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Abstract 
Black swans are rare high-impact crisis events that disrupt societies and financial 
markets, e.g., the 2008 global financial crisis. Due to their rarity, it is challenging to 
predict them with certainty using traditional statistical methods. Research on modeling 
black swans explored the use of deep learning techniques, such as LSTMs, Autoencoders, 
and self-supervised methods. However, data scarcity remains a challenge for both 
supervised and unsupervised methods. We present SwanSynthetiX, an approach for 
generating context-driven synthetic black swan events in open domains that closely 
resemble real-world extreme event data. It combines Extreme Value Theory (EVT) with 
conditional GANs (cGANs) and addresses data scarcity through EVT-based Monte Carlo-
sampling. The approach uses scenarios to capture unique extreme event circumstances, 
enabling cGANs to generate context-driven black swans with distinct characteristics. 
Experiments demonstrate SwanSynthetiX outperforming recent approaches in synthetic 
time-series generation, empowering signal detection in crisis management for early 
identification of real-world black swan events. 

Keywords:  Black Swan Event; Extreme Value Theory; GANs 
 
 

Introduction 
Black swan events are high-impact crisis events that can have significant consequences and disrupt the 
status quo (Taleb 2007a), e.g., the 9/11 terrorist attacks, the global financial crisis of 2008, the Fukushima 
nuclear disaster, and the COVID-19 pandemic. Those events are characterized by their extreme rarity, their 
unexpectedness, and their out-sized impact on financial markets, economies, and societies as a whole 
(Taleb 2007b). Considering black swan events in risk and crisis management is an open issue for 
companies, health organizations, and civil defense (Aven 2014; Paté-Cornell 2012). But, up til now it is 
impossible to predict black swan events with certainty due to their rarity as well as their uniqueness 
(Swango 2020).  
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Traditional methods for predicting black swan events, like Extreme Value Theory (EVT) primarily depend 
on statistical and probabilistic approaches quantifying tail risks and estimating probabilities for extreme 
events (Allen et al. 2011). One statistical method often used in EVT is the Generalized Extreme Value (GEV) 
distribution for analyzing extreme values in datasets, e.g., black swan events (Allen et al. 2011; Smith 2002). 
However, these methods are based on assumptions like linearity and stationarity not representing the 
complex and nonlinear nature of black swan events (Devarajan et al. 2021). Recent research has explored 
the use of deep learning techniques to model black swan events. Here, LSTMs and GRUs are applied to 
predict extreme occurrences in financial time series data (Bhanja and Das 2022) or in healthcare to forecast 
COVID-19 active and new cases (Devarajan et al. 2021). Further related work treats the problem as anomaly 
detection issue for identifying atypical samples deviating from expected patterns, such as Autoencoders 
(Gong et al. 2019), GANs (Perera et al. 2019; Schlegl et al. 2019), and self-supervised methods (Cho et al. 
2021; Golan and El-Yaniv 2018). However, the rarity of black swan events presents a significant challenge 
for such methods as it is difficult to distinguish anomalies from normal samples by supervised methods due 
to the given class imbalance, whereas unsupervised methods lack extensive knowledge about true 
anomalies(Gong et al. 2019). Means, in order to predict black swan events, data scarcity issues have to be 
addressed, for instance by applying GANs (Goodfellow et al. 2020) for generating time-series synthetic data 
(Ehrhart et al. 2022; Yoon et al. 2019). Conditional Generative Adversarial Networks (cGANs) (Mirza and 
Osindero 2018) have proven to be highly effective in generating labeled time-series samples that closely 
resemble real-world data (Esteban et al. 2017; fu et al. 2019), making them a promising solution for data 
scarcity in black swan events. However, the effectiveness of cGANs depends on the amount of available 
labeled training data, i.e., black swan events for generating realistic data (Ding et al. 2022). Furthermore, 
historical data on black swan events may not be representative for future occurrences due to the unique 
circumstances of each event (Taleb 2007a). Therefore, incorporation of contextual information related to 
the distinct circumstances of each event is required going beyond the scope of their mere label.  

