
Point-based Weakly Supervised 2.5D Cell
Segmentation

Fabian Schmeisser12[0000−0001−8222−7900], Andreas
Dengel12[0000−0002−6100−8255], and Sheraz Ahmed1[0000−0002−4239−6520]

1 German Research Center for Artificial Intelligence (DFKI) GmbH, Kaiserslautern
67663, Germany

2 RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany

Abstract. Volumetric microscopic images show cells in their natural
state and solve various problems inherent to 2D projections. The develop-
ment of competent Deep Learning methods to segment cells in 3D images
is, however, held back by the extremely time-consuming and error-prone
process of manual ground truth creation. To reduce the burden of manual
annotation in 3D, we propose a weakly supervised 2.5D cell segmenta-
tion approach that learns to accurately predict 3D segmentation masks
from weak, slice-wise point labels. We show that even a single point per
cell as ground truth label is sufficient to train a network on par with
a fully supervised model that outperforms a top contender of the ISBI
Cell Tracking Challenge, and with performance close to that of a fully 3D
approach while requiring only a fraction of the resources. The slice-wise,
point-based annotation scheme, not only reduces the time required to
annotate 3D cell datasets by an estimated factor of 6, but also simplifies
the complex and error-prone process of manually segmenting cells using
3D software.
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1 Introduction

Cell segmentation is a cornerstone in biological and pharmaceutical research. Ac-
curately segmented cells in microscopy images help with the development of novel
treatments for a wide variety of diseases. As such, cell segmentation paves the
way to diagnose deadly diseases like various forms of cancer early, or to prevent
them altogether. Especially 3D images, acquired with modern imaging methods
like Z-stack acquisition, show individual cells in a more life-like state and can
resolve problems that are inherent to 2D projections. With 3D images of cell
cultures, overlapping cells can be clearly separated, and rotation or movement
in z-direction cannot be mistaken for a shape change of a cell. A massive hurdle
to overcome in this domain is the extensive labor and the necessity of expert
knowledge when manually segmenting cells in microscopic images. This problem
is especially prevalent for three-dimensional image stacks of cell cultures, where
manual segmentation necessitates the individual annotation of single slices or
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the complex and error-prone annotation via 3D visualization software. With the
rise of computer vision methods and specifically deep learning (DL) over the past
decade, many approaches have been developed that ease this burden by employ-
ing computer-aided systems to quickly and accurately segment cells [16] [6] [15].
Given that the nature of these technologies is, however, often reliant on fully
supervised DL methods, the training of such systems is inherently intertwined
with the manual creation of ground truth masks. In this study, we present a
novel 2.5D cell segmentation strategy that leverages weakly annotated ground
truth to predict full segmentation masks with accuracy effectively equal to full
supervision. By adapting point-based supervision [4] which has been proven to
be successful in 2D cell segmentation [11], leveraging different 2.5D data aug-
mentation techniques to encode spatial information in the Z-dimension into 2D
image slices, and integrating an intersection-based slice stacking method, the
method saves computational resources during training and inference in addition
to reducing the time required for the manual annotation of cells.

We show that our method outperforms one of the top-ranked methods sub-
mitted to the ISBI Cell Tracking Challenge [13] in both, fully and weakly su-
pervised settings, and comes close in performance compared to a popular 3D
approach [19] while requiring only a fraction of the resources. We additionally
provide insight into the influence of data pre-processing strategies used to encode
z-directional spatial information into 2D slice representations, as well as post-
processing strategies used to re-construct 3D masks from slice-wise predictions.

