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Abstract. Decision-makers in transformation processes face complexi-
ties introduced by evolving regulatory landscapes and market dynamics.
This study delves into the use of Agent-Based Models (ABMs), Multi-
Agent Systems (MAS), and Digital Twins (DTs) to support strategic
planning through the simulation of intricate interactions and dynamics.
Our research specifically focuses on the application of MAS and DTs to
the steel industry’s shift from coal-based to hydrogen-based processes,
with a strong emphasis on sustainability. By analyzing literature, case
studies, and theoretical frameworks, we provide insights for modelers on
leveraging these technologies for industrial transformation. We present a
conceptual framework designed to address complex decision-making chal-
lenges and propose a corresponding architecture. We identify potential
benefits of ABMs, MAS, DT in steel industry transformation and illus-
trate how these tools can become particularly valuable for understanding
market dynamics, enhancing stakeholder engagement, and incorporating
non-monetary factors into decision-making.
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1 Introduction

Decision Support Systems (DSS) are valuable tools for aiding decision-making
processes, but they often fall short in capturing dynamic interactions among
stakeholders and systemic impacts of technological and policy shifts. There is a
gap in current DSS applications and literature regarding dynamic stakeholder
interactions and the systemic impacts of technological and policy changes. Our
work aims to provide better guidance for modelers in creating sophisticated,
comprehensive DSS to effectively address complexities.

DSS enhanced with Agent-Based Models (ABMs) and Digital Twins (DTs)
provide an integrative and multidisciplinary approach to strategic planning and
decision-making. ABMs can simulate complex interactions and dynamic strate-
gies [3] within regulatory frameworks and markets. DT technology, integrated
with ABMs, creates digital replicas of real entities, enhancing the DSS. This
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integration enables the simulation of complex interactions and scenario analysis,
providing critical insights for informed decision-making.

To illustrate the application of DSS powered by ABM and DT, we examine
the steel industry, which is particularly interesting due to its complex transforma-
tion toward carbon-neutral production. The steel industry, crucial for economic
development, incurs substantial environmental costs [22, 37]. Emerging EU reg-
ulations such as the Carbon Border Adjustment Mechanism (CBAM) [48] aim
to reduce pollution and promote greener steel production. Essentially, climate
change regulations necessitate a shift to hydrogen-based methods, requiring sus-
tained innovation among stakeholders [2]. Integrating new processes demands
extensive infrastructure changes and involves local industry and political stake-
holders, complicated by unequal power dynamics [43]. Therefore, decision-makers
must navigate a complex landscape with long-term outlooks, collaborations, and
evolving regulations. This complexity requires advanced DSS.

We define key requirements for our use case. The model must represent
dynamic stakeholder interactions, emphasizing partnerships. It should support
strategic decision scenarios like investment choices and hydrogen production
collaborations. The DSS must evaluate the viability of operations, comparing
sustainability and profitability. It should examine impacts of different hydro-
gen sources. The process must integrate frameworks, data, and expert insights.
The system should analyze market competitiveness and include sustainability
and environmental metrics to guide CO2-neutral production and evaluate car-
bon footprints, aligning with industry goals and regulations. These requirements
are essential for the DSS to support decision-making in CO2-neutral production
transitions.

Our research question is: What are key challenges and opportunities for us-
ing ABMs and DTs in decision-making to support the industrial transition to
CO2-neutral production? and this question guides our investigation into the po-
tential of DSS powered by ABM and DT to offer a dynamic and interactive
approach to decision support. In Section 2 we outline the innovative use of MAS
and DT. In Section 3 we critically assess existing literature and methodolo-
gies, identifying gaps and aligning our work with the latest advances in DSS.
In Section 4 we propose an architecture of a general model designed to handle
and analyze the complex scenarios encountered in decision support for our use
case. Finally, in Section 5 we discuss our findings and suggest future research
directions. Our analysis shows the benefits of DSS powered by ABM and DT in
understanding market dynamics, enhancing stakeholder engagement, and incor-
porating non-monetary factors into decision-making. Our literature review and
proposed framework serve as resources for modelers dealing with complex indus-
try transitions. Though our conceptual framework is use case-specific, focusing
on the steel industry’s transition to CO2-neutral production, it demonstrates
how to approach the transformation complexity, providing modelers with in-
sights on using ABMs, MAS, and DTs to develop effective DSS for industry
challenges.
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2 ABMs and Digital Twins For Decision Support