In this work, we present SwanSynthetiX - an approach for generating context-driven synthetic black swan 
events in open domains that closely resemble real-world data associated with extreme events. The approach 
combines EVT with cGANs and addresses the challenge of data scarcity through EVT-based Monte Carlo-
sampling. SwanSynthetiX makes use of the fact that all crises, i.e., also black swan events send out early 
warning signals; but mostly weak and difficult to detect amidst the noise of everyday life (Diks et al. 2019; 
Fu and Zhu 2020). In order to capture these signals across the full spectrum of magnitudes, we divide time-
series data into regions that exhibit different distributions. Unique attributes of each region within the time-
series, e.g., GEV parameters, contextual information occurring simultaneously as well as label, are then 
represented as collection of feature-value pairs called scenario. The resulting set of scenarios enables 
SwanSynthetiX to address data scarcity by sampling points for each scenario and providing context to the 
GAN, making it context-aware to generate realistic synthetic data points for black swan events. Thus, in 
crisis management, the proposed approach is able to empower signal detection mechanisms for early 
identification of signals of real-world black swan events (Hensgen et al. 2003). The contributions of this 
paper are summarized as: 

• We propose SwanSynthetiX: A generative approach that combines EVT-based Monte Carlo-
sampling with context-driven conditioning of cGANs in a single model to generate synthetic black 
swan events. 

• Our proposed method conditions cGANs on collection of feature-value pairs called scenarios, that 
combine GEV parameters, contextual information occurring simultaneously as well as scenario 
labels, allowing cGANs to generate context-driven black swan events with distinct characteristics. 

• The experiments show the outstanding performance of our SwanSynthetiX approach in generating 
synthetic black swan events resembling real-world data in comparison with recent approaches on 
synthetic time-series generation. 

Literature Review 

Black Swan Events 
There has been well-established works for predicting black swan events especially in financial markets using 
EVT-based methods. Such approaches use statistical methods to determine the probability of occurrence of 
a black swan, e.g. extreme price fluctuation in financial markets (Marohn  1998; Allen et al. 2011; Smith 
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2002). More recently, neural networks have been leveraged to model the existence of black swan events in 
the data, with ensemble methods being particularly effective in this area. Wabartha et al. introduced 
Diversely Extrapolated Neural Networks (DENN), which use an ensemble of neural networks with a 
diversity term in the loss function to generalize more effectively to novel data points and produce highly 
uncertain predictions for unexpected inputs (Wabartha et al. 2020). Liu et al. proposed a method that 
enhances outlier detection and model stability by combining multiple neural networks to improve 
prediction accuracy and resilience against out of distribution data (Saha et al. 2020). Another line of 
research explored the use of deep learning methods for estimating the magnitude of sudden fluctuations in 
time-series data using LSTMs (Bhanja and Das 2022), Autoencoders (Gong et al. 2019), GANs (Perera et 
al. 2019; Schlegl et al. 2019), and self-supervised methods (Cho et al. 2021; Golan and El-Yaniv 2018). 

Synthetic Temporal Data Generation 
Synthetic data generation has been an area of active research, addressing privacy concerns and data scarcity 
challenges in various domains (Donahue et al. 2019; Esteban et al. 2017; Mirza and Osindero 2018). 
Autoregressive recurrent networks, such as those trained using maximum likelihood principles, suffer from 
large prediction errors in multi-step sampling due to discrepancies between training and inference (Yoon 
et al. 2019). Several works such as Scheduled Sampling (Bengio et al. 2015) and Professor Forcing (Goyal 
et al. 2016) have been proposed to tackle these issues but are inherently deterministic and do not explicitly 
account for sampling from a learned distribution, which is crucial for synthetic data generation. GANs have 
been extended in multiple works to handle the temporal settings with frameworks like C-RNN-GAN 
(Mogren 2016) and Recurrent Conditional GAN (RCGAN) (Esteban et al. 2017). These methods have been 
applied in various domains, but they rely solely on binary adversarial feedback, which may not be sufficient 
to efficiently capture temporal dynamics in the training data (Yoon et al. 2019). Recently, representation 
learning for time-series data has been introduced to learn compact encodings for various downstream tasks 
(Dai and Le 2015; Eldele et al. 2021). Some approaches combine autoencoders with adversarial training 
(Larsen et al. 2016), but these methods might not generalize well to arbitrary time-series data or sufficiently 
capture stochasticity at each time step. TimeGAN (Yoon et al. 2019), a more advanced method, addresses 
these limitations by incorporating stochasticity and employing an embedding network to identify a lower-
dimensional space for the generative model, allowing it to learn the stepwise distributions and latent 
dynamics of the data. However, a key limitation of TimeGAN and similar methods is their inability to handle 
anomalies in time-series data, which can significantly impact the performance of synthetic data generation 
and limit the applicability of generated data for tasks like anomaly detection and forecasting.  

