
Towards Privacy-Preserving Relational Data
Synthesis via Probabilistic Relational Models

Malte Luttermann1, Ralf Möller2, and Mattis Hartwig1,3

1 German Research Center for Artificial Intelligence (DFKI), Lübeck
{malte.luttermann,mattis.hartwig}@dfki.de

2 Institute for Humanities-Centered Artificial Intelligence, University of Hamburg
ralf.moeller@uni-hamburg.de

3 singularIT GmbH, Leipzig

Abstract. Probabilistic relational models provide a well-established for-
malism to combine first-order logic and probabilistic models, thereby al-
lowing to represent relationships between objects in a relational domain.
At the same time, the field of artificial intelligence requires increasingly
large amounts of relational training data for various machine learning
tasks. Collecting real-world data, however, is often challenging due to
privacy concerns, data protection regulations, high costs, and so on. To
mitigate these challenges, the generation of synthetic data is a promising
approach. In this paper, we solve the problem of generating synthetic re-
lational data via probabilistic relational models. In particular, we propose
a fully-fledged pipeline to go from relational database to probabilistic
relational model, which can then be used to sample new synthetic rela-
tional data points from its underlying probability distribution. As part
of our proposed pipeline, we introduce a learning algorithm to construct
a probabilistic relational model from a given relational database.

Keywords: probabilistic graphical models; relational models; synthetic data.

1 Introduction

Probabilistic relational models such as parametric factor graphs (PFGs) combine
first-order logic and probabilistic models and thereby provide an adequate for-
malism to represent relationships between objects in a relational domain. PFGs
compactly encode a full joint probability distribution over a set of random vari-
ables (randvars) and hence allow to sample new relational data points from the
encoded underlying full joint probability distribution. The generated synthetic
relational data samples then follow the underlying full joint probability distribu-
tion and might be used for various purposes. Common applications of synthetic
data include for example training machine learning models or sharing data with-
out violating the privacy of individuals [8,27,35]. Another application could be to
bootstrap PFG learning (using the given database to learn a PFG, which is then
applied to generate additional synthetic relational data points to learn another
PFG on the basis of a larger data set and then possibly repeating the procedure).

2 Malte Luttermann, Ralf Möller, and Mattis Hartwig

In this paper, we solve the problem of applying probabilistic relational models
(more specifically, PFGs) to generate synthetic relational (i.e., multi-table) data
from a conceptual point of view.

Previous Work. While there is, to the best of our knowledge, no previous work
on the generation of synthetic relational data via probabilistic relational mod-
els, there exists previous work on learning and sampling models that combine
probabilistic models and first-order logic. In particular, so-called Markov logic
networks (MLNs) [30] have extensively been studied. An MLN is another formal-
ism combining probabilistic models and first-order logic, allowing for probabilis-
tic reasoning on a first-order level. Even though a vast amount of algorithms to
learn an MLN from data has emerged (see, e.g., [4,5,16,17,18,19,22,26,31]), there
is a lack of prior work on generating synthetic relational data via MLNs or other
probabilistic relational models. Moreover, while sampling algorithms for MLNs
have been developed [33], these sampling algorithms are used for (approximate)
query answering and are not applied to synthetic data generation, where the
requirements of the sampling algorithm slightly differ—that is, drawing a new
data sample should yield a value for every column in the given database.

Most of the existing work on synthetic data generation focuses on the gen-
eration of single-table synthetic data [10]. While many popular approaches are
based on generative adversarial networks [34], there are also approaches build-
ing on probabilistic graphical models such as Bayesian networks [13]. Both for
approaches based on generative adversarial networks and probabilistic graphical
models, differential privacy guarantees have been investigated [3,6,9,35]. More
recently, there has also been work on the generation of synthetic relational data
under differential privacy [7]. However, none of these approaches makes use of
the advantages of first-order probabilistic models.

Our Contributions. In this paper, we introduce the first architecture that com-
bines PFGs and the generation of synthetic relational data. Our main contribu-
tion is a fully-fledged pipeline from relational database to PFG, from which we
can then sample new realistic synthetic data points. We further present a learning
algorithm to obtain a PFG (that is, both the graph structure and the parame-
ters of the PFG) from a relational database. Our proposed architecture exploits
the advantages of PFGs, including that (i) PFGs are able to effectively encode
the relationships between objects in a relational domain, (ii) PFGs provide an
explainable model that can also be used for, e.g., probabilistic inference [32]
and causal inference [24] on a first-order level, and (iii) PFGs naturally abstract
from individuals by grouping indistinguishable objects, which yields a promising
foundation for differential privacy guarantees.

Structure of this Paper. The remainder of this paper is structured as follows.
We begin by introducing necessary background information and notations. Af-
terwards, we propose an architecture to first learn a PFG from a relational
database and then employ the PFG to generate new synthetic relational data
points, which might be used for arbitrary applications. We then go through the

Towards Privacy-Preserving Relational Data Synthesis via PRMs 3

Epid

ϕ0

ϕ1 ϕ1

ϕ1 ϕ1

Sick.alice Sick.bob

Sick.dave Sick.eve

ϕ2

ϕ2

ϕ2

ϕ2

ϕ2

ϕ2

ϕ2

ϕ2

Travel.alice Travel.bob

Travel.dave Travel.eve

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Treat.dave.m1

Treat.dave.m2

Treat.eve.m1

Treat.eve.m2

ϕ3 ϕ3

ϕ3 ϕ3

Fig. 1: An FG encoding a full joint probability distribution for an epidemic ex-
ample [14]. We omit the input-output pairs of the factors for brevity.

individual steps of the proposed architecture in detail, using a small comprehen-
sive example for guidance, before we conclude.

