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Abstract— In this work, we propose a new four-degree-
of-freedom (4-DOF) manipulator design involving belt trans-
missions and direct drives at the proximal end of the ma-
nipulator. This results into a backlash free, low-inertia arm
enabling fast movements. Additionally, the belt routing inside
the arm distributes actuator torques beneficially to the joints
and allows the use of identical motors under dissimilar joint
torque requirements. While the kinematics of the arm and the
separation of actuation and joint space are discussed in detail,
we also show beneficial properties for dynamic movements
of the manipulator. To obtain optimal motion trajectories, an
iterative Linear-Quadratic Regulator (iLQR) was implemented
and is compared against a traditional trajectory creation in
joint- and actuation space. Furthermore, a stiffness model of
the belts in joint- and actuation-space is given to assess a modal
analysis in the early design phase.

I. INTRODUCTION

The kinematic performance of a robotic arm is mainly
influenced by its geometry and overall topology. This per-
formance issue is often addressed by gaining insight to the
serial arrangements of links and joints. With a demand on
faster moving robots and higher requirements on safety,
e.g. human-robot interaction, the inertial properties obtain
a very important role alongside. Whereas some weight
improvements can be gained by structural optimization of
manipulators, a significant improvement has been achieved
by employing robots as parallel linkages in the past, allowing
actuators to be placed more advantageously e.g. at the base of
the robot [1]. This led to impressive improvements in terms
of stiffness and speed with the DELTA robot being maybe
the most prominent example [2]. Parallel robot topologies
underly more kinematic constraints and by this transfer
actuator movements non-linearly into task-space, what often
reduces their dexterity and work space size considerably. In
that sense, tendon-driven1, serial robots can be seen as a
combination of serial and parallel machines, possessing an
outer serial structure with a kinematically coupled actuation
underneath. While a reduction or amplification of actuator-
to-joint movements is generally achieved, its magnitude
remains configuration independent and therefore acts as a
gear train. Tendon-driven manipulators however share with
parallel robots the property of distinct joint- and actuator-
space, as the motors are not collocated in the joints (see
Fig. 1). This division must be addressed during analysis,
design and control and can bring considerable advantages
for actuation, like e.g. presented in [3].
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Fig. 1: Serial manipulator driven by belts that are inside the
support structure of the arm. The belt routing results into a
design with preferable mass distribution. Belt transmission
allows four identical motors to be used. Courtesy gripper:
Othmerding Maschinenbau GmbH & Co. KG

In this work, we introduce a novel robotic arm that is
developed for fruit harvesting tasks which necessitates repet-
itive fast picking movements and high agility. In the current
design state, the overall weight amounts to 5.3 kg, of which
only 2.6 kg is accelerated mass for an additional payload
capacity of 1 kg. This lightweight design is achieved by
hollow link structures composed of a sintered plastic frame
covered by carbon-fibre reinforced plastic sheets. These
hollow structures also accommodate the belt transmissions.
The arm has four active joints and is connected to a platform
through another linear actuator in the harvesting scenario,
making it a 5-DOF system. Via belt routing, all arm joints
are driven from the base - see Fig. 2a. The manipulator’s
wrist is designed from a bevel differential gear and also ob-
tains motion input from forward-running belts, allowing for
combined pitch and roll movement. This design allows for
the use of four identical motors instead of specifically sized
drives per joint. By detailing the arms internal kinematics, we
will show that not only the placement of actuators in the base
is advantageous, but also a preferable torque distribution is
induced. In order to have a mechanically transparent system,
direct drives are used for actuation, where comparatively low
reduction ratios can be realized in the belt transmissions
directly. Envisaging dynamic control of the arm, optimal
trajectories are created with an iterative Linear-Quadratic
Regulator (iLQR) and a joint space stiffness model is also
presented, revealing expected frequency modes for control.