Supervised Anomaly Detection  
Supervised Anomaly Detection is a recent research direction that addresses the scarcity of labeled anomaly 
data by utilizing a small number of available anomaly examples to learn models capable of identifying 
abnormal instances. These approaches include one-class metric learning with anomalies as negative 
samples (Huang and Li 2021; Pang et al. 2018), and one-sided anomaly-focused deviation loss (Pang et al. 
2019). Despite their novelty, these models heavily depend on very small sets of observed anomalies and 
may overfit to the known abnormal patterns.  

Preliminaries 
In this section we describe our problem statement and provide definitions for different terms used in our 
work. 

Given a time-series dataset containing both normal data points and anomalies represented by sudden 
fluctuations, our objective is to generate synthetic data that accurately models both the normal and 
anomalous regions of the dataset. The following are the definitions of the terms used in our work: 

Black Swan Event: In the context of our work, we define a black swan event as an occurrence that lies in the 
far tail of the probability distribution of a given system's behavior represented by time-series, such as 
financial returns or energy prices. Formally, a black swan event occurs when a system metric 𝑋 exceeds a 
threshold 𝑥 with a tail probability 𝑃(𝑋 ≥ 𝑥) ≤ 𝜖 where 𝜖 is a small positive number. 
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Observational Set (O): The observational set is a collection of multivariate time-series data points for which 
our objective is to generate corresponding synthetic data. Formally, 𝑂	 = 	 {(𝑡, 𝑓!, 𝑓", … , 𝑓#)	|	𝑡	 ∈ 	 {1, 2, … , 𝑇}} 
where 𝑁 is the number of features in the dataset and 𝑇 is the number of time steps.  
Contextual Information Set (C): The contextual information set is a collection of multivariate time-series 
data points representing features that affect the observational set 𝑂 and occur simultaneously. Formally,  
𝐶 = (𝑡, 𝑐!, 𝑐", … , 𝑐$) ∣ 𝑡 ∈ 1,2, … , 𝑇 where 𝑀 is the number of features in the dataset and 𝑇 is the number of 
time steps. 
Generalized Extreme Value Distribution (GEV): The GEV distribution is a continuous probability 
distribution that unifies the Gumbel, Fréchet, and Weibull families of extreme value distributions (Smith 
2002). The GEV distribution is commonly used for modeling the extreme values of a dataset. It is 
characterized by three parameters: shape (ξ), location (µ), and scale (σ). 
Scenario: A scenario is a collection of features characterizing distinct, non-overlapping regions within the 
Observation Set $O$. Each scenario is composed of the fitted GEV parameters 𝑃 for the respective regions, 
the corresponding features from the Contextual Information Set 𝐶 within the same time frame 𝑡, and a 
unique label 𝑙 that identifies the scenario. A scenario 𝑠% can be expressed as: 𝑠% = A𝑃% , 𝐶%

('), 𝑙%B. 

Method 
Our approach consists of two main components: (A) Scenario Generator and (B) Context-Aware GAN, as 
shown in Figure 1. The Scenario Generator processes the time-series data within 𝑂 by transforming it into 
scenarios using EVT-based Monte Carlo sampling and contextual information from 𝐶. This transformation 
results in a collection of sequences 𝑋), each corresponding to a specific scenario, along with the associated 
scenarios 𝑆. The sequences 𝑋) and scenarios 𝑆 are used as inputs to the Context-Aware GAN component, 
which consists of two interconnected modules: (1) AutoEncoder and (2) Scenario-Conditioned GAN (sc-
GAN). The AutoEncoder learns to represent both the time-series sequences and the corresponding 
scenarios, effectively capturing the essential features of the dataset. Subsequently, the sc-GAN module 
utilizes these learned representations to generate synthetic data points that exhibit distinctive features 
tailored to the input scenario. 