2 Preliminaries

We start with the definition of factor graphs (FGs) as propositional probabilistic
models and then continue to introduce PFGs, which combine first-order logic
with probabilistic models. An FG is an undirected propositional probabilistic
model to compactly encode a full joint probability distribution over a set of
randvars [11,21]. Similar to a Bayesian network [28], an FG factorises a full joint
probability distribution into a product of factors.

Definition 1 (Factor Graph). An FG G = (V ,E) is an undirected bipartite
graph with node set V = R ∪ Φ where R = {R1, . . . , Rn} is a set of variable
nodes (randvars) and Φ = {ϕ1, . . . , ϕm} is a set of factor nodes (functions). The
term range(Ri) denotes the possible values of a randvar Ri. There is an edge
between a variable node Ri and a factor node ϕj in E ⊆ R × Φ if Ri appears
in the argument list of ϕj. A factor is a function that maps its arguments to a
positive real number, called potential. The semantics of G is given by

PG =
1

Z

m∏
j=1

ϕj(Aj)

with Z being the normalisation constant and Aj denoting the randvars connected
to ϕj (that is, the arguments of ϕj).

4 Malte Luttermann, Ralf Möller, and Mattis Hartwig

Example 1. Take a look at the FG presented in Fig. 1, which represents an epi-
demic example with four persons alice, bob, dave, and eve as well as two possible
medications m1 and m2 for treatment. For each person, there are two Boolean
randvars (that is, randvars having a Boolean range) Sick and Travel, indicating
whether the person is sick and travels, respectively. Moreover, there is another
Boolean randvar Treat for each combination of person and medication, speci-
fying whether the person is treated with the medication. The Boolean randvar
Epid states whether an epidemic is present.

Next, we define PFGs, first introduced by Poole [29], which combine probabilis-
tic models and first-order logic. PFGs use logical variables (logvars) as parame-
ters to represent sets of indistinguishable randvars. Each set of indistinguishable
randvars is represented by a parameterised randvar (PRV).

Definition 2 (Parameterised Random Variable). Let R be a set of randvar
names, L a set of logvar names, and D a set of constants. All sets are finite.
Each logvar L has a domain dom(L) ⊆ D. A constraint is a tuple (X , CX) of
a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1dom(Xi). The
symbol ⊤ for C marks that no restrictions apply, i.e., CX = ×n

i=1dom(Xi). A
PRV R(L1, . . . , Ln), n ≥ 0, is a syntactical construct of a randvar R ∈ R possibly
combined with logvars L1, . . . , Ln ∈ L to represent a set of randvars. If n = 0, the
PRV is parameterless and forms a propositional randvar. A PRV A (or logvar
L) under constraint C is given by A|C (L|C), respectively. We may omit |⊤ in
A|⊤ or L|⊤. The term range(A) denotes the possible values of a PRV A. An
event A = a denotes the occurrence of PRV A with range value a ∈ range(A).

Example 2. Consider R = {Epid, Travel, Sick, Treat} and L = {P,M} with
dom(P) = {alice, bob, dave, eve} (patients), dom(M) = {m1,m2} (medications),
combined into Boolean PRVs Epid, Travel(P), Sick(P), and Treat(P,M).

A parametric factor (parfactor) describes a function, mapping argument values
to positive real numbers, of which at least one is non-zero.

Definition 3 (Parfactor). Let Φ denote a set of factor names. We denote a
parfactor g by ϕ(A)|C with A = (A1, . . . , An) being a sequence of PRVs, ϕ:
×n

i=1range(Ai) 7→ R+ being a function with name ϕ ∈ Φ mapping argument
values to a positive real number called potential, and C being a constraint on the
logvars of A. We may omit |⊤ in ϕ(A)|⊤. The term lv(Y) refers to the logvars in
some element Y , a PRV, a parfactor, or sets thereof. The term gr(Y|C) denotes
the set of all instances (groundings) of Y with respect to constraint C.

A PFG is then built from a set of parfactors {g1, . . . , gm}.

Definition 4 (Parametric Factor Graph). A PFG G = (V ,E) is a bipartite
graph with node set V = A ∪G where A = {A1, . . . , An} is a set of PRVs and
G = {g1, . . . , gm} is a set of parfactors as well as edge set E ⊆ A×G. A PRV
Ai and a parfactor gj are connected via an edge in G (i.e., {Ai, gj} ∈ E) if Ai

appears in the argument list of gj. The semantics of G is given by grounding and

Towards Privacy-Preserving Relational Data Synthesis via PRMs 5

Epid

Sick(P)Travel(P) Treat(P,M)

ϕ0

ϕ1 ϕ2

ϕ3

Fig. 2: A PFG encoding a full joint probability distribution for the epidemic
example from Fig. 1. We omit the input-output pairs of the parfactors for brevity.

building a full joint distribution. With Z as the normalisation constant and Ak

denoting the randvars connected to ϕk, G represents the full joint distribution

PG =
1

Z

∏
gj∈G

∏
ϕk∈gr(gj)

ϕk(Ak).

Example 3. Figure 2 shows a PFG G = {gi}3i=0 with g0 = ϕ0(Epid)|⊤, g1 =
ϕ1(Travel(P), Sick(P), Epid)|⊤, g2 = ϕ2(Treat(P,M), Sick(P), Epid)|⊤, and
g3 = ϕ2(Travel(P))|⊤. Grounding G yields again the FG shown in Fig. 1 (as-
suming that the domains of the logvars are defined as in Ex. 2).