II. STATE-OF-THE-ART

Belts have long been used to transmit rotational power
and appeared in the factories of the first industrial revolution
before they were gradually replaced by electric machines.
Robots, on the other hand, may underly the opposite evo-
lution. Whereas traditional serial manipulators are mostly
equipped with geared electric drives in their joints, some
developments have also been made in the direction of tendon-
driven systems. One of the early works can be accounted
to Salisbury and Jacobsen and their colleagues [4], [5],
[6], adressing the issue of lightweight and stiff structures.
Torque and motion transmission via cables has been shown
effective for legged robots [7]. Similarly, the systems LIMS1
and LIMS2 were designed with the paradigm of low inertia
and high stiffness, where the latter is mainly achieved by
specific block and tackle mechanisms in the joints [8],
[9]. In contrast to other tendon-driven systems, a kinematic
coupling between actuation and joint-space is partly avoided
by an elaborated mechanism in the elbow joints. More joint
flexibility was introduced on purpose in BioRob [10] involv-
ing stiffness and damping models to account for dynamic
controls of the arm. The kinematic coupling in this system
is relatively simple, only affecting two subsequent joints. A
higher coupling was used in [11] and also [12] what devel-
oped into a 10-m long manipulator with a payload capacity
of 10 kg [13]. Amongst the load distribution in the tendons,
this was achieved by adding a weight compensation tendon
making it a redundantly actuated systems. These works are
rooted in [14] which has similarities to the aforementioned
designs ([4], [5]). Around this time, Tsai and Lee showed
that kinematic analysis of tendon-driven mechanisms are
analogical to that of epicyclic gear trains for which graph-
based methods have been an effective tool [15]. Moreover,
it has been shown that spatial systems can be represented by
planar schematics, a fact we also used for the investigation
of our arm. Due to the gear-like property of tendon-driven
arms, the constant-linear map between joint- and actuation-
space has been labeled as structure matrix. In our work, we
also stick to this terminology. The formalization of kinematic
analysis fueled developments in the direction of mechanism
synthesis [16], [17], [18] and has a close relationship to
research in general gear trains - see e.g [19].

In the last years much research has been conducted on soft
robots and tendons are amongst others one favoured means
of actuation for them. However, we limit this discussion to
robots with a distinct joint space.

III. KINEMATICS

The arm possesses a simple outer topology composed of
three successive revolute joints with parallel joint axes and an
additional roll joint near the end-effector. Whereas all joints
are belt-driven, the last two joints of this serial arrangement
are executed as a bevel differential gear, making the last
joint axis orthogonal to the others (see Fig. 2a). The three
link lengths can be seen in Fig. 1, showing the axes and the
associated joint angles θ ∈ R4

For brevity, we omit a presentation of the forward and
inverse kinematics of the manipulator. The first can be com-
puted by the product of exponentials (see e.g. [20, p. 137])
and the latter is computed by planar kinematics (see e.g.
[21, p. 109]) in addition to one spatial rotation (last DOF
of chain). Rather, the kinematic relation between motors and
joints is established hereafter.

A. Actuation and Joint Space Maps - The Structure Matrix

The transfer between joint angles θ and the motor angles
µ is expressed by the matrix S with

µ = Sθ. (1)

The transpose of S is called structure matrix, of which we
will give a detailed derivation based on the graph describing
the system. For this purpose, the depicted belt routing of
Fig. 2a is brought into a schematic overview that incorporates
all belts, gear wheels and rigid connections in the system.
Such a scheme can be seen in Fig. 2b, indicating the four
actuated gear wheels in green and arm joints as red. Dashed
lines show belt connections and solid square boxes a rigid
attachment of a gear onto a link. The schematics of Fig. 2b

(a) Cross-section view of the manipulator with four identical motors
(green) on the left. Belts are indicated blue and their routing is
carried out by hollow shafts in the joints (red). The pitch and roll
movement of the wrist (right) is gained from a bevel gear, driven
by two belts.

(b) Planar schematics derived from Fig. 2a with driven gear wheels
in green and manipulator joints in red. The bevel gear arrangement
between axis V and VI (i.e. joint three and four) is shown by the
tapered wheel connections of wheel 11, 12 and 14

Fig. 2: Topological depiction of the arm that is used for the
subsequent kinematic analysis

serves the graph representation of Fig. 3 by depicting gear
wheel bearings and belts of the schematics by solid and
dashed edges respectively. Links and wheels (bodies) are
represented by numbered vertices - with ground being 0.
Note that axis labels are also transferred and active wheels
and joints are colored alike. The bevel gear connection of
wheels 11 and 12 onto 14 is depicted as double dashed line
in the graph. From here, we can make use of the fundamental
circuits as detailed e.g. in [22] and allow to build the set of
equations stemming from the spanning tree of the system. A



fundamental circuit (a, b)(c), where vertices (bodies) a and
b are connected by a dashed edge (belt) and both supported
by the vertex (body) c results into the kinematic equation

