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Abstract—Autonomous docking for underwater vehicles, espe-
cially locating the docking station, presents significant challenges
for deploying sub-sea resident AUVs in exploration and moni-
toring tasks. To extend a fiducial marker-based docking station
detection we propose to use the state-of-the-art object detection
deep learning models, specifically YOLOv8 in various sizes. We
assess the robustness of these models in detecting docking stations
by training different model sizes under various configurations
on a dataset collected at the DFKI test basin in Bremen,
Germany. To show and improve their performances in a real-
world under-ice scenario we utilize a previously recorded dataset
from Torneträsk lake in Abisko, Sweden [1]. The performance
of these models is then compared to the previously used fiducial
marker-based docking station detection. Our results show that a
combination of both the classical detection method with one of
the trained YOLOv8 models improves the detection performance
significantly.

Index Terms—AUV, autonomous docking, under-ice explo-
ration, object detection, deep learning

I. INTRODUCTION

Marine robotics are revolutionizing underwater exploration,

industry and research, providing innovative solutions for envi-

ronmental monitoring and offshore operations, while rapidly

evolving to meet the diverse challenges of the marine world.

The exploration and understanding of underwater environ-

ments have long posed significant challenges where au-

tonomous underwater vehicles (AUVs) have emerged with key

importance.

For extended duration missions, resident AUVs are required

[2], which can operate over long periods without human

intervention, making them ideal for sustained monitoring and

exploration tasks. Their ability to dock, recharge, and transmit

data autonomously allows for continuous operation in remote

or harsh environments. Many areas of the ocean are difficult or

dangerous for humans to reach, such as deep-sea trenches or

under-ice regions. AUVs have the potential to safely operate in

these conditions, providing valuable data that would otherwise

be inaccessible. Additionally they can be equipped with a

variety of sensors and instruments to collect high-quality

data on oceanographic conditions, marine life, and underwater

topography. This data is crucial for scientific research and

environmental monitoring.
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Fig. 1: Exploration AUV DeepLeng [5] approaching the dock-

ing station.

A specific field of application for resident AUVs is in

under-ice environments [1], both on the terrestrial and extra-

terrestrial settings. Over the past two decades, there has been

an increasing interest in autonomous exploration beneath ice,

focused on ocean monitoring, and climate research but also

in searching for extra-terrestrial life beneath the icy surfaces

of moons [3]. In such environments, the underwater docking

process [4] is a critical aspect as it allows the AUV to

return for charging, data transmission, and maintenance, but

also increasing their efficiency and capability in underwater

exploration. This paper will delve into the enhancement of

the detection capabilities of AUVs during the autonomous

docking process, a vital aspect for their continuous operation

in challenging environments.

The primary goal of this research is the application of a

state-of-the-art deep learning model and perform a thorough

comparative analysis of its performance in recognizing an

underwater docking station as shown in Figure 2, and fine-

tuning the model to adapt to various visibility conditions. In

environments with low visibility and poor lighting conditions,

the fiducial Apriltag markers that are also visible in Figure

2 are not detectable by the Apriltag detector. Applying deep

learning to this should help to improve these limitations. The

learned model will be evaluated using the recorded datasets.

In addition the unification of the existing docking station

detection by Apriltag detection with the trained deep learning

models is shown.



We aim to recognize a single, predefined static underwa-

ter docking station, providing a consistent reference across

the different environments such as a natural lake [1] and

a controlled test basin at DFKI in Bremen, Germany [6].

Comparison of performances of the deep learning models on

distinct compositions of various recorded underwater datasets

is done and different pre-processing steps are applied. As part

of this process different model configurations are trained and

evaluated to show there difference of performance and ability

to generalize on the given environments.

II. RELATED WORK

Perception is still a major challenge for AUVs operating

in underwater environments [7]. Despite the impact of the

challenging visual conditions such as lighting and turbidity,

visual cameras are widely used for various object detection

tasks. Most research towards object detection in underwater

environment focuses on life objects such as coral reefs, var-

ious kind of living things but also artificial structures such

as pipelines [8]–[18]. Within these research articles various

methods and model architectures were used, such as various

You Only Look One (YOLO) models [8], [11]–[17], ResNet

[10], (Faster) RCNN [8], [11], [18], [19] or other model

architectures [9]. There are also public datasets available as

part of the Roboflow 100 dataset [20].