 

 

Figure 1.  Overview of our approach for generating context-driven synthetic black swan 
events. 
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Scenario Generator 

The Scenario Generator takes in two inputs: the observational set O and the contextual information set 𝐶. 
The processing steps, numbered in Figure 1 (A), are performed as follows: First, the observational set O is 
fitted to a Generalized Extreme Value (GEV) distribution to capture long-tail behavior. The goodness-of-fit 
is assessed to ensure it is appropriate for the dataset (Step 1). Next, by leveraging the fitted GEV 
distribution, we partition the data into 𝑛 regions that exhibit different distribution by considering higher 
percentiles such as 90th, 95th, 99th, and so on, which are located within the original dataset (Step 2). 
Mathematically, the process can be represented as: 𝑅% = 𝑥 ∈ 𝑂 | (𝑋 ≤ 𝑥) ≥ 𝑃% ,	where 𝑅% represents the region 
associated with the ith percentile, 𝑃%, and 𝑃(𝑋 ≤ 𝑥) denotes the cumulative probability of observing a value 
less than or equal to 𝑥 in the GEV distribution. Then, for each region 𝑅%, a GEV distribution is fitted to 
capture the unique distribution of that particular region, characterized by GEV parameters 𝑃%; shape (𝜉%), 
location (𝜇%), and scale (𝜎%). Finally, Monte Carlo sampling is used to draw data points for each region from 
the fitted GEV distributions, which are enhanced by seasonality and trend features (St, Tr) extracted from 
the original data. This process ensure that the sampled data accurately represent original data 
characteristics. Then, the original data corresponding to normal data points are used as sequences without 
any modifications. This is because normal data points are abundant, and therefore, readily available for 
processing (Step 3). Lastly, the scenarios are constructed by concatenating three inputs: the region's GEV 
distribution parameters 𝑃, the corresponding Contextual Information 𝐶(') at the same time frame 𝑡, and the 
label of the region 𝑙 (Step 4). In the end, the Scenario Generator produces two outputs for training the 
Context-Aware GAN: a set of sequences, 𝑋) = {𝑥),!, 𝑥),", … , 𝑥),#},  ∀𝑠 ∈ 𝑆, and the associated set of scenarios, 
𝑆 = {(𝑃!, 𝐶!, 𝑙!, ), … , (𝑃+, 𝐶+, 𝑙+)}. 

Context-Aware GAN 

The Context-Aware GAN component is a generative model designed to produce realistic and scenario-
specific synthetic data points. As shown in Figure 2, it is composed of two main modules: an AutoEncoder 
and a scenario-conditioned GAN (sc-GAN).  
 

 

 

Figure 2.  Context-Aware GAN 
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The AutoEncoder module is responsible for learning an efficient representation of the input sequences and 
scenarios generated from the Scenario Generator. It consists of three sub-modules: SequenceEncoder (𝑒,), 
ScenarioEncoder (𝑒)), and decoder (𝑑-). The three components are designed to enable the adversarial 
network to learn the underlying temporal dynamics of the data while considering the conditioning on input 
scenarios. 𝑒, transforms the features of the input sequences 𝑋) from the feature space into hidden 
representations ℎ- in the latent space using 3-layer LSTM network. The transformation can be expressed 
as:  

ℎ, = 𝑒,(ℎ,.!, 𝑥'), 

where 𝑒, accounts for the previous real data representation ℎ,.! and the current feature vector 𝑥' to produce 
the new real data representation ℎ,. Similarly, a separate scenario encoder 𝑒) is used to produce scenario 
representations ℎ) using 3-layer LSTM Network. This encoder is designed to capture the characteristics of 
specific scenarios, which can be used to guide the generation of synthetic data that adheres to these 
scenarios. The representations obtained from both networks are then concatenated to form a combined 
hidden representation ℎ-. Finally, the decoder 𝑑- takes the combined hidden representation ℎ- and 
reconstructs the original input sequences and scenarios as follows: 