γc
a = Na

b γ
c
b . (2)

It describes relative angles γc
a from body a to body c, such

that γa
c = −γc

a using the gear ratio Na
b between body b and

a, such that N b
a = 1/Na

b , by the relative angle γc
b . The gear

ratio is a result of the effective wheel radi or teeth number:
Na

b = ra/rb = na/nb. Moreover, a coaxial relation (a, b, c)
- when bodies a, b and c share the same axis of rotation - is
given by

γb
a = γc

a − γc
b . (3)

From the graph of Fig. 3 the fundamental circuits can be
directly obtained, exploiting the possibility to leap over
vertices with identical edge connection. As an example the
fundamental circuit (2, 7)(6) skips vertex 0 via edges II. In

Fig. 3: Graph that represents the kinematic topology of the
arm, where axes of input angles are depicted green and
manipulator joints red. Due to closed-loop coupling in the
edges 8, 11, 12, 13 and 14, the graph looses its spanning
tree structure at that point.

order to solve the angle relationships for the entire graph,
loop-closure equations have to be additionally formulated,
as the vertices 13 and 14 do not belong to the spanning tree.
Regarding bevel gear kinematics, they present simple linear
equations and are directly listed in Tab. I.

TABLE I: Kinematically relevant relations

fundamental circuits coaxial relations loop-closure equ.
(1, 5)(0)

θ813 = 1/2(θ811 + θ812)

θ1314 = 1/2(θ811 − θ812)

(2, 7)(6) (0, 2, 6)
(3, 9)(6) (0, 3, 6)
(4, 10)(6) (0, 4, 6)
(5, 6)(0) (8, 9, 6)
(7, 8)(6) (8, 9, 10)
(9, 11)(8) (8, 10, 6)
(10, 12)(8)

The matrix S is obtained from the set of circuit- and
coaxial-equations given in Tab. I using (2) and (3), aug-
mented by the loop-closure equations of Tab. I. Isolating
θ = [γ6

0 γ8
6 γ13

8 γ14
13 ]

T from µ = [γ1
0 γ2

0 γ3
0 γ4

0 ]
T

in this set of linear equations reveals

ST =


1/g1 1 1 1
0 1/g2 1/g3 1/g4
0 0 1/g5 1/g6
0 0 1/g5 −1/g6

 (4)

where the vector of positive gear ratios writes

g =


g1
g2
g3
g4
g5
g6

 =


N5

1N
6
5

N7
2N

8
7

N9
3

N10
4

N9
3N

11
9

N10
4 N12

10

 (5)

and incorporates all transmission ratios of the manipulator.
Due to the symmetry of the transmissions in our design, we
further have g3 = g4 and g5 = g6, what leaves (4) with a
simpler structure. This is the case when the forward running
belts on both sides of the y−z-plane have the same reduction
ratios.

Looking at the time derivative of (1) one gets

µ̇ = Sθ̇ + Ṡθ︸︷︷︸
=0

.

The virtual power from torque τ and speed θ̇ in joint space
must be equal to the power in the motors, giving

τTS−1µ̇ = ζT µ̇

with ζ and µ̇ being motor torque and speed respectively and
what can only hold true (no zeros in µ̇ assumed) if

τ = ST ζ. (6)

The pseudotriangular structure of S can leverage advan-
tageous torque distributions from actuation- to joint-space
when the motor torques act in the same rotation direction.
However, there can occur serious energy losses due to a
possible antagonism of the drives like described in [23] and
has to be taken into account for the creation of optimal
trajectories. This will be further investigated in Sec. VI-B

IV. STIFFNESS MODELS

In the present design, distances of almost half a meter
are bridged with slender belts and by this, they introduce
an inherent compliance to the manipulator. The compliant
behaviour of the system may become critical for dynamics
based control. A stiffness description in joint space coor-
dinates is thus indispensable for this design. In general,
stiffness in any space is defined as the first-order-term of the
Taylor expansion of force f with respect to displacement s,
such that

K =
df

ds
. (7)



Differentiating (6) and making use of (7) in actuation- and
joint-space yields

dτ = (dST )ζ︸ ︷︷ ︸
=0

+ST (dζ)

Kθdθ = STKµdµ

Kθ = STKµS (8)

The matrix Kµ is diagonal, since any force changes at the
motors are only function of the related motor displacements
itself and depend on the serially connected belts. Its compu-
tation is part of the subsequent section. In contrast, Kθ is a
symmetric matrix, due to the congruence transformation that
the structure matrix puts onto Kµ in (8).