Most of these related research articles used various YOLO

models [21] for object detection with great results in different

domains. Over the years various improvements were made

to the model architecture yielding both detection accuracy

improvements and training efficiency increase. [22]–[24].

Another widely researched field in using object detection in

underwater environments is in the usage of AUVs as sub-sea

residents. The challenge for this kind of applications is the

necessity to have a docking station which is used to recharge

the AUV between different missions. Some research relies

on using passive and active artificial fiducial markers on the

docking station for detection and localization [4], [25]–[28].

While these methods already work reliably under good visual

conditions, it is still difficult to detect a docking station under

bad visual conditions.

III. METHODOLOGY

This section outlines the datasets collection preparation,

model configuration, and experimental setup used for the

detection capabilities of AUV docking station.

A. Datasets

In this paper, a pre-recorded under-ice dataset from Lake

Torneträsk in Abisko, Sweden [1], [29] is utilized in addition

to two datasets recorded in the basin at DFKI in Bremen, Ger-

many [6]. The basin dataset was recorded from two separate

sessions using the AUV Deepleng [5]. The recording contains

images of the docking station at various angles, distances,

and light conditions. The collected images are processed and

organized to ensure consistency, with each image correctly

labeled with a single class named ”docking cone”.

(a)

(b)

Fig. 2: Images showing docking stations with bounding box

as labels in Lake Torneträsk (a) and the test basin at DFKI

facilities (b).

The datasets contain 1,650 images for the Abisko field trials

dataset, and 2,090 in the DFKI basin dataset both recorded

with a resolution of 2048 × 1536 pixels. The tool CVAT [30]

was used labeling that images and for training the base model

training, we used the DFKI basin dataset, with a split of 1600

images for training and 490 images for validation, from now

on named dataset A. For transfer learning on the Abisko lake,

we chose not to use the complete Abisko Field trials dataset

but rather only utilize the images that were recorded from

the start of the mission during undocking (79 images) and

for validation, all of the frames during return and docking

at the end of the mission (532 total images). We name this

dataset B. In addition to that, during training of the transfer

learning models, we handpicked 13 images from this larger

validation set to validate during training process as there are

lots of almost identical images in the bigger validation set. The

left out images were only recorded before actually starting the

exploration mission during the field trials. We chose to dismiss

them for our final results due to their repetitiveness.

B. Model Parametrization

Building upon the decision to employ the YOLO frame-

work for object detection, this paper will specifically utilize



YOLOv8, the latest iteration available when the research

was started. It was developed and currently maintained by

Ultralytics [23]. For training of our models we utilize the pre-

trained weights on the COCO [31] dataset, rather than training

from scratch.

1) Fine-Tuning and Model Development: Fine-tuning in-

volves using pre-trained weights from an existing model

and making small adjustments to enhance performance on

a specific task or dataset. Unlike classical training, which

starts from scratch, fine-tuning builds on a model that already

has learned knowledge. This approach saves time and com-

putational resources and is especially suitable when utilizing

smaller datasets.

2) Hyper-parameter Tuning: Hyper-parameters are the

high-level, structural configuration settings used to control

the training process of the model. These are set before the

training begins and remain fixed during the training process,

unlike model parameters which are learned from the training

data, such as weights in a neural network. They can have a

significant impact on the model’s performance and can affect

the speed, efficiency, and accuracy.

To achieve the best results in training, hyper-parameters of

the model needs to be configured and tuned according to the

dataset. These parameters are frequently changed and updated

during the tuning phase where multiple training sessions are

executed. Some common hyper-parameters include learning

rate, batch size, epochs, optimizer, and loss function but also

data augmentation parameters.