	𝑋)/, 	𝑆/ 	= 𝑟(ℎ-), 

where r is a 3-layer LSTM and 𝑋)/, 𝑆/ are the reconstructed sequences and scenarios, respectively. To 
integrate the AutoEncoder with adversarial modules, SwanSynthetiX incorporates a scenario-conditioned 
GAN to generate synthetic data points that exhibit the distinctive features of the input scenarios. The sc-
GAN consists of two sub-modules: a conditional generator and a discriminator. Unlike traditional GANs, 
where the generator directly produces outputs in the feature space, our generator generates outputs in the 
latent space, and the discriminator distinguishes between real and fake hidden representations. Operating 
in the latent space, instead of output space, offers several advantages, including dimensionality reduction, 
noise filtering, improved generalization, and transferability (Bengio et al. 2013; Yoon et al. 2019). Let 𝑍 
denote a Gaussian vector space from which a random vector 𝑧!:1 is drawn. The generator takes the scenario 
embeddings, ℎ), concatenated with 𝑧!:1, and processes them through an LSTM network to obtain a hidden 
representation, ℎ2. This process conditions the generator to produce hidden representations specific to the 
input scenarios, which can be expressed as: 

ℎ2 = 𝐺Ahs,z1:TB 

where 𝐺 is a 3-layer LSTM network. The discriminator receives the output from the generator and the 
combined hidden representation from the AutoEncoder to predict whether the received representation is 
real (from the AutoEncoder) or fake (from the generator). This setup enables the generator to learn more 
efficiently, focusing on the underlying structure and patterns in the data, and helps it to generate 
representations that accurately capture the context within the input scenarios. 

Training and Loss Optimization 

During the training phase, the Context-Aware GAN is optimized through a two-step process. First, the 
AutoEncoder is trained using the reconstruction loss 𝐿-6789)'-:7'%89, which is defined as: 

𝐿-6789)'-:7'%89 =
1
𝑛VW|𝑥% − 𝑥;Y|W

"
9

%<!

 

This loss function ensures that the AutoEncoder learns to accurately reconstruct the input sequences and 
scenarios. Once it converges, it is integrated with the sc-GAN for joint training, leveraging a combination 
of loss functions including generator loss 𝐿=, discriminator loss 𝐿>, and supervised loss 𝐿):?6-@%)6A, as shown 
in Figure 2. This sequential approach ensures that the AutoEncoder learns to effectively reconstruct the 
input data before it is integrated with the sc-GAN for generating synthetic samples.  
In contrast to TimeGAN (Yoon et al. 2019) which samples directly from the generator, our approach 
conditions the generator on the encoded scenario representation to ensure that the synthetic data is more 
contextually relevant. Our $L_G$ loss is defined as follows: 
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𝐿= = −
1
𝑚Vlog𝐷 (𝐺(ℎ), 𝑧)|ℎ))

+

%<!

 

where 𝑚 is the number of samples, 𝐷 is the discriminator, 𝐺 is the generator, ℎ_𝑠 is the scenario embeddings, 
and 𝑧 is the noise vector. This loss function aims to optimize the generator network so that it can produce 
hidden representations 𝐺(ℎ), 𝑧) that are indistinguishable from real representations while being 
conditioned on the scenario representation ℎ). The discriminator loss, on the other hand, is defined as: 

𝐿> = −
1
𝑚V`log𝐷 (ℎ-|ℎ)) + logA1 − 𝐷(𝑔(ℎ), 𝑧)|ℎ))Bc

+

%<!

 

This loss function is composed of two terms: The first term log𝐷 (ℎ-|ℎ)) encourages the discriminator to 
assign high probabilities to the real hidden representations, ℎ-, conditioned on the scenario representation, 
ℎ). The second term, logA1 − 𝐷(𝐺(ℎ), 𝑧)|ℎ))B, encourages the discriminator to assign low probabilities to the 
generated (fake) hidden representations produced by the generator, 𝐺(ℎ), 𝑧), conditioned on ℎ). 
Finally, inspired by (Yoon et al. 2019), to ensure that the generator captures the real distribution of the data 
and generates similar stepwise transitions, we adopt an additional supervised loss 𝐿):?6-@%)6A in closed-loop 
mode. In this mode, the generator receives the embedding sequences of actual data (ℎ-'.!) conditioned onℎ), 
and generates the next latent vector ℎ2' . This loss can be expressed as: 