2 Related Work

Our point-supervision 2.5D cell segmentation method rests on the two foun-
dational pillars of 2.5D/3D instance segmentation and weak supervision using
weak labels. As, to the best of our knowledge, a combination of these two fun-
damentals does not exist in published literature on the topic, we discuss each
pillar individually in this section. Fundamentally, image analysis methods that
deal with 3D images can be classified into two general categories: 2.5D and 3D.
For a very general distinction, 3D methods deal with fully volumetric in- and
output, while 2.5D methods take 2D slices of a volumetric image as input [24].
In general, 2.5D methods are much less intensive on resources and can thus run
even on lower-end hardware not necessarily specialized for deep learning tasks.
3D Cell Segmentation Weigert et al. [19] present a 3D cell instance seg-
mentation method based on a modified 3D ResNet neural network backbone to
predict star convex polyhedra representations and values indicating the likeli-
hood of a pixel being part of an object. This fully volumetric approach is tested
on isotropic data and relies on convex, elliptic cell shapes to produce accurate
segmentation masks. Jelli et al. [9] improve upon the aforementioned method
with a novel post-processing algorithm that allows for accurate segmentation of
cells even if they are not necessarily elliptic. Eschweiler et al. [7] leverage the
predictive capabilities of the 3D U-Net network architecture [5] coupled with
Watershed post-processing to generate segmentation masks from a volumetric
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input. Just minor modifications to the number of filters of 3D U-Net are shown
to yield impressive results for 3D cell segmentation.
2.5D Cell Segmentation Cellpose [16] on the other hand, is a generalist ap-
proach primarily developed for 2D cell segmentation, that is extended to 3D
by predicting masks on each slice in x, y, and z direction and fusing the pre-
dictions together for a final 3D segmentation output. Wagner and Rohr [18]
introduce a novel data augmentation strategy to integrate information about
neighboring slices in z-direction into a 2D input for their proposed cell segmen-
tation pipeline. This data augmentation strategy called pseudocoloring is based
on a rough, non-DL, pre-segmentation of neighboring slices and subsequent as-
sembly of three neighboring slices to mimic a typical RGB image input. Wu
et al. [22] suggest a strategy based on ensemble learning and slice fusion for
three-dimensional nuclei instance segmentation. The authors use an ensemble
of various Mask R-CNN adaptations, a network architecture commonly used in
2D cell segmentation tasks [6]. Nuclei segmentation masks for each 2D slice of a
volume are generated by using several object detectors and then merged into a
3D segmentation mask. Finally, Scherr et al. [13] employ an adapted U-Net with
two decoder paths to predict neighbor distances of individual cells. The authors
achieved multiple top-3 rankings, which improved versions of the approach still
occupy, in the ISBI Cell Tracking Challenge [17].
Weakly Supervised Cell Segmentation In the realm of weak supervision,
we differentiate between two distinct forms: Missing or incomplete annotations,
where networks are trained on datasets containing inaccurate or incomplete
ground truth masks, and weak labels, where datasets are densely labeled, but
labels are of lower information density and cheaper to produce than full mask
annotations. While various popular approaches in 3D cell segmentation deal with
the first form of weak supervision, missing or incomplete annotations, by ignor-
ing loss calculation at these image regions [1] [25], or by leveraging synthetic data
to strengthen poor annotation quantity [26] [23], the usage of weak labels has, to
the best of our knowledge, not yet been applied to 3D cell segmentation. In the
realm of 2D cell segmentation, segmentation techniques employing weak labels
are more prevalent. Point2Mask [11] is based on an augmented version of the
Mask R-CNN architecture, that uses sparse point labels instead of full ground
truth masks. Based on [4], ground truth annotations consist of automatically
generated, randomly sampled points inside a manually annotated bounding box
containing a single cell instance. The authors show, that even though the time
taken to annotate cell instances is reduced by up to 6 times, prediction accuracy
of the network is close to that of a fully supervised method.

3 Dataset

The severe lack of accurately and fully annotated ground truth data is one of the
biggest issues holding back the development of reliable and generalizable 3D cell
segmentation methods, and the main motivation for the development of our ap-
proach. To fairly judge the performance of our approach against fully supervised
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Fig. 1. Sample volume of the N3DH-SIM+ dataset

methods, we decided on a synthetic dataset provided by the ISBI Cell Track-
ing Challenge [17] website, which is by design guaranteed to have dense, highly
accurate ground truth segmentation masks. The dataset Fluo-N3DH-SIM+, as
shown in figure 1, contains 230 anisotropic 3D images of simulated C.elegans
cells with resolutions ranging from 59x639x349 to 59x652x642. We henceforth
refer to the respective dimensions of a volume as x, y, and z, where z describes
the first, x the second, and y the third value (i.e. ZxXxY ) of a volume’s reso-
lution. As the dataset consists of two distinct time sequences, comprised of 150
and 80 volumes respectively, we manually choose training, validation and test
splits. We split the dataset into training data (170 images), validation data (20
images) and testing data (40 images). The first 120/50 images of time sequences
1/2 are used for training, the next 10/10 for validation, and the final 20/20 for
testing. With this dataset partitioning, we can ensure that our network is capa-
ble of generalizing from initial information of a sequence to unseen information
at later time steps.

