dataset. On 3 balanced datasets, proposed predictor consistently shows
best performance due to the comprehensive diverse feature extraction
paradigm of underlay novel CARE encoder.

On the other hand, among 8 datasets, 5 datasets namely ENNACT,
ACP539, ACP344, SET-1, and SET-2 belong to unbalanced datasets
category because in these datasets non-ACPs sequences are higher than
ACPs sequences. Researchers have used different strategies such as
under-sampling, over-sampling, ensemble learning, and cost-sensitive
learning to prioritize correct predictions for the minority class. On 5
imbalanced datasets, proposed CAPTURE predictor outperforms exist-
ing predictors by a decent margin without using any aforementioned
strategy. On unbalanced ACP344 dataset where non-ACP to ACP class
difference is 68 sequences, 9 existing predictors have been evaluated
and proposed CAPTURE predictor outperforms previous best Kabir
et al. predictor [111] by an accuracy margin of 4% and recall margin
of 2%. On ACP539 dataset where non-ACP to ACP class difference is
161 sequences, 5 predictors have been evaluated and CL-ACP [68]
predictor achieves good performance. Proposed CAPTURE predictor
outperforms state-of-the-art CL-ACP [68] predictor by the recall of
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16%, precision of 10%, specificity and MCC of 5%, and accuracy of
3%. On SET-1 dataset having non-ACP to ACP class difference of 6
sequences and SET-2 dataset having ACP to non-ACP class difference
of 55 sequences, 10 predictors have been evaluated. On both datasets,
proposed CAPTURE predictor outshines previous best Yao et al. [66]
predictor by an accuracy and F1 score of 1%. Also, it achieves a recall
increment of 2% on SET-1 and 8% on SET-2 dataset. Furthermore,
on ENNAACT dataset where non-ACP to ACP sequence difference is
very huge (n = 4639), 6 predictors have been evaluated and LGBM-
ACP [109] achieves top performance. Proposed CAPTURE predictor
outperforms LGBM-ACP predictor by specificity of 2%, accuracy, recall,
and AU-ROC of 1%

Instead of using any additional strategy to address the challenges
posted by imbalance datasets, proposed CAPTURE predictor only fo-
cuses on learning and using effective statistical representation of pep-
tides sequences. Despite the short lengths of peptides sequences, novel
CARE encoder does not solely rely on features that are prevalent in the
majority class, but also consider features specific to the minority class.
This is why even the increase in negative to positive class sequence
difference does not hamper the top performance of proposed CAPTURE
predictor at all across different datasets.

3.3.1. Proposed predictor generalizeability evaluation for identifying anti-
microbial peptides sequences

With an aim to evaluate the generalizeability of ACPs predictors,
few researchers have explored the potential of their ACPs predictors
for classifying Anti-microbial peptides (AMPs) sequences [68,112,113].
Unlike ACPs that are special class of AMPs and only target cancer cells,
AMPs have the potential to treat different microbial infections caused
by bacteria, fungi, and viruses [68,112,113]. Following generalizeabil-
ity evaluation paradigm of existing studies [68,112,113], we compare
the generalizeability potential of proposed predictor with 3 existing
AMPs classification predictors across 7 most widely used benchmark
datasets.

Fig. 6 illustrates the AU-ROC values of proposed and 3 existing
predictors across 7 benchmark datasets. A bird’s eye view of Fig. 6
reveals that, among 3 existing predictors, Yi et al. predictor [70]
remains least performer on 3 datasets (AAP, AVP, PBP) and manages
to imitate performance of Wu et al. [90] predictor on 2 datasets
(ABP, CCP). Across 2 datasets namely AIP and QSP, Wu et al. [90]
predictor remains least performer, however, across all 7 datasets, Wang
et al. [68] predictor remains the top performer.

On the other hand, proposed predictor outperforms existing best
performing Wang et al. [68] predictor by 1% on 3 datasets (AAP,AIP,
QSP), and manages to imitate the top performance of Wang et al. [68]
predictor on CCP dataset. Furthermore, it achieves the performance
increment of 6% on AVP, 5% on PBP, and 3% on ABP dataset.