3) YOLOv8 Training: As Ultralytics [23] provides mul-

tiple variants, four of these variants, YOLOv8n, YOLOv8s,

YOLOv8m, and YOLOv8l are trained with their default hyper-

parameters to observe how the model size impacts the per-

formance on the custom dataset. YOLOv8x is excluded from

consideration due to its substantial size and complexity relative

to the available dataset. With a model size of 68.2M pa-

rameters and 257.8B FLOPs, YOLOv8x is significantly larger

and computationally more demanding than the other variants.

Given that our training dataset B contains only 2090 images

in total, it would be too large for the available training data,

potentially leading to over-fitting without a corresponding

significant improvement in Average Precision.

4) Data Augmentation: Image augmentation can improve

the robustness and performance of the models by introducing

variability into the training data, helping the model generalize

better to lake images. As it can be observed, the lighting

conditions in the lake (Figure 2a) are much darker and

monotonous as compared to the one from the basin (Figure

2b). Performing random jitters/adjustments to Hue, Saturation,

and Value (HSV) channels of training images set could mimic

the environment of under-ice lake. Figure 3 shows a sample

image which is generated after applying random HSV values

to the input image.

5) Transfer Learning: For fine-tuning our models both on

the DFKI basin data and especially on the Abisko lake data,

we use the principle of Transfer Learning [32]. By using pre-

trained models (on the COCO dataset and on the DFKI basin

dataset respectively) and freezing the first 10 layers of the

model, we aim to transfer already learned feature detection to

our specific domain. In addition to that we try to extend our

limited datasets by utilizing data augmentation as mentioned

in section III-B4.

C. Performance and Evaluation Metrics

Various metrics are used further in the paper to assess

the performance of the deep learning models. These metrics

include Precision and Recall, Average Precision (AP) and F1

Score. During our evaluation we focus mainly on Average

Precision (mAP50 and mAP50-95 ) to evaluate how well the

model places and scales the bounding boxes and the Recall to

assess its detection rate.

IV. EXPERIMENTS AND EVALUATION

A. Experiment Setup

1) Description of the AUV: The AUV DeepLeng [5] is

used to collect image data. It is equipped with several

perception-related sensors and for this research particularly,

Basler acA2040-35gc as a docking camera is utilized. Further

information about the AUV can be found at [5].

B. Comparison of Different Model Configurations

As previously discussed, four variants of YOLOv8 are

selected and trained. These models are trained and validated

on dataset A with different configurations applied such as

default hyperparameter setting from Ultralytics, freezing the

backbone layers or applying data augmentation. An overview

of the results is given in table I. For this comparison we chose

a common batch size of 16.

In the baseline model configuration, no layers are frozen,

and no data augmentation is applied, establishing the basic

performance of the YOLOv8 variants (first 4 lines of table

I). This provides a clear benchmark for understanding the

impact of further configurations and modifications. Among

these baseline models, the YOLOv8m model has the highest

mAP50 of 0.837.

After baseline model training, the effects of freezing the

initial layers of the model are observed. In our case, the

’backbone’ layers are frozen and only the ’Detect’ module of

the model is trained [33]. The data indicates that freezing lay-

ers can yield improvements in its performance. The YOLOv8l

model with frozen backbone achieved an mAP50 of 0.879 from

0.775, outperforming its baseline version. This suggests that

freezing the backbone layers can generally improve docking

station detection with more accuracy and precision but across

the other 3 model sizes we observe a degradation across all

metrics.

In the next steps, image augmentation is applied. It is noted

that there is a profound impact on model performance, having

significant improvements across all metrics. YOLOv8s with

data augmentation and 10 frozen layers achieved an mAP50

of 0.956 and high F1 score which represents a substantial

improvement over the baseline or frozen layers version of

itself.