A. Stiffness in Actuation Space

To obtain stiffness values in actuation space, we make
use of a lumped-parameter model that assumes a rotational
stiffness over the motor coordinates, which stems from the
serially connected belts over different gearwheel radi, as
depicted in Fig. 4. For the derivation of our model, the
following assumptions are made:

• Small deflections of the involved parts, such that (7)
holds

• Structural stiffness of the manipulator links and gear-
wheels is not included and thus considered rigid.

• Tensioned belt lengths (blue segments of Fig. 4) are
assumed to be constant for one stage and independent
of the direction of rotation, neglecting e.g. one sided
tensioner pulleys.

In Fig. 4 a gear stage with n = 3 subsequent belts is
shown, where we will give a stiffness expression for general
n belts. By convention, the first belt is on the motor side
of the system and the last belt n on the actuated joint side,
where this joint is considered fixed for our discussion. An

Fig. 4: Schematics of a three-stage belt transmission, with
driven wheel (green), actuated joint (red) and belts under
tension (blue). The serially connected belts give rise to the
lumped-element stiffness of Equ. (14) around motor angle
µj

expression for the equivalent longitudinal stiffness of the
serially connected belts k̄j at every motor is derived. It is
the apparent stiffness seen at the first motor driven belt
by considering the serial connection of all subsequent belts
in the chain. Taking the radius of the motor driven wheel
r0,j , the (rotational) actuation space stiffness is obtained
from a virtual work relation by kj = r20,j k̄j . The equivalent
longitudinal belt stiffness at motor j can be computed by

considering its force-displacement relationship, such that

1

k̄j
=

ds1,j
dF1,j

(9)

where dF1,j is the differential force acting on the first belt
(left in Fig. 4) and ds1,j the total displacement under that
force. We further have

ds1,j =

n∑
i=1

ds′i,j (10)

ds′i,j = dsi,j

i−1∏
l=1

◁rl,j

▷rl,j
(11)

where it is considered that the total displacement in the first
stage results from all subsequent belt displacements ds′i,j
that undergo changes due to serially combined gear stages -
accounted by (11). The symbols ▷rl,j and ◁rl,j denote the
input and output radi of every gear stage like shown in Fig. 4.
Note that the running index i for the gear transmissions in
(11) changes to l due to the nested sequence inside the series
and we define the product to return one if: i− 1 < l. Lastly,
stiffness and force change in every belt stage are given by

ki,j =
dFi,j

dsi,j
(12)

dFi,j = dF1,j

i−1∏
l=1

◁rl,j

▷rl,j
(13)

Combining (9) - (13) finally yields

1

k̄j
=

n∑
i=1

[
1

ki,j

i−1∏
l=1

(◁rl,j

▷rl,j

)2
]

. (14)

In order to get an expression for Kµ, the following steps
can be pursued

1) Determine all active belt connections for every motor
j from the graph (Fig. 3) by passing from motor
joint (green vertices) over all directly connected dashed
edges until no further single dashed edge can be
passed.

2) Geometrically determine the active belt lengths Li,j

(blue segments in Fig. 4) and compute their longitudi-
nal stiffness values ki,j = κi,j/Li,j . Here κi,j is the
length specific stiffness of the belt that can usually be
obtained from the manufacturer.

3) Compute the equivalent translational stiffness k̄j
from (14) and bring it into a rotational stiffness
for every joint by kj = r20,j k̄j . From there the
diagonal actuation-space stiffness matrix Kµ =
diag(k1, . . . , kn) can be constructed.