In the current data-driven industrial landscape, DSS have emerged as crucial
tools for strategic decision-making by incorporating various technologies to an-
alyze data, identify trends, and provide actionable insights to enable informed
decision-making [34]. The progression of DSS from static databases to real-time,
multidimensional analysis mirrors the escalating complexity in decision-making.
Yet, even contemporary DSS grounded in big data analytics [25] are limited by
historical data, lacking the capability to dynamically adjust to new information
or predict the outcomes of new strategies. The opacity of AI-driven machine
learning algorithms challenges their transparency and interpretability, affecting
user trust and their fit for strategic use. Common DSS technologies fall short
in supporting the complex decisions [33] needed for transforming steel produc-
tion [16]. Effective DSS require technologies that transcend reliance on historical
data [9] and are user-friendly [1]. For that purpose, ABMs with DTs representing
the stakeholders offer a valuable expansion to classic DSS by offering predictive
analytics through what-if scenarios, overcoming historical data constraints.

Generally, ABMs comprise autonomous agents pursuing goals in coordina-
tion or cooperation. Their interactions in dynamic environments allows to ex-
plore how individual traits influence micro-level decisions and how macro-level
behaviors emerge from interactions [3]. The next step is to model complex agent
interactions using digital replicas of physical and abstract entities, providing
tailored decision support. In the absence of a unified definition of DTs and the
distinction from other technologies [42], we define DTs as digital replicas of both
physical and abstract entities, where agents—each with specific resources, goals,
and actions—can operate either autonomously or under the control of real-world
stakeholders.

3 Approaches to Simulating Transforming Energy
Markets using ABM, MAS and DTs

To better understand opportunities for using ABMs and DTs in decision-making
to support the transition to low-carbon steel production, we begin by examining
how ABMs have been effectively utilized to simulate sustainable transformations
in the energy market. We then shift to essential challenges that ABMs must ad-
dress to effectively manage complex simulation tasks. Subsequently, we introduce
relevant studies that explore the application of DTs for DSS. Publications were
chosen based on their accessibility, up-to-date content, and relevance to the core
themes discussed in this paper. This overview aims to provide a comprehensive
snapshot of the significant opportunities for leveraging ABMs and DTs, setting
the stage for decision support in steel production transformation.

Agent-Based Modeling for Energy Market Transformation
Markets are shaped by the interactions among its participants, leading to emer-
gent networks of cooperation and competition in daily operations and long-term
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transformations alike. ABMs are an appropriate tool to explore the costs and
benefits of such strategies [46] under conditions of distrust and uncertainty [17] as
well as interdependencies across the supply chain [35]. By employing appropriate
modelling procedures, such as data dependency diagrams for participatory mod-
eling [35], ABMs can facilitate understanding market dynamics and the complex
interplay of consumer behavior, policy impacts, infrastructure and cooperative
strategies that drive market transformation [23].

Unsurprisingly, ABMs are increasingly used to explore various aspects of
evolving markets, such as policy, consumption and innovation diffusion [19]. De-
spite the positive trend, ABMs (and simulations in general) are still considered a
specialized niche approach in the field of sustainable transformation research [26]
with many questions from older studies still unaddressed in literature [31].

Such under-utilization could stem from the complexity of changing markets.
The diversity of participants and the range of planning horizons for technology
choices present significant challenges for modeling [47], leading to a neglect of
crucial mechanisms such as mutual influences on major decisions [5].

Additionally, there is often limited practical application of models beyond
generating one-time policy recommendations. These challenges are not inher-
ent faults of ABMs as a technology - but rather underscore the importance of
stakeholder involvement to enhance ABMs’ efficacy as decision support tools.
Without stakeholder involvement, it is impossible to fully address the complex-
ities required for accurate modeling.

Challenges in Modelling for Decision Support
Stakeholder engagement is crucial for the modeling of transforming markets.
Policies, communication and relations between stakeholders are vital compo-
nents of decision processes, which are shaped by power dynamics between par-
ticipants [18]. Thus, DSS must foster an environment that promotes extensive
communication among stakeholders, ensuring decisions are informed by collec-
tive insights and discussions [8]. This approach enhances the system’s relevance
and applicability.