Note that the definition of PFGs also includes FGs, as every FG is a PFG
containing only parameterless randvars. Compared to an FG, a PFG abstracts
from individuals by grouping identically behaving objects using logvars. While
the introduction of logvars increases the expressiveness of the model (e.g., to
encode relationships between groups of objects), grouping identically behaving
individuals can also yield significant speed-ups during probabilistic inference.

In the upcoming section, we introduce our proposed architecture to solve the
problem of learning a PFG from a given relational database to then generate
synthetic relational data according to its underlying probability distribution.

3 Proposed Architecture

In this section, we provide an overview of the general architecture to gener-
ate synthetic relational data from a relational database using a PFG. We first
take a look at the steps involved in the synthetic data generation approach and
afterwards continue to investigate each of the steps in more detail.

An overview of the architecture of our proposed architecture is depicted in
Fig. 3. The whole process consists of three primary steps, which can again be
decomposed into various subroutines. The three primary steps consist of (i)
constructing a propositional FG, (ii) transforming the propositional FG into a
PFG, and (iii) sampling from the PFG to generate new synthetic relational data.
Besides the generated synthetic data, the PFG is also a valuable output of the
architecture (indicated by the + sign), as it can be used for various tasks such as
probabilistic inference, causal inference, or bootstrap PFG learning, for example.

6 Malte Luttermann, Ralf Möller, and Mattis Hartwig

Treat.p1.m1

Treat.p1.m2

Treat.p2.m1

Treat.p2.m2

Age.p1

Age.p2

Costs.m1

Costs.m1

ϕ1
1

ϕ2
1

ϕ1
4

ϕ2
4

ϕ1
2

ϕ2
2

ϕ3
2

ϕ4
2

ϕ1
3

ϕ2
3

ϕ3
3

ϕ4
3

Treat(P,M)

Age(P)

Costs(M)

ϕ1

ϕ4

ϕ2

ϕ3

+

Fig. 3: Architecture overview of the general architecture to generate synthetic
relational data from a given relational database using a PFG.

In the following, we illustrate each of the three steps at a small comprehensive
example for guidance. Before we take a look at the steps involved in the pro-
posed architecture, we briefly introduce the notion of an entity-relationship (ER)
model, which allows us to describe a relational database D.

Definition 5 (Entity-Relationship Model). We define an ER model as a
tuple (E ,R) where E = {E1, . . . , Eℓ} denotes a set of entity classes and R =
{R1, . . . , Rk} is a set of relationship classes. Each entity or relationship class
B ∈ E ∪R can have a set of attributes attached to it, which is denoted by A(B).

Example 4. Consider the ER model depicted in Fig. 4a, which consists of the
entity classes C = {Patient,Medication} and the relationship classes R =
{Treat}. The ER model further contains the attributes A(Patient) = {Age}
and A(Medication) = {Costs}.

It is generally possible to have cyclic relationships and to impose cardinality
constraints on the relationships, which we omit for brevity in this paper. We next
take a closer look at the individual steps involved in our proposed architecture.

3.1 Construction of a Propositional Factor Graph

While there are learning algorithms for first-order probabilistic models such as
MLNs, to the best of our knowledge, there is currently no approach to directly
learn a PFG from a given relational database. However, there are well-known
approaches to learn an FG from the given data [1] and an FG can be trans-
formed into a PFG by running the so-called advanced colour passing (ACP)
algorithm [23]. We therefore propose to first learn a propositional model, that
is, an FG G, from the given relational database and afterwards run the ACP
algorithm on G to transform G into a PFG entailing equivalent semantics as G.

While such an approach seems straightforward at first glance, there are a few
challenges to overcome. A major challenge is that applying a standard learning
algorithm to obtain an FG from data does not fit our setting because standard
learning algorithms do not include randvars and factors for individual objects
into the FG. In other words, the relational structure of the data is neglected,
which we illustrate in the upcoming example.

Towards Privacy-Preserving Relational Data Synthesis via PRMs 7

Patient

Age Treat

Medication

Costs

(a)

PatientId Age

alice ≥ 18
bob ≥ 18
charlie ≥ 18
dave < 18
eve < 18

PatientId MedicationId

alice myalept
alice danyelza
bob paracetamol
charlie ibuprofen
eve eliquis

MedicationId Costs

myalept high
danyelza high
paracetamol low
ibuprofen low
eliquis high

(b)

Fig. 4: A small toy example for a relational database of patients and the medica-
tions they take. Figure 4a shows an ER model consisting of entities Patient and
Medication with attributes Age and Costs, respectively. The entities Patient
and Medication are connected by a relation Treat. We omit cardinalities for
brevity. Figure 4b displays exemplary data for a relational database following
the structure specified by the ER model from Fig. 4a.

Example 5. Take a look at a simple toy example database containing information
on patients and the medications they take, as depicted in Fig. 4. For simplicity,
each patient only has a single attribute Age which can either be < 18 or ≥ 18 and
each medication has a single attribute Costs which can either be low or high.
Further, there is a relation Treat connecting patients with the medications they
take. The specific entries of the database are depicted in Fig. 4b, where we again
keep the tables simple for illustrative purposes.

A standard learning algorithm to obtain an FG from the given database
would include a single randvar for each of the attributes, e.g., there would be a
single randvar for the attribute Age instead of a separate node for the age of each
patient. Analogously, there would also be a single randvar for the attribute Costs.
When using a single randvar to model an attribute over all objects, however, we
lose information about individual objects (here patients and medications) and
their relationships between each other.