V. PHYSICAL PARAMETERS

We quickly give a rather incomplete overview about our
design specifications to leave the reader with an idea of the
overall layout, before assessing its performance. Specifically
designed motors with hollow shaft and a maximum torque
of ζmax

j = 6Nm are used for actuation. The link lengths
are l1 = 0.4m, l2 = 0.4 and l3 = 0.1 with masses of



1.63 kg, 0.78 kg and 0.18 kg respectively in the first design
stage. Without listing explicitly all gear ratios of (5), we
instead give the expression for the structure matrix directly,
that writes

ST
build =


6 1 1 1
0 4.5 1 1
0 0 1 1
0 0 1 −1


what results into the joint-space stiffness

Kbuild
θ =


17623 1402 213 0
1402 5566 213 0
213 213 213 0
0 0 0 213

Nm/rad

showing very high stiffness, notably in the first two joints.
Here, belts with relative stiffness κ of 196.75 N/mm and
335.5 N/mm are installed. Due to the internal belt coupling,
joint-space stiffness is considerably higher compared e.g.
to [8], while the arm inertia of 0.65 kgm2 measured towards
its base is comparable to that design [24]. The high stiffness
is also rendered in Sec. VI. It was found that for other arm
topologies and different gear ratios, joint-space stiffness can
forfeit considerably, owing to the quadratic dependency on
gear ratio and the kinematic back-coupling.

VI. PERFORMANCE ANALYSIS

For the dynamic simulation of the manipulator, we made
use of the RigidBodyDynamics.jl package, being part
of [25] and able to compute gradients of the equation of mo-
tion by automatic differentiation. Also, it provides an URDF
parser, which we used for a simple incorporation of the dy-
namic parameters on joint-space level. These functionalities
allow to quickly implement and test e.g. indirect methods in
optimal control. 2 Since introduced belt compliance on joint
level might require further efforts in stabilizing the arm, its
frequency response behaviour is investigated first.

A. Frequency Modes of the Manipulator

Equation (8) allows to compute the joint-space stiffness
of the arm, in which also its mass matrix is naturally ex-
pressed when using minimal coordinates. The eigenmodes of
a flexible system can be computed by solving the generalized
eigenvalue problem

(Kθ − ω2M)v = 0

where M is the configuration dependent mass matrix, ω
the eigenfrequency in radians per second and v the vec-
tor that describes the eigenmode of the system [26]. The
manipulators joint-space eigenfrequencies are depicted in
Fig. 5 for several random poses and a payload mass of
1 kg. It shows how much each joint “contributes” to every
sampled mode, indicating that joint 4 is decoupled in mass
and stiffness matrix from the other DOFs. It thus exhibits a
single eigenfrequency of 73.4 Hz (see upper plot value) that

Fig. 5: Random sampling of eigenfrequencies for
θi ∈ (−π, π) with 5000 samples. “Involvement” is the
magnitude of the related eigenvector value relative to its
unit length at a sampled pose to show which joints are
mostly affected.

directly depends on the end-effector and payload mass dis-
tribution though. Joint 3 shows overall the highest oscillation
involvement, suggesting that the related belt stiffness could
be adapted for the present design. Eigenmodes below 15 Hz
do not have to be expected, but some configurations with
frequencies below 20 Hz exist. Whereas Fig. 5 asserts that a
wide range of frequencies is present in the current design, it
can be assumed that high frequency content will be absorbed
by damping of the system.

B. Control Trajectories in Joint- and Actuation-Space

Since the aim of the manipulator is to perform fast picking
tasks, we employed an optimal control approach to create
trajectories that can assess its dynamic capabilities. To this
end, we pursued an iLQR-implementation detailed in [27]
solving the discretized trajectory optimization problem split
into N − 1 intervalls:

min
x1:N ,u0:N−1

ℓf (xN ) +

N−1∑
k=0

ℓ(xk,uk)

subject to xk+1 = f(xk,uk)
(15)

with ℓf and ℓ as the user defined, quadratic cost functions
for final and intermediate state respectively. States xk and
controls uk at time instant k are input to the discrete system
dynamics f(xk,uk), which were obtained by applying an
explicit fourth-order Runge-Kutta interpolation on the con-
tinuous dynamics. As the rotational inertia of the end-effector
possesses very low values, the ill-conditioning of the arms
mass-matrix showed challenges in the computation of the
algorithm. Therefore, this rotational inertia was increased by
one order of magnitude. Since motion trajectories without
rotation in the last joint are considered in the following, this
poses no problem. Relative motion of parts, like in gears
and belts is neglected in the dynamics simulation, assuming
only a four-rigid-body model. Furthermore, a regularization
strategy has been applied to the Hessian of the interpolated

2The code to the paper can be found under:
github.com/dfki-ric-underactuated-lab/BeltManipulator.