Prime reason behind the supreme performance of proposed pre-
dictor is incorporation of powerful sequence encoding method CARE
in its predictive pipeline. Wang et al. [68] predictor first processes
AMPs sequences using amino acid one-hot encoding and structure
information. They concatenated the features extracted by self-attention
mechanism, convolutional, and long-short term neural network from
processed AMPs sequences. While, one-hot encoding fails to capture the
order of amino acids because it treats all amino acids independently and
neglects the dependency of amino acids on the position and distribution
of neighboring amino acids. Multi-head self-attention mechanism only
manages to extract few important amino acids patterns in peptides
sequences due to attention collapse issue [114] that forces different
heads to extract very similar attentive features. On the other hand
proposed CARE encoder transforms peptides sequences into statistical
vectors by extracting 4 different kinds of amino acid features including
correlation, distribution, composition, and transition. CARE encoder
paradigm of introducing feature diversity leads to more informative
and discriminative statistical representations that largely help machine

learning classifier to precisely discriminate AMPs from non-AMPs.
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Table 1
Performance comparison of proposed predictor CAPTURE with existing predictors on 8 different benchmark binary ACPs datasets.

Predictor Benchmark datasets

ACP_Main ACP_Alternate ENNAACT_main ACP_539 ACP Mixed 80 ACP_344 Set 1 Set 2

Acc MCC Acc MCC Acc MCC Acc MCC Acc MCC Acc MCC F1 Acc F1 Acc F1

Tyagi et al.
(2013) [71]

– – – – – – – – – – – – – 53.3 67.4 87.9 86.9

iACP (2016)
[84]

55.1 0.11 77.6 0.55 0.95 0.76 – – – – – – – – – – –

MLACP (2017)
[85]

– – – – 0.94 0.72 – – – – – – – – – – –

AntiCP (2017)
[86]

50.6 0.07 90 0.8 – – – – – – – – – – – – –

ACPred-FL
(2018) [28]

44.8 0.12 43.8 0.15 – – – – – – – – – – – – –

SAP (2018) [87] – – – – – – – – – – 0.92 0.83 0.89 – – – –
ACPred (2019)
[88]

53.5 0.09 85.3 0.71 0.94 0.65 – – – – – – – 54.9 66.0 88.5 88.9

PEPred-Suite
(2019) [89]

53.5 0.08 57.5 0.16 – – – – – – – – – – – –

ACP-DL (2019)
[70]

71.4 0.43 – – – – 0.72 0.41 – – – – – – – –

PTPD (2019)
[90]

– – – – – – 0.75 0.43 – – – – – – – –

ACPred-Fuse
(2020) [91]

68.9 0.38 78.9 0.6 – – – – – – – – – – – – –

AMPfun (2020)
[92]

– – – – – – – – – – – – – 68.7 69.9 77.3 74.6

DeepACP (2020)
[93]

– – – – – – – – – – – – – 58.0 68.7 90.7 90.7

ACP-LDF (2020)
[64]

– – – – – – – – – – 0.92 0.84 0.92 – – – –

iACP-FSCM
(2021) [94]

82.5 0.64 88.9 0.77 – – – – – – – – – – – –

ACP-MHCNN
(2021) [95]

68.4 0.37 – – – – – – – – – – – 57.1 68.9 91.6 91.6

AntiCP 2.0
(2021) [65]

72.3 0.45 – – 0.91 0.56 0.82 0.6 – – – – – 70.2 67.1 91.6 91.9

iACP-DRLF
(2021) [96]

74.3 0.49 0.93 0.86 – – 0.83 0.61 – – – – – – – – –

ENNAACT
(2021) [67]

– – – – 0.97 0.9 – – – – – – – – – –

iACP-FSCM
(2021) [94]

– – – – – – 0.84 0.66 – – – – – – – – –

ACPred-LAF
(2021) [64]

– – – – – – – – 0.81 0.63 – – – – – – –

PreTP-EL (2021)
[97]

– – – – – – – – 0.58 0.17 – – – – – – –

dbAMP2.0
(2022) [98]

– – – – – – – – – – – – – 67.4 71.7 49.7 54.2

iACP-GE (2022)
[99]

– – – – – – – – – – – – – 75.9 76.5 89.6 89.8

StackACPred
(2022) [100]