Therefore, we slightly adjust the learning procedure to include multiple randvars
for the same attribute of different individual objects into the learned FG. How-
ever, we cannot simply include a randvar for each object per attribute because
there would be no uncertainty in the resulting model. To continue Ex. 5, as-
sume we add a randvar Age for each patient to the learned FG. Then, the prior
probability distribution for the randvar Age of a specific patient would map the
value found in the database for Age to probability one and all other values to
probability zero, e.g., the probability that Age.alice < 18 would be set to zero
and the probability that Age.alice ≥ 18 would be set to one. Consequently, the

8 Malte Luttermann, Ralf Möller, and Mattis Hartwig

FG would not model any uncertainty at all. To mitigate this issue, we propose
to perform an initial clustering of entities to find clusters of indistinguishable
objects (here patients and medications), which allows us to naturally define the
domains of the logvars when transforming the learned FG into an PFG. After the
initial clustering, we then insert a randvar for each cluster per attribute into the
FG. Performing an initial clustering of entities allows us to model uncertainty
while keeping objects and relationships in the model.

Example 6. Consider again the example database depicted in Fig. 4. For the sake
of the example, assume that the initial clustering returns two patient clusters
Cp1 = {alice, eve} as well as Cp2 = {bob, charlie, dave} and two medication clus-
ters Cm1

= {myalept, danyelza, eliquis} and Cm2
= {paracetamol, ibuprofen}.

Then, the resulting FG contains the randvars Age.p1, Age.p2, Costs.m1, and
Costs.m2, that is, there exists one randvar for each cluster per attribute. The
probability that, e.g., Age.p1 < 18 is then set to 0.5 (as one out of two entries be-
longing to the cluster Cp1 has Age < 18) and the probability that Age.p2 < 18 is
set to 0.33 (as one out of three entries belonging to the cluster Cp2 has Age < 18).

To perform the clustering of the entities, an arbitrary clustering algorithm can
be applied. In particular, it is also possible to apply privacy-preserving clustering
algorithms, e.g., to ensure differential privacy guarantees. After clustering the
entities, the variable nodes of the FG can be inserted for each clustered entity.

More specifically, the resulting FG contains a randvar for every attribute A
in the database per cluster of entities occurring in A (i.e., if A is an attribute of
an entity E, there is a randvar for A for each cluster of E and if A is an attribute
of a relationship R, there is a randvar for R for each combination of clusters of
the entities occurring in R). To account not only for the attributes but also for
the relationships, there is another randvar in the FG for every relationship R in
the database per combination of clusters of entities occurring in R.

In general, the randvars specifying the attributes do not have to be Boolean.
The randvars for the relationships, however, are always Boolean as they indicate
whether a relationship exists.

Example 7. Given the database from Fig. 4 and the clusters Cp1
, Cp2

, Cm1
,

and Cm2 from Ex. 6, the resulting FG contains the randvars Age.p1, Age.p2,
Costs.m1, Costs.m2, Treat.p1.m1, Treat.p1.m2, Treat.p2.m1, and Treat.p2.m2.

Note that in a standard learning algorithm for an FG, there are typically no
randvars for the relationships and, in addition to that, there are also not multi-
ple randvars for the same attribute for different entities (or clusters of entities,
respectively). Therefore, an FG learned by a standard learning algorithm loses
information about the relationships of individual objects (or clusters thereof).

After having identified the variable nodes in the FG, the next step is to
learn the remaining graph structure, i.e., the factor nodes and the edges of
the FG. The graph structure of the FG can be identified using conditional
independence tests on the given data [20, Chapter 20.7]. In particular, two
randvars X and Y are conditionally independent given a set of randvars Z if
P (X,Y | Z) = P (X | Z) ·P (Y | Z). Therefore, testing whether pairs of randvars

Towards Privacy-Preserving Relational Data Synthesis via PRMs 9

are conditionally independent given a set of other randvars can be done by es-
timating the corresponding probabilities from the given data using statistical
hypothesis tests. The results of the conditional independence tests then yield
the graph structure of the FG as in an FG, two randvars are conditionally inde-
pendent if all paths between them are blocked by the conditioning set.

We remark that performing conditional independence tests on the individual
tables does not work because the individual tables do not necessarily contain
all randvars involved in the conditional independence test. The conditional in-
dependence tests are hence carried out on a join of the individual tables in the
given relational database to enable the estimation of the necessary probabilities.

Example 8. Consider again the database given in Fig. 4. When checking whether
the randvars Patient and Medication are independent, we need a joined table
which contains both Patient and Medication.

As we add randvars for the relationships as well, we augment the full join with
an additional column for each relationship, indicating which relationships are
present in the database and which are not. We also augment the full join with
combinations of entities that do not occur in the relationships from the given
database (similar to a cross join) such as the combination of patient bob and med-
ication myalept in Fig. 4, for which we add a row with value false in the column
Treat. More details about the augmented full join are given in Appendix A.

After the entire graph structure of the FG has been learned, the next step
is to learn the potentials of the factors. More specifically, at this point we know
which factors (i.e., functions) are part of the model, but we do not know their
input-output mappings yet. To obtain the potentials of the factors, we count
the occurrences for each specific assignment of the arguments of the factors in
the augmented full join of the tables. To count the occurrences for all possible
assignments of factors’ arguments, we also need information on combinations of
entities that do not occur in the relationships from the given database, which
is the reason we add this information in the augmented full join as described
above. The occurrences for each specific assignment of factors arguments are
then counted as illustrated in the following example.