Naturally, this requires models that accurately reflect the complexity of mul-
tiple perspectives [21]. Referring back to the use case of the steel industry, stud-
ies have already demonstrated the benefits of user-centric approaches featuring
surveys and expert interviews throughout the research process [32, 24]. Such a
user-oriented approach ensures the credibility of models and helps the contin-
uous validation. Yet, false outputs may lead to misinformation and unintended
negative consequences [39]. In this regard, DTs can further support the credibil-
ity of an ABM by providing contextualized information for decision-makers [11].
Issues such as unreliable information and unintended consequences are known
in the context of ABMs, yet ABMs are recognised as beneficial regardless and
should not be discarded in this context either [30].

When using DSS, it is important to consider wider implications beyond im-
mediate economic impact. To achieve sustainability, decision-making must go
beyond just addressing profitability and include a broad range of non-monetary
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considerations. A shift from shareholder value towards strategically incorporat-
ing ethical practices, engaging stakeholders, and enhancing sustainability re-
porting has been demonstrated to improve corporate performance and compet-
itiveness [41, 10]. Following this trend, effective modeling for DSS requires the
integration of ecological, societal, technical, and political dimensions which are
represented as tangible components in the ABM, following novel comprehen-
sive methods for firm evaluation [14]. Additionally, with respect to different civil
stakeholders involved in regional transformation, topics such as employment and
local value creation are major aspects due to the significance of industry as local
employer [13, 29].

Finally, it is essential in decision support modeling to establish clear prac-
tical guidelines on developing ABM within DSS. Detailed taxonomies of agent
characteristics and life-cycles for building agent-based DSS provide these guide-
lines, illustrating how intelligent agents can enhance decision-making by utiliz-
ing the inherent features of MAS [6]. This method highlights ABM’s capacity
to facilitate collaborative problem-solving within DSS. To ensure that simula-
tions are accessible to various stakeholder groups, models should be integrated
into a DSS that offers intuitive usability. This approach is exemplified by the
simulation-supported crisis management dashboards developed during the pan-
demic, which included architectural guidelines for designing user-friendly simu-
lation dashboard [38].

Designing, implementing, and introducing a DSS using ABMs is complex, but
documented benefits indicate significant potential for further application in other
areas. By fostering dialogue among stakeholders, ensuring the careful validation
and presentation of information, decision-making processes can become more
nuanced and effective.

Advancing Decision Support with Digital Twin Technology
By creating digital replicas of stakeholders, encompassing their capabilities, as-
sets, and other pivotal traits, DTs offer a nuanced understanding of each stake-
holder’s potential actions and outcomes and empower personalized support. Ex-
isting shift towards inclusive policy-making emphasizes DTs’ role in facilitat-
ing stakeholder engagement, enabling stakeholders to experiment with policy
outcomes in a virtual environment, making decision-making collaborative and
feedback-rich [44]. A review of 75 studies highlights the growing use of DTs
across sectors, emphasizing their potential to simulate real-time decision out-
comes [12]. Practical implementations of DTs [45, 28] underline the versatility
of DTs in management decision-making, demonstrating how DTs, through real-
time data visualization and scenario simulation, enhance strategic planning and
operational management. The adaptability of DTs offers a blueprint for inte-
grating them into day-to-day processes and strategic decision-making [27]. A
multi-layered DT model using agent-based modeling (ABM) investigates com-
plex systems and sustainable decision-making, providing a template for exploring
intervention strategies in complex systems [36].
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The advancements in DT, as discussed in the literature, open new avenues for
decision-making grounded in accuracy, inclusivity, and sustainability. By offering
a detailed replication of systems and stakeholder traits, DTs allow for a nuanced
exploration of potential decisions and their impacts across various domains.

4 Bringing it all together

To improve decision-making in transforming markets, we recommend incorporat-
ing diverse interdisciplinary research insights into a cohesive framework. Figure 1
illustrates a proposed model designed to handle and analyze the complex scenar-
ios encountered in decision support for our use case. Our framework is structured
around four principal components: Data, Coordinator, Modeling and DSS.