Model Batch Size Frozen Layers Data Augmentation mAP50 mAP50-95 Precision Recall F1

YOLOv8n 16 0 NO 0.805 0.412 0.969 0.705 0.816
YOLOv8s 16 0 NO 0.59 0.296 0.999 0.585 0.738
YOLOv8m 16 0 NO 0.837 0.422 1 0.775 0.873
YOLOv8l 16 0 NO 0.775 0.46 0.998 0.656 0.792

YOLOv8n 16 10 NO 0.658 0.378 0.926 0.55 0.69
YOLOv8s 16 10 NO 0.531 0.282 0.988 0.44 0.61
YOLOv8m 16 10 NO 0.696 0.333 0.995 0.598 0.747
YOLOv8l 16 10 NO 0.879 0.509 0.947 0.832 0.662

YOLOv8n 16 0 YES 0.929 0.674 0.964 0.902 0.932
YOLOv8s 16 0 YES 0.792 0.448 1 0.632 0.774
YOLOv8m 16 0 YES 0.869 0.548 0.991 0.721 0.835
YOLOv8l 16 0 YES 0.894 0.592 0.979 0.838 0.903

YOLOv8n 16 10 YES 0.899 0.561 0.970 0.824 0.891
YOLOv8s 16 10 YES 0.956 0.721 0.977 0.957 0.967
YOLOv8m 16 10 YES 0.817 0.553 0.995 0.659 0.793
YOLOv8l 16 10 YES 0.922 0.594 0.985 0.851 0.913

YOLOv8m 8 10 YES 0.897 0.587 0.991 0.769 0.865

TABLE I: Top baseline models from each variant and config.

Fig. 3: Image generated with random HSV applied.

For further evaluation and transfer learning on real-world

lake images, we chose the best performing model based on

Recall and mAP50 of each model size to go forward with.

During our evaluation with different model sizes and training

configurations, we also tested the impact of different batch

sizes ranging from 8 to 32. While the best models of size n,

s and l were all trained with a batch size of 16, we found

that a batch size of 8 with data augmentation and freezing

the bacbkone worked best for the YOLOv8m model. With a

mAP50 of 0.897, Recall of 0.769 and F1 score of 0.865 it

outperformed the version with a batch size of 16 significantly.

The results of this particular model were added to Table I and

we marked the models in bold.

C. Evaluation on Real-World Lake Image Data

After training and validating the four different models on

recorded test images from the basin, they were validated on

real-world image data from dataset B which was collected

during a field trip to the lake Torneträsk near Abisko, Sweden

[1]. To recall, we selected images that contained the docking

station from this dataset [29] with an image index greater

than 5122, which corresponds to the AUV returning from

a mission to the docking station, as the validation data set.

The models were validated on a total of 532 images and the

default validation parameters. In terms of Recall the YOLOv8n

model performs best on validation dataset B with 0.613 and

a mAP50 performance of 0.483. The most accurate bounding

boxes were predicted by the YOLOv8l model with a mAP50

value of 0.619. While these performance metrics are worse

compared to validation with dataset A shown in table I, the

models are already able to generalize on the real-world dataset

B from the Torneträsk lake in Abisko.

D. Transfer Learning (TL) for real-world scenario

To further improve the docking station detection perfor-

mance of the chosen models we composed dataset B of only 79

images for training which were recorded during the undocking

process in the dataset [29]. It contains only positive docking

station examples with mostly close-up frontal view of the

docking station. As validation data during the training process

we handpicked a set of only 13 images from the 532 previously

used images during the return to the docking station. Using

this data, the pre-trained models from IV-B were trained and

compared in a similar fashion, using different frozen layers,

data augmentation and batch size configurations. In table II

only the configuration and metrics of the best performing

transfer learning models are shown. All models perform almost

identical on the selected 13 images. The YOLOv8s model

stands out with a perfect F1 score on the selected validation

data, while the YOLOv8m model achieves the most accurate

detection with a mAP50 and mAP50-95 value of 0.99 and

0.465 respectively. The high precision and recall values in this

case are observed due to the limited validation set of only 13

images which was used during the training process.