Example 9. Take a look at the FG shown in Fig. 5. The FG results from the
learning procedure described above applied to the database illustrated in Fig. 4.
The potentials for, e.g., ϕ2

1(Age.p2) are obtained by counting the occurrences
of Age.p2 < 18 and Age.p2 ≥ 18 in the augmented full join shown in Fig. 7
(Appendix A). Recall that Cp2

= {bob, charlie, dave}. Thus, in this particular
example, it holds that ϕ2

1(Age.p2 < 18) = 5 and ϕ2
1(Age.p2 ≥ 18) = 10.

Note that the absolute number of a potential value is not pivotal as the semantics
of the FG includes a normalisation constant. Hence, the semantics would remain
unchanged if we had counted the occurrences of Age.p2 < 18 and Age.p2 ≥ 18 in
the original table. In the original table, we have one occurrence of Age.p2 < 18
and two occurrences of Age.p2 ≥ 18 for the cluster Cp2

= {bob, charlie, dave},
i.e., the ratio is exactly the same as in the augmented full join (five occurrences

10 Malte Luttermann, Ralf Möller, and Mattis Hartwig

Treat.p1.m1

Treat.p1.m2

Treat.p2.m1

Treat.p2.m2

Age.p1

Age.p2

Costs.m1

Costs.m1

ϕ1
1

ϕ2
1

ϕ1
4

ϕ2
4

ϕ1
2

ϕ2
2

ϕ3
2

ϕ4
2

ϕ1
3

ϕ2
3

ϕ3
3

ϕ4
3

Fig. 5: The learned FG from the given database depicted in Fig. 4.

and ten occurrences). However, we use the augmented full join for counting as
we cannot count occurrences of randvars appearing in different tables separately
in factors with multiple arguments such as in ϕ3

2(Age.p2, T reat.p2.m1) because
we have to incorporate the relationship between those tables. For example, in
ϕ3
2(Age.p2, T reat.p2.m1), we need to count the occurrences of Age.p2 < 18 and

Treat.p2.m1 = true and such a combination is not present in the original tables.
A summary of our proposed learning algorithm is provided in Alg. 1. So

far, we discussed the steps to learn a propositional FG from a given relational
database (Line 1 to Line 14 in Alg. 1). We next describe the procedure to trans-
form the learned FG into a PFG (Line 15 in Alg. 1).

3.2 Transforming the Factor Graph into a Parametric Factor Graph

To obtain a PFG from a given FG, we need to find groups of identically be-
having randvars and factors in the FG. Then, PRVs with logvars represent such
groups of indistinguishable randvars and parfactors represent groups of identi-
cal factors. Replacing indistinguishable randvars by PRVs with logvars further
abstracts from individuals and thus yields a promising foundation for privacy
guarantees [12]. The ACP algorithm (which is a generalisation of the colour
passing algorithm [2,15]) is able to construct a PFG from a given propositional
FG [23]. The idea behind ACP is to exploit symmetries in a propositional FG
and then group together symmetric subgraphs. ACP looks for symmetries based
on potentials of factors, on ranges and evidence of randvars, as well as on the
graph structure by passing around colours. A formal description as well as an
example run of the ACP algorithm can be found in Appendix B. Figure 6 shows
the PFG resulting from calling ACP on the FG depicted in Fig. 5 under the
assumption that all potentials of the factors ϕi, i ∈ {1, . . . , 4}, are considered
identical. Note that the assumption of identical factors is just for the sake of the
example as in general, not all potentials are identical (and hence, not all of the
factors ϕi are grouped into a single group).

We remark that in its original form, ACP requires potentials of factors to
identically match in order to group factors together. When learning an FG from

Towards Privacy-Preserving Relational Data Synthesis via PRMs 11

Algorithm 1: LearnPFG
Input : A relational database D = (E ,R) with corresponding data samples.
Output: A PFG G′ = (V ,E) representing the full joint probability

distribution of the given database.

1 G← Empty FG;
2 F ← Augmented full join over D;
3 CE1 , . . . , CEℓ ← ClusterEntities(D);
4 foreach entity or relationship B ∈ E ∪R do

// Let E1, . . . , Ej denote all entities occurring in B

5 foreach combination of clusters (c1, . . . , cj) ∈ ×j
i=1CEi do

6 foreach attribute A ∈ A(B) do
7 Add a randvar A.c1. · · · .cj to G;
8 foreach relationship R do

// Let E1, . . . , Ej denote all entities occurring in R

9 foreach combination of clusters (c1, . . . , cj) ∈ ×j
i=1CEi do

10 Add a randvar R.c1. · · · .cj to G;
11 Add edges and factors to G by running conditional independence tests on F ;
12 foreach factor ϕ(R1, . . . , Rk) in G do

// Let c1, . . . , cj denote all clusters occurring in R1, . . . , Rk

13 foreach assignment (r1, . . . , rk) ∈ ×k
i=1range(Ri) do

14 Set ϕ(R1, . . . , Rk) to the number of rows in F belonging to clusters c1
to cj that contain the values r1 to rk in the columns of R1 to Rk;

15 G′ ← Call ACP on G with evidence E = ∅;
16 return G′

data, however, there might be small deviations in the potentials, that is, counting
the occurrences of a specific combination of values might differ for two similarly
behaving clusters, e.g., by one. Therefore, we adapt the condition for two factors
to be considered identical by allowing for a difference in their potentials depend-
ing on a user-defined parameter ε. Two factors ϕ and ϕ′ are now considered
identical (and thus are assigned the same colour in ACP) if for every assignment
of their arguments the corresponding potentials, say φ and φ′, differ by at most
φ · ϵ (or φ′ · ϵ, respectively). Factors with slightly deviating potentials that are
grouped are then all assigned the mean of the potentials in the group.