4 Proposed Method

Our proposed method is composed of various building blocks, that are described
in the sections below. The pre- and post-processing schemes, as well as supervi-
sion modality, can be interchanged to find the best-working overall strategy for
a particular dataset.

4.1 2.5D Data Augmentation

To test how spatial context between neighboring slices can be leveraged for 2.5D
training, we use three different augmentation techniques to prepare 2D image
slices taken from the 3D images for processing by our network.
Single Slice Input. The input is composed of only a single grayscale image
slice in z-direction and its respective ground truth segmentation masks. With
this input modality, no spatial context associated with other objects in the z-
direction is encoded.



Point-based Weakly Supervised 2.5D Cell Segmentation 5

Three-Slice Input. The input consists of one slice s alongside the correspond-
ing ground truth, as well as the slices directly neighboring s in z-direction, s− 1
and s+1. The slices are concatenated along the channel axis, and the final input
resembles a typical RGB-image.
Context-aware Pseudo Coloring. We adapt the context aware pseudo col-
oring pre-processing method proposed in [18]. The method consists of several
pre-processing steps for each three-slice stack, that aims to highlight regions in
the center slice where cells are located in neighboring slices. With the use of con-
trast limited adaptive histogram equalization filters, a rough pre-segmentation
via thresholding and multiplication of intensity values, a pseudo-colored image of
the central slice is generated that supports the model’s capabilities of capturing
spatial context.

4.2 Model

Fig. 2. Proposed pipeline for weakly supervised 2.5D cell segmentation. The structural
overview of the DL model architecture is outlined in red. For each data augmentation
strategy, individual models are trained. The reconstruction strategies are model agnos-
tic.

We adapt the Cascade Mask-RCNN architecture [3] with a ResNet50 Feature
Pyramid Network backbone [12], which has proven to be a successful tool for
cell segmentation in 2D and excels at learning from weak labels [10]. The proven
viability of this network in combination with point supervision makes it an ideal
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candidate to introduce point supervision to the realm of 3D cell segmentation.
The three main building blocks of the pipeline as shown in figure 2 are as follows:
Feature Pyramid Network (FPN) with ResNet50 Backbone as the first
block of the pipeline has the purpose of extracting feature maps from the input
image at varying scales. The bottom-up and top-down pathways with lateral
connections allow the network to extract high-resolution, semantically strong,
as well as low-resolution, semantically weak features.
Region Proposal Network (RPN) receives the extracted feature maps from
the FPN backbone and fulfills the task of detecting Regions of Interest (RoIs)
and aligning them with the ground truth.
The Prediction Heads finally, have the purpose of outputting the segmenta-
tion masks, as well as bounding boxes and object classes. The 3-stage cascading
mask heads further improve segmentation performance over the singular mask
head of a standard Mask RCNN [8]. This improvement is achieved by increasing
IoU thresholds for each prediction head and thus refining segmentation predic-
tions by providing more accurate bounding boxes to the mask head. We adapt
the loss calculation according to [4] for weakly supervised training.

4.3 Pointly Supervision

Fig. 3. Comparison of ground truth annotations overlayed over the corresponding im-
age slice. Full mask annotation (left) and point annotation (right). Points inside cells
are marked in white, points outside cells in red. Bounding boxes surrounding the cells
in yellow.

For Pointly Supervision, the annotation approach of object instances is as
follows: A bounding box is manually drawn by an annotator around each object
instance in the dataset. Within this bounding box, a set number of points is
generated at random positions. The annotator now has to decide if the point
lies inside an object or outside the object and marks the point as 1 or 0 respec-
tively. Depending on the number of points generated, this leads to an estimated
annotation speed-up of between 2 and 6 times [11]. The model’s mask head loss
calculation is adapted to calculate a loss for the point annotations by employing
bilinear interpolation to approximate the predictions at the location of ground
truth points instead of comparing its output to full ground truth masks. The
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same loss function that is used for full supervision can be applied to the point
labels in this way and the error is backpropagated through the interpolation in
addition to the pipeline architecture.