1) Comparison between fine-tuned and base models: For

better comparison, we chose to evaluate the transfer learning

models, trained on the selected lake images (dataset B), to

the baseline models, which were only trained on the test

basin dataset A. For validation we took the bigger 532 images

validation dataset from B. The comparison is shown in Figure



Model Batch Size Frozen Layers Data Augmentation mAp50 mAP50-95 Precision Recall F1

YOLOv8n 2 10 Yes 0.906 0.44 1 0.846 0.916

YOLOv8s 8 10 Yes 0.909 0.463 1 1 1

YOLOv8m 8 10 Yes 0.99 0.465 1 0.971 0.9851

YOLOv8l 8 10 Yes 0.925 0.463 0.99 0.846 0.914

TABLE II: Model validation on lake images during return to docking station after fine-tuning the model.

4. The baseline models are visualized in blue, the transfer

learning models in orange.

Most of the fine-tuned models perform better than their

baseline models across all metrics. We observe an improve-

ment in bounding box precision with mAP50 values being

slightly better across all models. Still the gains are only

marginal, except for the YOLOv8l model, where we can see

an increase of performance of roughly 29%. In terms of recall

there is actually a degradation for the YOLOv8n and YOLOv8l

models. Still due to the quite significant increase in terms of

precision the overall F1 score is increased across all models.

Noteworthy is that in this experiment due to the default setting

there can be multiple detections per frame that are not being

suppressed by the default Non-Maxima Supression (NMS)

setting of an default IoU of 0.6. To robustify the detections

for the upcoming evaluations, we therefore limit the maximum

number of detections to 1 per frame as we can assume to

only see one single docking station per image frame. The

single detection is chosen by the highest confidence value.

As visualized in Figure 4 this detection parameter tuning of

limiting the detection count increases the performance across

all models significantly.

E. Comparison to traditional AprilTag Detection and combi-

nation of both methods

To show the contribution of the trained models to detecting

the docking station when returning back to it after a mission,

we run AprilTag detection on all images of the validation set to

compare detection performance. With the Apriltag detections

being very robust against false positives, we assume that if

one detection is found in the image, it successfully detected

the docking station. We then calculate a Recall metric which

represents the normalized count of successful detections within

the validation data set. For the Apriltag [34] detector all the

default parameters are used except quad decimate is set to 6.0.

With these parameters, we achieve the most observations of

152 images having a positive detection, which yields a recall

of 0.286 on the utilized validation set of 532 images.

1) Combination of Apriltag and Transfer Learning Models:

To achieve the best detection results we propose to combine

the Apriltag detector with the fine-tuned models presented

in section IV-D. First and foremost for this comparison we

set the used detection confidence threshold from 0.001 which

was used in the previous section IV-D1 to 0.25. We retrieve

this value from the output confidence matrix that is generated

during the validation process of the model using the ultralytics

library [23]. In Figure 4 the precision and recall values are

calculated at the confidence value of 0.001. For a confidence

value of 0.25 we observe no false positive detections for

any model but a decreased recall of 0.58, 0.49, 0.57 and

0.54 across the different model sizes from n to l. For the

combination of both detection methods we define a positive

detection if atleast the model or the Apriltag detector detects

the docking station in a given image. For validation, we use

the validation images consisting of 532 images from returning

to the docking station after a mission. The recall of this

unification shows that the YOLOv8n and YOLOv8m models

perform best with a total count of detections of 386 or a

recall of 0.726. The other models perform similarly with

the YOLOv8s and YOLOv8l models having a recall of 0.694

and 0.724 respectively. While overall we see an improvement

compared to the previously observed recall using the 0.25

confidence threshold, this result is still on-par with the results

from solely using the models with a confidence threshold

with 0.001. But using this lower confidence threshold would

then again result in potential false-positive detections that can

hinder performance.

F. Model Performance on hand-picked image samples

The downside of the used validation data set is that it only

contains positive samples that actually contain the docking

station. In addition to that, it is hard to quantify its performance

on images with particular harsh conditions, such as dark

lighting, longer distances, or unique viewing angles. To show

the performance of the models we selected a handful of images

that were not part of the previously used validation data set.