3.3 Sampling from the Parametric Factor Graph

Every PFG compactly encodes a full joint probability distribution from which we
can draw new samples. Note that, in contrast to previous sampling approaches
(such as, e.g., [33]) that apply sampling for (approximate) query answering, we
aim to generate new data samples that comply with the given ER model (that
is, we wish to draw new data samples that contain a value for every attribute
and every relationship in the ER model). As the PFG is inherently encoding a
relational structure, we are able to synthesise relational data. More specifically,
the semantics of a PFG is defined on a ground level, that is, sampling from

12 Malte Luttermann, Ralf Möller, and Mattis Hartwig

Treat(P,M)Age(P) Costs(M)

ϕ1 ϕ4ϕ2 ϕ3

Fig. 6: The PFG resulting from calling ACP on the FG depicted in Fig. 5 assum-
ing for the sake of the example that all clusters behave identically. Note that in
our specific example from Ex. 5, not all clusters behave identically and thus, not
all randvars representing the same attribute or relationship are grouped.

the underlying probability distribution yields new data samples for multiple
clustered entities. As the ground FG consists of randvars for various clustered
entities, we draw samples for multiple clusters at the same time.

Example 10. Assume we want to sample the PFG which yields the FG shown
in Fig. 5 when grounding the model. Sampling thus yields a value for every
randvar in the FG, thereby allowing to synthesise new objects and relation-
ships between them following the full joint probability distribution encoded
by the model. An exemplary data sample could look like this: Age.p1 < 18,
Age.p2 ≥ 18, Treat.p1.m1 = false, Treat.p1.m2 = false, Treat.p2.m1 = true,
Treat.p2.m2 = false, Costs.m1 = low, Costs.m2 = high (values are chosen
arbitrarily for the sake of the example).

The generated synthetic data samples might be used for arbitrary applications
and thus, it is necessary to define application-specific quality criteria to assess
the quality of the generated data.

4 Conclusion

We introduce a fully-fledged pipeline to deploy probabilistic relational models,
in particular PFGs, for the generation of synthetic relational (i.e., multi-table)
data. To construct a PFG from a given relational database, we propose a learn-
ing algorithm that learns both the graph structure as well as the parameters of a
PFG from the relational database. We further elaborate on how the learned PFG
can be applied to generate new samples of synthetic relational data. By ensur-
ing certain privacy guarantees (e.g., differential privacy) during the construction
process of the PFG, PFG provide a promising model to generate synthetic rela-
tional data in a privacy-preserving manner such that generated synthetic data
can be publicly shared without leaking sensitive data of individuals.

There are three primary directions for future work. First, privacy guarantees
for PFG learning need to be theoretically investigated. Second, the scalability of
our proposed architecture should be assessed and improved to allow an efficient
handling of large-scale relational databases, and finally, the practicality of the
entire framework has to be tested empirically on real-world data sets.

Towards Privacy-Preserving Relational Data Synthesis via PRMs 13

Acknowledgements

This work is funded by the BMBF project AnoMed 16KISA057. This preprint
has not undergone peer review or any post-submission improvements or cor-
rections. The Version of Record of this contribution is published in Lecture
Notes in Computer Science, Volume 14992, and is available online at https:
//doi.org/10.1007/978-3-031-70893-0_13.

References

1. Abbeel, P., Koller, D., Ng, A.Y.: Learning Factor Graphs in Polynomial Time and
Sample Complexity. Journal of Machine Learning Research 7, 1743–1788 (2006)

2. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting Symmetries for
Scaling Loopy Belief Propagation and Relational Training. Machine Learning 92,
91–132 (2013)

3. Bao, E., Xiao, X., Zhao, J., Zhang, D., Ding, B.: Synthetic Data Generation with
Differential Privacy via Bayesian Networks. Journal of Privacy and Confidentiality
11 (2021)

4. Biba, M., Ferilli, M., Esposito, F.: Structure Learning of Markov Logic Networks
through Iterated Local Search. In: Proceedings of the Eighteenth European Con-
ference on Artificial Intelligence (ECAI-08). pp. 361–365. IOS Press (2008)

5. Biba, M., Ferilli, S., Esposito, F.: Discriminative Structure Learning of Markov
Logic Networks. In: Proceedings of the Eighteenth International Conference on
Inductive Logic Programming (ILP-08). pp. 59–76. Springer (2008)

6. Cai, K., Lei, X., Wei, J., Xiao, X.: Data Synthesis via Differentially Private Markov
Random Fields. Proceedings of the VLDB Endowment 14, 2190–2202 (2021)

7. Cai, K., Xiao, X., Cormode, G.: PrivLava: Synthesizing Relational Data with For-
eign Keys under Differential Privacy. Proceedings of the ACM on Management of
Data 1, 1–25 (2023)

8. Chen, R.J., Lu, M.Y., Chen, T.Y., Williamson, D.F., Mahmood, F.: Synthetic Data
in Machine Learning for Medicine and Healthcare. Nature Biomedical Engineering
5, 493–497 (2021)

9. Fang, M.L., Dhami, D.S., Kersting, K.: DP-CTGAN: Differentially Private Medical
Data Generation Using CTGANs. In: Proceedings of the Twentieth International
Conference on Artificial Intelligence in Medicine (AIME-22). pp. 178–188. Springer
(2022)

10. Figueira, A., Vaz, B.: Survey on Synthetic Data Generation, Evaluation Methods
and GANs. Mathematics 10, 2733–2773 (2022)

11. Frey, B.J., Kschischang, F.R., Loeliger, H.A., Wiberg, N.: Factor Graphs and Al-
gorithms. In: Proceedings of the Thirty-Fifth Annual Allerton Conference on Com-
munication, Control, and Computing. pp. 666–680. Allerton House (1997)