4.4 Post-Processing

We employ two distinct post-processing schemes to re-construct 3D segmenta-
tions from the slice-wise predictions produced by our pipeline.
Semantic Reconstruction and Watershed Post-Processing. The first post-
processing scheme discards the instantiated outputs and instead fuses the pre-
dictions only on a fore- and background basis. This results in a 3D semantic
segmentation mask that is subsequently instantiated using the 3D Watershed
Algorithm [2]. Due to a lower likelihood of overlapping cells in microscopic im-
ages with sufficiently high resolution along the Z-axis, the Watershed Algorithm
is expected to perform well on the semantic 3D masks. This is evidenced by
the prevalence of creating semantic-level segmentation predictions using a deep
learning algorithms and instantiation via Watershed in 3D cell segmentation [7]
[18] [20].
Intersection-Based Slice Stacking. The second scheme directly leverages the
instantiated output produced by the ROI-based method and accumulates pre-
dictions through the Z-axis by clustering instance predictions with high overlap
into a single 3D instance. A visual representation of this clustering scheme can be

Fig. 4. Intersection-based object matching. The intersection score is calculated as over-
lap between two objects divided by total area of the smaller object.

seen in figure 4. Since all objects in the predicted image are already instantiated
by using an R-CNN RoI detection scheme, this method is less prone to split
singular objects into two, due to poorly generated seed points, or ambiguous
distance transforms. This is a problem often encountered when using the Water-
shed Algorithm without sufficient preliminary knowledge of object structure in
the dataset, and thus incorrect choice of parameters. We therefore assume that
this reconstruction method is more generalizable when analyzing unknown data.
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4.5 Metrics

We choose two different metrics to evaluate quantitative performance of our
approach and baseline methods, namely SEG and Accuracy. The SEG metric as
defined in [17] is based on the Jaccard similarity index (often also referred to as
Intersection over Union (IoU)) which measures the similarity between two sets
of pixels:

IoU(GT,P ) =
|GT ∩ P |
|GT ∪ P |

(1)

where GT is the set of pixels describing a ground truth mask, and P is the
set of pixels that form a prediction. To match a ground truth instance with a
prediction instance, the following condition must be true:

|GT ∩ P | > 0.5 · |GT | (2)

For each GT object, at most one predicted object can be considered matching.
If there is no predicted object that satisfies the above condition, the score for
this GT object is set to 0. Otherwise, the score is set to the corresponding IoU.
The SEG score is then calculated as a mean over all measured scores for each
GT object.
The SEG metric, however, does not take False Positives into account since pre-
dictions that do not match a GT object are not considered. We therefore addi-
tionally use the Accuracy metric

Acc(GT,P ) =
TP

TP + FP + FN
(3)

which takes true positives (TP), false positives (FP) and false negatives (FN)
into account. We use different IoU thresholds to count the number of predictions
that are considered TPs, FPs, and FNs in the range of [0.1, 0.2, · · · , 0.9]. For the
Accuracy at a certain IoU threshold X, we use the abbreviation Acc@X.

5 Results

To show the validity of our segmentation approach, we first draw a quantitative
comparison between our method, a 2.5D method that is one of the top con-
tenders of the ISBI Cell Tracking Challenge, and a fully volumetric method. All
algorithms are trained and tested on identical subsets of the Fluo-N3DH-SIM+
dataset. We continue by evaluating performance respective to the employed 2.5D
pre-processing scheme, and compare weakly supervised performance with respect
to the number of points used for ground truth annotation.

5.1 Comparison to SOTA

To show the validity of the pipeline architecture, we compare its performance to
the algorithm proposed by [14] (KIT-SCHE) and the latest version of the popu-
lar volumetric approach Stardist3D [19] with a 3D U-Net backbone. KIT-SCHE
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currently occupies top-3 spots in the Cell Segmentation Benchmark leaderboard
for nine different datasets, including three 1st places. The official implementa-
tions of KIT-SCHE [14] and Stardist3D are used for training and evaluation.
KIT-SCHE is trained for 200 epochs, Stardist3D is trained for 2000 epochs. We
use the same train/test/validation splits as for the training of our method. For
evaluation, we employ the official evaluation software published by the organiz-
ers of the Cell Tracking Challenge, which calculates prediction quality using the
SEG metric [17]. Note that the results for KIT-SCHE provided in this study
may differ from the results posted on the Cell Tracking Challenge leaderboard.
Our test split differs from the official test set used to calculate results for the
leaderboard, as the latter does not come with publicly available ground truth.
The results of the quantitative comparison can be seen in table 5.1.