The Data component plays an important role in this architecture, facilitat-
ing the flow of information between independent components, akin to the tech-
nical architecture proposed by [38]. This component serves as an intermediary,
managing communications between the central coordinator and individual data
storages. It enables the dynamic use of various database systems, tailored to the
specific sources and types of data available. This flexibility enhances the system’s
ability to effectively leverage diverse data structures and storage technologies.

Essential to our overall decision support tool is the Central Coordinator, a
component which facilitates communication with other system components via
APIs. The concept is based on the data-science engine driven generator-analyst
component proposed in [38], and expanded upon beyond analysis functionalities.
The primary function of central coordinator is to initialize simulation models
with stakeholder-specific data, thereby creating a DT on which simulation ex-
periments are conducted and assessed. This setup enables the DSS to provide a
graphical, interactive user interface, allowing stakeholders to manage simulation
experiments and analyze results effectively.

The Modeling component has a complex structure. The simulation API serves
as a vital link between the coordinator and a model repository, where each of

Fig. 1. Suggested Architecture
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the n models addresses specific layers defined during the preprocessing of stake-
holder data. These different layers of decisions underscore the necessity for di-
verse models. A method to differentiate and classify these models involves using
the three dimensions of socio-technical energy transition (STET) models, which
include the level of techno-economic detail, the scope and heterogeneity of ac-
tors, and transition pathway dynamics [29]. Moreover, conceptualizing DTs in
layers can significantly enhance the focus when addressing specific queries [36].
We recommend establishing distinct logical layers and determining the extent to
which stakeholder and other data influence these layers. We suggest that the se-
lection of layers for a DSS, particularly for the context of transforming markets,
should be guided by the sociological, technological, economical, environmental
and political (STEEP) dimensions [40], and potentially extending to include fur-
ther (e.g. legal) dimensions. The choice of layers should depend on the priorities,
scope, and available resources of the specific scenario being modeled. The pri-
mary advantage of defining logical layers lies in facilitating the categorization of
model purposes. This categorization not only aligns with the characteristics of
STET models in terms of content but also helps in identifying the types of ques-
tions the models are designed to answer. This structured approach enhances the
efficacy and relevance of the simulation models in our decision support frame-
work. Each layer within the framework is represented by a specific model; for
example, there is a distinct model dedicated to the economic layer. These models
incorporate further levels of complexity, adhering to the three-tier structure [19],
encompassing Macro-, Meso-, and Microlevels. Different models are needed for
each layer because a single model can become unwieldy [4]. Not all of these
models need to be agent-based; for instance, a macro model can be an economic
equilibrium model using differential equations. Specialized models serve differ-
ent purposes effectively. This approach allows for detailed representation and
analysis of interactions within each layer. The Macrolevel addresses exogenous
pressures that influence the system from a broader perspective. The Mesolevel
focuses on groups, formal rules, and technical elements that mediate the impact
of the Macro influences on individual behaviors and decisions represented at the
Microlevel. This hierarchical setup allows the model to capture and simulate
the complex interactions and dependencies across different scales, enhancing the
model’s ability to predict outcomes based on varying scenarios and interventions.

The DSS component is designed to enhance stakeholder interaction [46] and
decision-making efficiency through a user-friendly platform [7, 38, 8]. This sys-
tem features a graphical, interactive user interface that enables stakeholders to
actively manage and control simulation experiments. The DSS also includes tools
for comprehensive results evaluation: stakeholders can access analytical reports
and visual representations of simulation outcomes, facilitating a deeper under-
standing of each scenario. This capability is crucial for evaluating the implica-
tions of various decision pathways and aids in formulating strategic responses
to complex problems. By integrating these functionalities, the DSS serves as
a critical analytical tool, empowering stakeholders to make informed decisions.
This system bridges the gap between complex data processing and practical,
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actionable insights, marking a step forward in the usability and effectiveness of
decision support technologies.