Fig. 6: Motor power distributions in joint- and actuation-space for the trajectories under consideration that are depicted as
snap-shots on the right. Shaded areas indicate negative power and thus energy losses that are accumulatively given as bar
plots together with the maximum occurring motor powers.

action-value function in the backward pass of the iLQR to
improve stability of the computations. A detailed explana-
tion is presented in [27]. We showcase the importance of
optimal trajectories for a repetitive pick and place task in a
harvesting scenario. A motion from θ0 = [0 0.6π 0 0]T

to θf = −[π π/2 π/2 0]T is executed in tf = 0.8 s
under gravity with θ̇0 = θ̇f = 0 and a payload mass of
1 kg. This task is addressed with three different actuation
cases:

1) Traditional approach, where joint-space positions and
velocities are obtained from the integral of the required
accelerations to overcome θf −θ0 in tf . This assumes
constant accelerations ac at time t ∈ [0, tf/2) and −ac

at t ∈ (tf/2, tf ], such that ac = 4(θf − θ0)/t
2
f . Joint

torques are then obtained from the recursive Newton-
Euler algorithm in RigidBodyDynamics.jl.

2) Joint torques are computed by the outlined iLQR
method, assuming actuation in joint-space - like most
optimal control frameworks.

3) Actuator torques are considered as optimization input
to (15) and are therefore mapped by (6) inside the
system dynamics. Inertia, gravity and coriolis terms
are still considered in joint-space.

In order to compare the three different approaches, motor
power - the product of torque and velocity - is considered,
since this quantity is invariant under transformations to joint-
or actuation-space. This is also convenient from the point that
it eliminates the consideration of belt-gear ratios. However,

in a more thorough examination, friction would also need
to be taken into account. The motor power results in both
spaces and spatial motions from actuation case 1) to 3) can be
seen in Fig. 6 from top to bottom. Note that no movement
is intended for joint 4 and due to the bevel-gear coupling
in the wrist, motor 3 and 4 show (with slight deviation in
case 2)) the same trajectories in actuation-space. The shaded
areas in the power plots show the integral of negative power
and thus the energy loss occurring during task execution.
Actuation case 1) entails a task-space trajectory, where
the arm traverses a stretched position, what is generally
an unfavorable dynamic behavior and results in high joint
torques and therefore the highest power requirements. When
this trajectory is mapped into actuation-space, a slight power
reduction under increased energy loss can be observed. Ap-
plying the provided iLQR to this planning problem in joint-
space (center plot of Fig. 6), shows considerable improve-
ments compared to case 1), as peak-power and energy losses
are noticeably decreased. Providing the iLQR with actuation
kinematics, results in further improvements as shown in case
3) where the energy losses are least at the cost of higher
peak power requirements. However, the power requirements
are still within the specifications of the motors. Specifically
for fast pick and place tasks with a high repetition rate,
energy-efficient behavior is favorable. In order to converge to
solutions with identical goal state for case 2) and 3), different
weights in the cost function had to be used and can be subject
to further changes, if varying power trajectories are desired.



VII. CONCLUSION AND FUTURE WORK
We introduced a novel, belt-driven, serial manipulator with

the detailed description of its belt kinematics and a general
form to obtain the underlying mapping between joint- and
actuation space. This was extended by a stiffness model
accounting for the compliance brought in by the belts. We
were able to show that this results into a sufficient stiff de-
sign, when large deflections are undesirable and exemplified
the high dynamic capability of the manipulator by motion
trajectories for a typical use case. It showed to be beneficial
when the belt routing is incorporated in the manipulator
dynamics during trajectory optimization.

As this work presents a first prototype, further improve-
ments are envisaged for the design and the behaviour gener-
ation in general. For example, the consideration of inequality
constraints in the trajectory optimization would be beneficial
in application scenarios, where collisions must be avoided.
While other belt routings, altered gear ratios and changed
geometries are thinkable, this topology - even though very
simple in its outer structure - leaves much room for synthesis
and design optimality. We believe that new capabilities for
manipulators can arise under this concept and plan to take
an optimized, more generic concept into account.
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