12. Gehrke, M., Liebenow, J., Mohammadi, E., Braun, T.: Lifting in Support of
Privacy-Preserving Probabilistic Inference. German Journal of Artificial Intelli-
gence (2024)

13. Gogoshin, G., Branciamore, S., Rodin, A.S.: Synthetic Data Generation with Prob-
abilistic Bayesian Networks. Mathematical Biosciences and Engineering 18, 8603–
8621 (2021)

https://doi.org/10.1007/978-3-031-70893-0_13
https://doi.org/10.1007/978-3-031-70893-0_13

14 Malte Luttermann, Ralf Möller, and Mattis Hartwig

14. Hoffmann, M., Braun, T., Möller: Lifted Division for Lifted Hugin Belief Propa-
gation. In: Proceedings of the Twenty-Fifth International Conference on Artificial
Intelligence and Statistics (AISTATS-22). pp. 6501–6510. PMLR (2022)

15. Kersting, K., Ahmadi, B., Natarajan, S.: Counting Belief Propagation. In: Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
(UAI-09). pp. 277–284. AUAI Press (2009)

16. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov Logic Net-
works via Functional Gradient Boosting. In: Proceedings of the Eleventh IEEE
International Conference on Data Mining (ICDM-11). pp. 320–329. IEEE (2011)

17. Kok, S., Domingos, P.: Learning the Structure of Markov Logic Networks. In:
Proceedings of the Twenty-Second International Conference on Machine Learning
(ICML-05). pp. 441–448. ACM Press (2005)

18. Kok, S., Domingos, P.: Learning Markov Logic Network Structure via Hypergraph
Lifting. In: Proceedings of the Twenty-Six International Conference on Machine
Learning (ICML-09). pp. 505–512. ACM Press (2009)

19. Kok, S., Domingos, P.: Learning Markov Logic Networks using Structural Mo-
tifs. In: Proceedings of the Twenty-Seventh International Conference on Machine
Learning (ICML-10). pp. 551–558. Omnipress (2010)

20. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

21. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor Graphs and the Sum-Product
Algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)

22. Lowd, D., Domingos, P.: Efficient Weight Learning for Markov Logic Networks. In:
Proceedings of the Eleventh European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD-07). pp. 200–211. Springer (2007)

23. Luttermann, M., Braun, T., Möller, R., Gehrke, M.: Colour Passing Revisited:
Lifted Model Construction with Commutative Factors. In: Proceedings of the
Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24). pp. 20500–
20507. AAAI Press (2024)

24. Luttermann, M., Hartwig, M., Braun, T., Möller, R., Gehrke, M.: Lifted Causal
Inference in Relational Domains. In: Proceedings of the Third Conference on Causal
Learning and Reasoning (CLeaR-24). pp. 827–842. PMLR (2024)

25. Luttermann, M., Machemer, J., Gehrke, M.: Efficient Detection of Exchangeable
Factors in Factor Graphs. In: Proceedings of the Thirty-Seventh International
FLAIRS Conference (FLAIRS-24). Florida Online Journals (2024)

26. Mihalkova, L., Mooney, R.J.: Bottom-up Learning of Markov Logic Network Struc-
ture. In: Proceedings of the Twenty-Fourth International Conference on Machine
Learning (ICML-07). pp. 625–632. ACM Press (2007)

27. Nikolenko, S.I.: Synthetic Data for Deep Learning. Springer, 1st edn. (2021)
28. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann (1988)
29. Poole, D.: First-Order Probabilistic Inference. In: Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence (IJCAI-03). pp. 985–991.
Morgan Kaufmann Publishers Inc. (2003)

30. Richardson, M., Domingos, P.M.: Markov Logic Networks. Machine Learning 62,
107–136 (2006)

31. Singla, P., Domingos, P.: Discriminative Training of Markov Logic Networks. In:
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-
05). pp. 868–873. AAAI Press (2005)

Towards Privacy-Preserving Relational Data Synthesis via PRMs 15

32. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted Variable Elimination:
Decoupling the Operators from the Constraint Language. Journal of Artificial In-
telligence Research 47, 393–439 (2013)

33. Venugopal, D., Gogate, V.G.: Scaling-up Importance Sampling for Markov Logic
Networks. In: Advances in Neural Information Processing Systems 27 (NIPS-14).
pp. 2978–2986. Curran Associates, Inc. (2014)

34. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling Tabu-
lar Data Using Conditional GAN. In: Advances in Neural Information Processing
Systems 32 (NIPS-19). pp. 6167–6178. Curran Associates Inc. (2019)

35. Yoon, J., Jordon, J., van der Schaar, M.: PATE-GAN: Generating Synthetic Data
with Differential Privacy Guarantees. In: Proceedings of the International Confer-
ence on Learning Representations (ICLR-19). pp. 536–545. IEEE (2019)

16 Malte Luttermann, Ralf Möller, and Mattis Hartwig

A Augmented Full Join

We call the full join of the tables, where an additional column for each rela-
tionship is added and missing relationships are encoded by an additional row
containing the value false in the corresponding relationship column, the aug-
mented full join. The augmented full join can therefore be thought of as a cross
join with an additional column for each relationship, which contains a Boolean
value indicating which relationships are present in the database. For example,
the augmented full join of the tables given in the example from Fig. 4 is illus-
trated in Fig. 7. In this particular example, the augmented full join contains the
additional column Treat, which contains the value true if the relationship of
a given combination of PatientId and MedicationId in a specific row actually
exists. Otherwise, the column Treat contains the value false.