– – – – – – – – – – – – – 73.0 72.1 93 93.1

PreTP-Stack
(2022) [101]

– – – – – – – – 0.49 0.02 – – – – – – –

ACPCheck
(2022) [102]

78.0 56.0 93.0 86.0 – – – – – – – – – – – – –

ME-ACP (2022)
[103]

79.0 58.0 93.5 87.0 – – – – – – – – – – – – –

ACPred-BMF
(2022) [104]

81.0 62.0 93.6 87.1 – – – – – – – – – – – – –

AI4ACP (2022)
[105]

0.72 0.44 0.89 0.79 – – – 0.73 0.48 – – – – – – –

ACP-OPE (2023)
[106]

79.0 – – – – – – – – – – – – – – – –

iACP-RF (2023)
[107]

75.9 0.52 93.1 0.86 – – – – – – – – – – – – –

TriNet (2023)
[108]

76.6 0.53 – – – – – – – – – – – – – – –

LGBM-ACp
(2023) [109]

– – – – 0.97 0.87 – – – – – – – – – – –

(continued on next page)
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Table 1 (continued).
ACP-GRDF
(2023) [66]

– – – – – – – – – – – – – 77.1 77.5 94.1 94.2

ACP-MLC (2023)
[11]

– – – – – – – – 0.79 0.57 – – – – – – –

ACP-Kernel-SRC
(2023) [110]

– – – – – – – – – – 0.93 0.85 0.94 – – – –

Proposed
CAPTURE
Predictor

76.7 0.54 94.1 0.88 0.98 0.87 0.87 0.71 0.84 0.69 0.93 0.86 0.93 78.4 78.0 95.2 95.2
Fig. 6. Comparison of generalizeability potential of proposed predictor CAPTURE with 3 existing predictors in terms of AUROC across 7 AMPs datasets.
Fig. 7. Five-fold performance comparison of proposed predictor CAPTURE with 4 different classifiers of existing predictor such as Binary Relevance (BR), Classifier Chain (CC),
Convolutional Neural Network (CNN), and Algorithm Adaptation (MLKNN) in terms of 11 evaluation metrics.
Fig. 8. Independent test based performance comparison of proposed predictor CAPTURE with 4 different classifiers of existing predictor such as Binary Relevance (BR), Classifier
Chain (CC), Convolutional Neural Network (CNN), and Algorithm Adaptation (MLKNN) in terms of 11 evaluation metrics.
3.4. Proposed and existing predictors performance comparison for ACPs
functional types classification

State-of-the-art ACPs functional types classification predictor [11]
explored the potential of two data transformation approaches namely
binary relevance and classifier chains to transform the multi-label data
into binary classification data and trained a separate machine learning
classifier for binary classification data. Additionally they explored the
potential of algorithm adaptation approach MLKNN and convolutional
neural network for accurate classification of ACPs functional types. To
illustrate the potential of proposed CAPTURE predictor for accurate
prediction of ACPs functional types by precisely capturing functional
types dependencies. We perform 5-fold performance comparison of
12
proposed CAPTURE predictor, 3 baseline approaches [11], top per-
forming binary relevance and tree classifier based approach called
ACP-MLC [11] on a benchmark dataset in Fig. 7.

It can be seen Fig. 7 that proposed CAPTURE predictor outshines
all 4 approaches [11] across almost all evaluation metrics. It achieves
an accuracy increment of 5%, subset accuracy rise of 9%, micro and
macro precision and recall rise of 5%, macro F1 rise of 2%, precision,
F1, and micro F1 rise of 1%.