The proposed architectural framework can be adapted to fit our specific use
case, such as a steel manufacturer and a local energy provider coordinating in-
vestments for the production of renewable energy, hydrogen and carbon-neutral
steel with emphasis on local cooperation. Strategic decision-making is facilitated
through the DSS component: relevant actors can actively engage with the sim-
ulation. This interactivity provides them the opportunity to probe various sce-
narios and assess the outcomes, which are vital for informed decision-making [8].
The opportunity to access the results of the simulation contributes to the user
trust by ensuring transparency and interpretability of the results. Additionally,
the multi-layer architecture can handle the complexities of evaluating scenarios
that balance cost, sustainability, and supply chain reliability. On one hand, this
architecture can help to better understand the impacts of EU environmental
regulations by providing integrated visualization and forecasting capabilities.
By segmenting these regulations into distinct economic, environmental, legal
and other relevant dimensions within the framework, the system can thoroughly
simulate the varied impacts. On the other hand, the implications of pricing ad-
justments, exploring new market opportunities, considering relocation options,
and enhancing economic cooperation can be simulated at the economic layer.
Thus, the multi-layer architecture helps ensuring a comprehensive evaluation
that supports strategic planning and regulatory compliance. Finally, the modu-
lar design allows for various data handling methods and integration of diverse
models, accommodating different scopes and time resolutions, thus the proposed
architecture has the potential to leverage real-time capabilities [12, 28, 45] to im-
prove the DSS for scenarios requiring operational analysis.

The reviewed literature and case studies provide valuable insights into the
specificities of using ABMs, MAS, and DTs for developing DSS in complex sce-
narios, such as transforming steel production. These technologies are adept at
modeling and simulating dynamic interactions among various stakeholders —
producers, suppliers, and consumers —highlighting the critical role of partner-
ships in this transition [46, 17, 47]. They enable the development of scenarios
for strategic decisions, such as investment choices or collaborations in hydrogen
production, which are essential for navigating the shift to hydrogen-based pro-
cesses [32, 20]. Furthermore, these systems can assess the systemic impacts of
transitioning to different hydrogen sources, thereby understanding their broader
implications on sustainability and market dynamics [13, 24, 15, 29, 11]. The inte-
gration of theoretical frameworks with empirical data and expert insights creates
robust models that support complex decision-making processes [21]. This tech-
nologies can incorporate sustainability and environmental metrics [14] to guide
CO2-neutral production and evaluate carbon footprints, aligning with industry
goals and regulatory standards. This evidence underscores the transformative
potential of ABMs, MAS, and DTs in enhancing the strategic capabilities of
DSS to manage the complexities associated with industrial transformations.
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5 Conclusions

This paper explored the use of ABMs, MAS, and DTs to support decision-making
in the steel industry’s transition from coal-based to hydrogen-based production.
It emphasized the importance of these technologies in simulating complex in-
teractions and dynamics to enhance strategic planning and sustainability. The
research identified key challenges and opportunities in implementing these tools
for industrial transformation, highlighting their utility in scenario analysis and
stakeholder engagement.

The main findings demonstrate that ABMs and MAS are effective in visual-
izing dynamic interactions and market dynamics, while DTs help in creating ac-
curate simulations of real-world processes to assist in strategic decision-making.
By integrating these technologies, the paper presented a conceptual framework
and architecture designed to tackle complex decision-making in areas such as the
steel industry. This integrative approach is shown to be crucial for understand-
ing and navigating the multifaceted challenges of sustainable industry practices
and regulatory compliance.

Our literature and case study review, alongside the development of a generic
model and the integration of accumulated knowledge, are designed to assist
modelers in addressing complex use cases, such as transitioning steel industry.
By synthesizing existing frameworks and introducing an advanced integrative
model that combines ABMs, MAS, and DTs, we provide modelers with a possible
tools and methodologies to develop sophisticated DSS. This structured approach
helps modelers effectively manage the dynamic interactions and systemic impacts
associated with complex use cases, such as those related to technological and
policy shifts in the industry.

This study’s main limitation is its theoretical approach to integrating tech-
nologies, which needs empirical validation in real settings. Future research should
implement MAS and DT technologies in the steel industry to assess their real-
world impact, considering regional and organizational specifics, regulatory dif-
ferences, and economic conditions. Empirical studies will fill existing gaps and
enhance understanding of digital technologies in sustainable transformation, po-
tentially elevating MAS and DT technologies’ role in strategic decision-making
within and beyond the steel industry.
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