PatientId Age MedicationId Treat Costs

alice ≥ 18 myalept true high
alice ≥ 18 danyelza true high
alice ≥ 18 paracetamol false low
alice ≥ 18 ibuprofen false low
alice ≥ 18 eliquis false high
bob ≥ 18 myalept false high
bob ≥ 18 danyelza false high
bob ≥ 18 paracetamol true low
bob ≥ 18 ibuprofen false low
bob ≥ 18 eliquis false high
charlie ≥ 18 myalept false high
charlie ≥ 18 danyelza false high
charlie ≥ 18 paracetamol false low
charlie ≥ 18 ibuprofen true low
charlie ≥ 18 eliquis false high
dave < 18 myalept false high
dave < 18 danyelza false high
dave < 18 paracetamol false low
dave < 18 ibuprofen false low
dave < 18 eliquis false high
eve < 18 myalept false high
eve < 18 danyelza false high
eve < 18 paracetamol false low
eve < 18 ibuprofen false low
eve < 18 eliquis true high

Fig. 7: Full join of the tables from Fig. 4b, where missing entries for the relation-
ship Treat have been added by setting the value of the column Treat to false.

Towards Privacy-Preserving Relational Data Synthesis via PRMs 17

B Formal Description of the Advanced Colour Passing
Algorithm

The ACP algorithm [23] builds on the colour passing algorithm [2,15] and solves
the problem of constructing a PFG from a given FG. Algorithm 2 provides a
formal description of the ACP algorithm.

Algorithm 2: Advanced Colour Passing (as introduced in [23])
Input : An FG G with randvars R = {R1, . . . , Rn}, and factors

Φ = {ϕ1, . . . , ϕm}, as well as a set of evidence
E = {R1 = r1, . . . , Rk = rk}.

Output: A lifted representation G′ in form of a PFG with equivalent
semantics to G.

1 Assign each Ri a colour according to R(Ri) and E;
2 Assign each ϕi a colour according to order-independent potentials and

rearrange arguments accordingly;
3 repeat
4 foreach factor ϕ ∈ Φ do
5 signatureϕ ← [];
6 foreach randvar R ∈ neighbours(G,ϕ) do

// In order of appearance in ϕ
7 append(signatureϕ, R.colour);
8 append(signatureϕ, ϕ.colour);
9 Group together all ϕs with the same signature;

10 Assign each such cluster a unique colour;
11 Set ϕ.colour correspondingly for all ϕs;
12 foreach randvar R ∈ R do
13 signatureR ← [];
14 foreach factor ϕ ∈ neighbours(G,R) do
15 if ϕ is commutative w.r.t. S and R ∈ S then
16 append(signatureR, (ϕ.colour, 0));
17 else
18 append(signatureR, (ϕ.colour, p(R,ϕ)));
19 Sort signatureR according to colour;
20 append(signatureR, R.colour);
21 Group together all Rs with the same signature;
22 Assign each such cluster a unique colour;
23 Set R.colour correspondingly for all Rs;
24 until grouping does not change;
25 G′ ← construct PFG from groupings;

Figure 8 illustrates the ACP algorithm on an example FG [2]. In this ex-
ample, A, B, and C are Boolean randvars with no evidence and thus, they all
receive the same colour (e.g., yellow). As the potentials of ϕ1 and ϕ2 are iden-

18 Malte Luttermann, Ralf Möller, and Mattis Hartwig

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

ϕ′
1

R(X)

B

C B ϕ2(C,B)

true true φ1

true false φ2

false true φ3

false false φ4

A B ϕ1(A,B)

true true φ1

true false φ2

false true φ3

false false φ4

R(X) B ϕ′
1(R(X), B)

true true φ1

true false φ2

false true φ3

false false φ4

Fig. 8: A visualisation of the steps undertaken by the ACP algorithm on an input
FG with only Boolean randvars and no evidence (left). Colours are first passed
from variable nodes to factor nodes, followed by a recolouring, and then passed
back from factor nodes to variable nodes, again followed by a recolouring. The
procedure is iterated until convergence and the resulting PFG is depicted on the
right. This figure is reprinted from [23].

tical, ϕ1 and ϕ2 are assigned the same colour as well (e.g., blue)4. The colour
passing then starts from variable nodes to factor nodes, that is, A and B send
their colour (yellow) to ϕ1 and B and C send their colour (yellow) to ϕ2. ϕ1 and
ϕ2 are then recoloured according to the colours they received from their neigh-
bours to reduce the communication overhead. Since ϕ1 and ϕ2 received identical
colours (two times the colour yellow), they are assigned the same colour during
recolouring. Afterwards, the colours are passed from factor nodes to variable
nodes and this time not only the colours but also the position of the randvars in
the argument list of the corresponding factor are shared. Consequently, ϕ1 sends
a tuple (blue, 1) to A and a tuple (blue, 2) to B, and ϕ2 sends a tuple (blue, 2)
to B and a tuple (blue, 1) to C (positions are not shown in Fig. 8). Since A and
C are both at position one in the argument list of their respective neighbouring
factor, they receive identical messages and are recoloured with the same colour.
B is assigned a different colour during recolouring than A and C because B re-
ceived different messages than A and C. The groupings do not change in further
iterations and hence the algorithm terminates. The output is the PFG shown on
the right in Fig. 8, where both A and C as well as ϕ1 and ϕ2 are grouped.

4 The detection of exchangeable factors (DEFT) algorithm [25] can be applied to
efficiently detect factors that encode identical potentials regardless of their argument
orders and to rearrange the factors’ arguments accordingly.

	Towards Privacy-Preserving Relational Data Synthesis via Probabilistic Relational Models