𝐿):?6-@%)6A =VW|ℎ-' − 𝑔(ℎ-'.!, 𝑧' , ℎ))|W
"

'

 

where 𝐺(ℎ-'.!, 𝑧' , ℎ)) represents the generator's next step ℎ2'  with sample 𝑧', conditioned on ℎ). In summary, 
the generator uses 𝐿=  and 𝐿B:?6-@%)6A losses to produce realistic sequences with similar stepwise transitions. 
𝐿=  promotes indistinguishable hidden representations, while 𝐿):?6-@%)6A ensures accurate data distribution 
and transitions, all conditioned on the scenario representation ℎ). 
Once the training process is completed, SwanSynthetiX leverages the trained components to generate 
synthetic data points for a given input scenario. The process begins with scenario encoding, in which the 
input scenario is passed through the trained ScenarioEncoder 𝑒_𝑠, generating the scenario embedding ℎ) 
(cf. Figure 2). Next, a noise vector sampled from a Gaussian distribution is concatenated with the scenario 
embedding and passed through the trained generator, producing a hidden representation ℎ2 specific to the 
input scenario. Finally, the generated hidden representation is passed through the trained decoder 𝑑- of the 
AutoEncoder, which reconstructs the synthetic data points that exhibit the characteristics of the input 
scenario while maintaining the structural patterns learned from the time-series dataset. 

Evaluation 
In this section, we conduct several experiments to evaluate whether SwanSynthetiX can generate synthetic 
data that accurately represents both normal and anomalous regions in time-series datasets. 

Datasets 

For our experiments, we collected historical time-series data on key indicators related to the German energy 
market and inflation from various sources, spanning from 2016 to 2023. As shown in Table 1, the collected 
data includes electricity wholesale prices, gas prices, crude oil prices, consumer price index, and index of 
import price, which we use as our Observational Set 𝑂. Furthermore, for the Contextual Information Set 𝐶, 
we gathered time-series datasets that affect the energy prices including electricity generation, electricity 
demand, gas imports, and weather information. We specifically chose these datasets as contextual features 
because these variables have a direct and substantial impact on energy prices (Min 2022; Sensfuß et al. 
2008; Hartley et al. 2008; Bessec et al. 2008).  These contextual features were selected to capture the most 
relevant and immediate factors contributing to price fluctuations, particularly during extreme events like 
the COVID-19 pandemic and the Russia-Ukraine conflict that led to drastic fluctuations in prices and overall 
system instability beginning mid-2021, as observed in Figure 3. The datasets were acquired from a diverse 
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Figure 3.  Observational Set (O) data (left) consisting of electricity wholesale prices, gas 
prices, crude oil prices, consumer price index (CPI), and index of import price along 

with corresponding fitted GEV distribution (right). 
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range of reliable providers, including ENTSO-E6, Eurostat7, International Energy Agency8, German Federal 
Statistical Office (Destatis)9, and NOAA10. 

 

Variable Source Set Frequency Number of Data Points 
Electricity Wholesale Prices ENTSO-E O Hourly 61,320 
Gas Prices Eurostat O Daily 2,556 
Crude Oil Prices IEA O Daily 2,556 
Consumer Price Index Destatis O Daily 2,556 
Index of Import Price Destatis O Daily 2,556 
Gas Imports ENTSO-G C Daily 2,556 
Electricity Generation ENTSO-E C Hourly 61,320 
Electricity Load ENTSO-E C Hourly 61,320 
Weather NOAA C Daily 2,556 

Table 1. Summary of collected datasets used for evaluating the proposed approach, 
including variable types, sources, frequencies, and number of data points. 

 

Setting 

In this section, we describe the process of preparing our datasets to train and evaluate SwanSynthetiX. We 
then present the training details as well as the benchmarks used for evaluation. First, to ensure consistency 
across all features in the dataset, we perform a data preprocessing step where we take the daily average of 
the datasets that contain hourly values. Then, the Observational set 𝑂 features are fitted to a GEV 
distribution, with goodness of fit assessed through qualitative analysis (cf. Figure 3). We additionally 
perform K-S test (Massey 1951) and show the results in Table 2, showing high p-values for all features, 
which confirms the distribution's suitability for the dataset. 