Table 1. Comparison between the fully supervised setup of our method against KIT-
SCHE [14] and Stardist3D [19]. Our method outperfoms the 2.5D method KIT-SCHE
in all setups and has a SEG score close to the fully volumetric Stardist method. VRAM
usage is measured as the minimum required amount for full image resolution, using a
batch size of 1.

Method SEG metric Acc @ 50 Acc @ 70 VRAM usage Modality

KIT-SCHE 0.639 0.580 0.341 3.18 GB 2.5D
Ours (1-slice) 0.666 0.771 0.438 2.73 GB 2.5D
Ours (3-slice) 0.732 0.848 0.581 2.90 GB 2.5D
Ours (pseudocoloring) 0.646 0.713 0.415 2.74 GB 2.5D
Stardist3D 0.793 0.951 0.875 43.80 GB 3D

Our approach outperforms KIT-SCHE in all setups, but specifically, our best
setup, 3-slice training, outperforms it by almost 0.1 in the SEG metric. The dif-
ference in performance becomes even more apparent with the accuracy metric,
where even our weakest setup has a significant advantage over KIT-SCHE at
both, 50% and 70% IoU thresholds. The large difference in accuracy is most
likely due to more false positive predictions by KIT-SCHE, which are not pe-
nalized using the SEG metric. Qualitative results show a similar pattern. Figure
5 provides a comparison between ground truth, KIT-SCHE, and our method in
3D and single slice views.

The comparison shows the tendency of our approach to under-segment small
objects, as well as avoidance of false positives. This proves to be beneficial to
prediction accuracy, as inaccurate segmentation of less visible objects in 2D as
well as over-segmentation lead to less accurate results in 3D. When objects are
detected correctly by both algorithms, our approach shows better area coverage
and shape approximation.
In comparison to Stardist3D, our approach slightly underperforms in SEG and
Acc@50 measures. However, during training Stardist3D requires over 40 GB of
VRAM, which is only provided by specialized deep learning hardware. Addi-
tionally, Stardist3D can only be trained with fully and accurately annotated 3D
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Fig. 5. Comparison between our approach in a fully supervised setup against KIT-
SCHE. The red boxes show examples of over-segmentation or segmentation of barely
visible objects, which are detrimental to accuracy in 3D reconstructions. Yellow boxes
show better cell shape approximation and area coverage by our approach of cells cor-
rectly identified by both approaches.

ground truth masks, while even the fully supervised iteration of our approach can
be trained on partial, slice-wise annotations. In any setting that does not provide
high-end hardware and perfect annotations, as is the case for many biological
and pharmaceutical research institutes and data, training the fully volumetric
approach is not feasible.

5.2 Number of Weak Annotations, 2.5D Pre-Processing and 3D
Reconstruction

We assess quantitative performance of different supervision, pre-, and post-
processing modalities using 3D performance metrics. The SEG metric employed
by the ISBI Cell Tracking Challenge gives a good estimate of overall perfor-
mance, while the accuracy at different thresholds can provide more detailed
insights. Figure 6 shows an overview of SEG scores achieved by our models with
respect to post-processing scheme, number of points used for supervision, and
2.5D data pre-processing.

Overall, the 3-slice 2.5D pre-processing scheme far outperforms the other
methods in every constellation. Applying pseudo-coloring to the model input
matches single-slice input when a low number of points is used for supervision,
but shows diminishing returns for higher number of points. While both, 3-slice
and pseudocolored inputs, are meant to provide spatial context in z-direction,
the pseudocoloring scheme does not encode this spatial information in a way
that is significant to our model’s performance.

In contrast to [4] and [11] we do not see significant differences in quantita-
tive performance for a reduced number of points in the case of 3-slice input. We
attribute this to the comparatively less complex object shapes contained in the
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Fig. 6. SEG scores for the different training, post-processing, and 2.5D data augmen-
tation modalities.