Similarly, on independent test, analysis of performance figures
shown in Fig. 8 indicates that, previous performance figures of pro-
posed CAPTURE predictor jump to even more promising values. Specif-
ically, proposed predictor CAPTRUE achieves 10% increment in preci-
sion, 6% rise in accuracy and recall, 5% increment in F1 and macro
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Fig. 9. Accuracy confusion matrices produced by proposed CAPTURE predictor using 10-fold cross validation [A] and independent test set [B].
F1, 4% rise in macro recall, 3% increment in micro recall, 2% rise in
macro precision and micro F1, 1% increment in subset accuracy and
micro precision. The significant performance rise achieved by proposed
predictor CAPTURE on 5-fold and independent test set is due to the
ability of novel encoder CARE to most effectively handle heterogeneity
of sequences, imbalance distribution of functional types, and their
correlations. Whereas existing data transformation approaches such
as binary relevance and classifier chains disregard potential depen-
dencies and correlations between functional types by treating each
functional type independently. Also, classifier chains is sensitive the
order of functional types and struggle to generalize well on new ACPs
sequences. Likewise existing algorithm adaptation approach MLKNN is
sensitive to imbalance distribution of functional types, hence it shows
biaseness towards dominant functional types. CNN lacks to capture key
long range dependencies of amino acids present in ACPs sequences
and requires a large and balanced training data to achieve decent
performance for multi-label prediction.

3.5. Proposed predictor in-depth performance analysis for ACPs functional
types classification

In order to truly evaluate the effectiveness of proposed CAPTURE
predictor for multi-label classification of ACPs in relevant functional
types, we analyze the accuracy confusion matrices (Fig. 9) produced
under the hood of two different settings: one-vs-rest and independent
test set.

A critical analysis of confusion matrices (Fig. 9A) produced by
proposed CAPTURE predictor under the hood of 10-fold cross valida-
tion indicates that decent number of peptide sequences are accurately
classified into their corresponding 7 different functional types. For
three functional types including Lung (LG), Breast (BT), and Prostate
(PT), only 5 or less than 5 peptide sequences are miss-classified. For two
functional types including Skin (SN) and Colon (CN), less than 10 pep-
tides sequences are miss-classified. Furthermore, despite having least
only 55 peptide sequences for Blood (BD)functional type, CAPTURE
still manages to accurately identify BD functional type for 30 peptide
sequences due to comprehensive discriminative features extracted by
proposed CARE encoder. For Cervix functional type, CAPTURE has only
miss-classified 11 peptide sequences. Overall, more than 100 peptide
sequences belonging to CN and BT, more than 75 peptide sequences
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belonging to SN, PS, and CX, and more than 90 peptide sequences
belonging to LG functional types are correctly predicted by CAPTURE.

A similar performance trend is shown by proposed CAPTURE predic-
tor on test set (Fig. 9B) where every functional type has only 12 or less
than 12 peptide sequences. CAPTURE manages to identify 6 functional
types for most peptide sequences and only miss-classify 1 or 2 peptide
sequences. Whereas, all 8 peptide sequences belonging to Prostrate (PS)
functional type are accurately classified mainly due to the powerful
statistical representation generated by proposed CARE encoder.

Furthermore, in order to assess up to what degree proposed CAP-
TURE predictor manages to correctly predict distinct combination of
functional types on account of distinct functional type cardinality in
benchmark ACPFunctional dataset. We analyze sequence-to-functional
type distribution as well as correctly identified functional types out
of all functional types highlighted in vertical bar chart and respective
confusion matrices shown in Fig. 10.

A critical analysis of Fig. 10[A–B] produced using 10-fold cross
validation indicates that from 52 uni-functional type sequences, 37 are
correctly predicted by CAPTURE. From 32 bi-functional type sequences,
25 are correctly predicted by CAPTURE. From 29 tri-functional type
sequences, 21 are correctly predicted by CAPTURE. Unlike typical
multi-label classification approaches whose performance drop with the
increase of label cardinality, from 65 hexa-functional type sequences,
61 sequences are correctly predicted by CAPTURE due to the supremely
effective statistical representations produced proposed CARE encoder.
Although Tetra-functional types and Penta-functional types have only 6
and 4 peptide sequences respectively. However, once again unlike exist-
ing traditional multi-label classification approaches whose performance
plunge to lowest figures due to limited number of sequences. Proposed
CAPTURE predictor still manages to accurately predict all four and five
functional types for almost all corresponding peptide sequences. One
peptide sequence that has all 7 functional types is miss-classified by
CAPTURE as 1 sequence is not sufficient to learn complex underlay
distribution of hepta-functional types based sequences.