In figures 5a and 5b we show examples of a typical scenario

when approaching the docking station from the front. All

but the YOLOv8l models were able to detect the docking

station in these two handpicked samples. The YOLOv8l only

detected the docking station in one of the two basic scenario

images. In figures 5c and 5d we show remarkable detection

results. Our models based on YOLOv8m and YOLOv8l are

able to successfully detect the docking station while barely

being visible at the edge of the image in figure 5c. Only

our YOLOv8s model was able to detect the docking station in

Figure 5d which shows robustness even to very sub-optimal

lighting conditions. In figures 5e-5h we show some odd false

positives that occurred across various models. Besides of the

shown examples, the models were also evaluated against sev-

eral examples from both datasets not containing the docking

station and even some other structures in the basin. All of the

models correctly did not detect the docking station in any of

those examples.



V. DISCUSSION

In this work we evaluate a selection of YOLOv8 models

trained with varying training configurations and model sizes

in the context of detecting an underwater docking station

for an AUV. We utilize two datasets, one recorded in the

test basin at DFKI, Bremen [6] and one recorded on a field

trip to the Torneträsk lake in Abisko, Sweden [1], [29]. By

comparing the application of data augmentation during the

training process and freezing of the first ten layers of the

models we selected the best performing model of each size

according to their mAP and Recall on the test basin validation

set. The assumption of freezing the backbone layers of the

pre-trained model hold for 3 out 4 models. Also we can

clearly see the benefits of augmenting the training data set

to virtually generate more training samples. We went forward

to evaluate these selected models on a validation set from the

Abisko field trials to show its generalization capabilities to

another environment, a frozen lake with far worse lighting

and slightly worse visual conditions. We then applied transfer

learning by fine-tuning the model with a limited dataset of

only 79 image samples (but using data augmentation during

the training process) to increase its Recall performance by up

to 86% to a maximum of 0.549 for the YOLOv8n model.

In the end we showed its impact when combining it with

the previously used fiducial marker detection (Apriltags) for

docking station detection. Using our validation dataset we

were able to boost the number of successful docking station

detectios from 152 images (Recall = 0.286) to 378 images

(Recall = 0.72) for the best performing model (YOLOv8n).

In addition to that, all of the models were able to detect the

docking station even in very harsh visual conditions which

should lead to improved homing performance of the AUV

when adding this method to the docking process. Nevertheless

the actual deployment and evaluation of such models in the

real-world scenario still remains future work.

A. Outlook

To continue work on the proposed methods we aim to refine

various processes of the model development, data processing

and deployment processes. Most of the work was conducted

during the thesis work of the main author. When composing

the results, YOLOv8 was still the best performing model

selection of its kind. By now the newest version YOLOv10

is available and even comes with improved detection perfor-

mance in addition to training and inference efficiency due to

decreased parameter count [24]. In addition to that there are

also various different object detection methods out there such

as Faster R-CNN [19] or Transformer-based object detection

such as DETR [35].

In addition to that we relied heavily on the built-in data

augmentation and pre-processing functionalities, that the Ul-

tralytics YOLOv8 library offers [23], to train our models. In

the future it could be beneficial to apply customly implementa-

tion pre-processing and data augmentation functionalities that

could then also possibly be used during live deployment and

for inference.

Last but not least we want to actually deploy these models

on the AUV to extend our existing docking algorithm that

was proposed in [4]. For this the AUV Deepleng needs to

be extended with an onboard computer that is able to infer

from images in real-time. Benchmarks suggest that even the

YOLOv8l model will run in real-time (> 30FPS) on a 32GB

VRAM NVIDIA Jetson module [36]. Our best performing

model from this work, which is the YOLOv8n model would

even run with over 60FPS with FP32 precision on a 8GB

VRAM device.

In addition for future work it will be very beneficial to not

only detect the docking station but also estimate its pose using

a monocular image input or a combination of images and sonar

images.
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Fig. 4: Comparison of different metrics between the baseline

models and the transfer learning (TL) models. The base

models are visualized in blue, the transfer learned models are

shown in orange. In addition the that the performance of each

model with the detection count per image limited to 1 is shown

in green.
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Fig. 5: Exemplary detections of different models to show performance on selected image samples.