Fig. 7. Accuracy, Recall, and Precision at different IoU thresholds for 1 and 10 point
supervision, as well as full supervision.

Fig. 8. Comparison between ground truth, KIT-SCHE[14] and our method. Our ap-
proach is trained using only 1 point as ground truth label, while KIT-SCHE is trained
with full mask annotations. Visualizations are done with the Napari software [21]
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dataset and unclear object outlines inherent to slice-wise representations of 3D
microscopic images. Since even human expert annotators often cannot match
ground truth with IoUs over 80% for 3D cell images [9], the output of 2.5D
and 3D segmentation methods has a higher dependency on estimation of object
shapes. This leads to our point supervision approach achieving results equal to
that of full supervision, even if only a single point is available as ground truth.
Concerning the difference between post-processing methods, Watershed post-
processing slightly outperforms Intersection-Based slice stacking for stronger se-
tups, while Intersection-Based post-processing elevates quantitative performance
for weaker setups.

Fig. 9. Side-view of mask predictions by KIT-SCHE, Stardist3D, and our method. The
red boxes indicate jagged edges, 3D reconstruction artifacts inherent to 2.5D meth-
ods. Full depth context allows volumetric methods to produce smoother segmentation
masks.

A comparison of the accuracy, precision, and recall metrics for the best per-
forming setup, 3-slice input and watershed-aided reconstruction, using 1 point,
10 point, or full mask supervision, can be seen in figure 7. We have near equiva-
lent performance at all IoU thresholds, regardless of the number of points used for
supervision. We can therefore assume that single point supervision is completely
sufficient to train a segmentation model on the dataset Fluo-N3DH-SIM+.
The most notable qualitative difference between the 2.5D setups and the fully
volumetric Stardist3D can be seen in figure 9. Due to the necessity of slice-
stacking to reconstruct 3D predictions, KIT-SCHE and our approach show no-
table edges. While Stardist3D produces smoother results, this can sometimes be
detrimental to accurate cell coverage, as exemplified by the rightmost large cell
instance in figure 9.
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5.3 Estimated Time Savings When Using Weak Annotations

We estimate the time saved during the annotation process by consulting two
sources, namely [9] and [11], that provide approximate times for annotating
cells in 3D and in 2D respectively. Expert annotation of a single cell in 3D
requires between 300 and 420 seconds [9]. The authors find, however, that such
annotations are often of low quality and in need of refinement. We assume a
similar correlation between full mask and bounding box annotation speed in
3D as in 2D, given as 11x [11], and equal time for 3D mask refinement and
refinement of the 3D bounding box to more accurately enclose objects when
viewed slice-wise. Then, bounding box generation requires between 27 and 38
seconds for one cell. With cells spanning an average of 28 Z-slices in the Fluo-
N3DH-SIM+ dataset and an average time of 0.9 seconds per point annotation as
in [11], the total annotation time for a single cell using single point annotation
and bounding boxes is approximately 51.3 to 62.3 seconds. Overall, we can thus
expect a speed-up of roughly 6 times when comparing a full 3D mask annotation
to our proposed point annotation scheme.

6 Conclusion

We propose a 2.5D cell segmentation approach that outperforms one of the
highest-ranking approaches on the ISBI Cell Tracking Challenge leaderboard
by a fair margin. Moreover, the proposed approach can be trained with only a
single point as ground truth, without diminishing its quantitative and qualita-
tive performance. By benchmarking and evaluating different data pre-processing
strategies as well as 3D reconstruction strategies, we find that our algorithm
significantly benefits from the spatial context provided by 3-slice input. The an-
notation process for 3D microscopic images is known to be not only extremely
time-consuming, but also highly prone to errors. Using single point-based weak
labels as ground truth for a 2.5D deep learning algorithm makes the annota-
tion of full 3D datasets feasible. Especially in cases of unclear boundaries and
barely visible objects, problems that are currently unavoidable for microscopic
images acquired through Z-stack acquisition, slice-wise point annotation can even
eliminate biases introduced through approximations of cell shapes. Our method
therefore provides a way to efficiently prepare the vast amount of unlabeled
3D microscopic image data that is available through various sources for deep
learning-based segmentation methods. By reducing this burden to a manageable
degree, our work can thus support researchers in studying cells in a more life-like
3D representation far more effectively.
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