A similar performance trend is shown by proposed CAPTURE pre-
dictor on test set. Analysis of Fig. 10[C–D] indicates that almost all
uni, bi, penta, hexa functional type sequences are correctly predicted
by CAPTURE. A decent number of tri-functional type sequences are
correctly predicted whereas tetra-functional types have no peptide
sequence in test set.
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Fig. 10. Multi-label performance values of proposed CAPTURE predictor produced using 10-fold cross validation and independent test set corresponding to unique
sequence-to-functional types distribution.
4. Limitation

Section 1 describes two main modules of ACPs classification
pipeline: sequence representation or sequence transformation into sta-
tistical feature space and classification. The primary emphasis of the
current study is to transform ACPs sequences into statistical feature
space by extracting diverse types of amino acids distribution patterns.
Then, it utilizes traditional machine learning classifiers at classification
stage to identify ACPs. Although proposed sequence encoding method
along with Adaboost classifier manages to produce state-of-the-art per-
formance but this study does not reap the combine potential of multiple
classifiers by designing a meta predictor. Despite the promising perfor-
mance of recent protein representation learning methods [115,116] and
deep learning architectures for diverse proteomics sequence analysis
tasks like protein function prediction [117,118]. It neither explores the
aptitude of recent protein representation learning methods [115,116]
nor the potential of proposed sequence encoder with deep learning
architectures [117,118].

Moreover, it is briefly described in Section 1 that ACPs functional
types annotation is a multi-label classification task. This study performs
functional types annotations by first transforming ACPs sequences into
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statistical vectors, then transforming multi-label task into binary clas-
sification task and finally utilizing a machine learning classifier for
prediction. Along with proposed encoder, it does not explore the po-
tential of machine learning and deep learning algorithms [119] that
are competent to deal multi-label data directly.

Furthermore, proposed CAPTURE predictor web application may
not make correct predictions for cyclic class peptides because proposed
predictor is trained on public benchmark datasets that do not contain
sequences of cyclic class peptides. The application can only categorize
peptides sequences into ACPs and non-ACPs classes and can make
functional annotations to ACPs sequences. It is not capable to predict
ACPs special characteristics like bio-activity and toxicity [10,120–123].

5. Conclusion

ACPs ability to block the growth, migration, and invasion of cancer
cells through multiple mechanisms make ACPs promising candidates
for the development of highly effective cancer treatment. Distinguish-
ing ACPs from non-ACPs and determining the functional types of ACPs
are important to gain a deeper understanding of the biological role
of ACPs and their potential for cancer therapies. This paper presents
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a unique sequence encoding method CARE that has the competency
to extract 4 different types of information (correlational, distribu-
tional, compositional and transitional) for amino acids present in raw
peptides sequences. Across ACPs classification benchmark datasets, a
comprehensive experimentation reveals that, unlike existing sequence
encoding methods, proposed encoder significantly enhances the perfor-
mance of various machine learning classifiers. Moreover, an intrinsic
analysis proves that proposed encoder extracts more useful patterns
of amino acids in comparison to existing sequence encoding meth-
ods. Furthermore, proposed encoder along with AdaBoost classifier
named as CAPTURE predictor, outperforms existing ACPs and non
ACPs classification predictors across 8 public benchmark datasets. A
case study based on AMPs classification proves the generalizability of
CAPTURE predictor and its potential to use for other types of peptides
classification. On the other hand, for ACPs functional types annotations,
in comparison to existing predictors, proposed predictor superior per-
formance makes it ideal predictor for the exploration of biological roles
of ACPs and their use cases in cancer therapies. A compelling future line
of current work would be to design more accurate ACPs classification
pipeline by utilizing proposed sequence encoding method and deep
learning classifiers. Deep learning classifiers may contain standalone
architectures including Convolutional Neural Network (CNN), Long
short term memory network (LSTM,), Gated Recurrent Unit (GRU)
or Hybrid architectures comprising of different networks. Moreover,
for ACPs functional annotations, rather than transforming multi-label
data into binary label data, the proposed encoder can be utilized with
machine or deep learning predictors that can directly deal with multi-
label data. Moreover, proposed CAPTURE predictor web application
functional scope can be enhanced by training predictor on large dataset
which also contain diverse types of peptides sequences such as cyclic
peptides that are not present in current benchmark datasets.
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