Variable Mean Std p-value 
Electricity Wholesale Prices 45.67  35.92 0.64 
Gas Prices 35.18  44.23 0.58 
Crude Oil Prices 61.90  19.57 0.42 
Consumer Price Index 2.210  2.360 0.54 
Index of Import Price 103.3 7.05 0.57 

Table 2. Goodness of fit results of the fitted GEV distribution 

 

Since the Observational set 𝑂 features started to fluctuate mid-2021, we consider data points from January 
2016 to Jun 2021 as normal data and those from Jul 2021 to December 2022 as black swan data. Normal 
data consists of 1981 data points each characterized by the five features of Observational set 𝑂. We identified 

 
6 https://www.entsoe.eu/ 
7 https://ec.europa.eu/eurostat/ 
8 https://www.iea.org/ 
9 https://www.destatis.de/ 
10 https://www.noaa.gov/ 
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the period after July 2021 as black swan events due to significant shifts in the dataset, leading to long-tail 
behavior when fitted to GEV distribution, as shown in Figure 3. However, we recognize that not all 
fluctuations may represent black swan events. To address this, we divided the black swan data into six 
distinct regions, each containing 92 data points, reflecting different characteristics of the data during this 
period. This approach helps capture the variations in the fluctuations and ensures a more precise 
classification rather than a catch-all categorization. To address the imbalance between normal and black 
swan data, Monte Carlo sampling uses the fitted GEV distribution for each region to generate additional 
1888 samples. These samples are then enhanced with STL decomposition features (St, Tr) extracted from 
the original 92 points. Now, normal data, as well as each black swan region, is characterized by three 
features: (1) GEV parameters (𝑃; shape (ξ), location (µ), and scale (σ)), (2) corresponding context from the 
Contextual information set 𝐶, and (3) region label 𝑙. To form the set of scenarios 𝑆, we concatenate these 
features for each data point. Scenarios that include normal data are assigned a label of 0, while scenarios 
from the six black swan regions are assigned labels from 1 to 6. Leveraging the sequences and scenarios 
generated from the Scenario Generator, we initially trained the AutoEncoder for 150,000 iterations. 
Subsequently, we conducted joint training of the whole Context-Aware GAN component for additional 
150,000 iterations. 

Our evaluation considers three key aspects: (1) Fidelity, requiring that generated samples are 
indistinguishable from the real data, (2) usefulness, meaning that synthetic samples should perform 
similarly to real data for the same predictive purposes, and (3) diversity, ensuring that generated samples 
cover the real data distribution. We use four evaluation metrics to assess the three aforementioned aspects: 

• Discriminative Score (D-Score): We train an LSTM-based classification model to distinguish 
between original and generated sequences. Lower classification scores indicate higher fidelity in 
the synthetic data. 

• MAE: To further assess fidelity, we compute the Mean Absolute Error (MAE) between the original 
and synthetic data, providing a measure of the discrepancies between them. Lower MAE scores 
represent higher fidelity. 

• Predictive Score (P-Score): To evaluate usefulness, we train an LSTM-based sequence-prediction 
model on the synthetic data to predict the next temporal hidden representation and test its 
performance on the original dataset, using MAE as a quantitative measure of the model's ability to 
reproduce the predictive properties of the original data. 

• Visualization: We use PCA to reduce data dimensionality and qualitatively assess how closely 
generated samples resemble the original data distribution in 2D space, which asses the diversity of 
the generated data. 

For all metrics, we use an equal distribution of real and synthetic data to ensure a fair comparison and 
accurate assessment. 

Results 

We assess the performance of our proposed approach quantitatively by comparing it with various time-
series generation methods, including TimeGAN (Yoon et al. 2019), RCGAN (Esteban et al. 2017), 
CRNNGAN (Mogren 2016), P-Forcing (Goyal et al. 2016), and WaveGAN (Donahue et al. 2019). For 
evaluation, we focus on two dataset regions: the normal data points spanning from Jan 2016 to Jun 2021, 
and the black swan data points from Jul 2021 to Dec 2022. As shown in Table 3, we observe that 
SwanSynthetiX outperforms the state-of-the-art methods for all metrics for generating both normal and 
black swan data points. For normal data, SwanSynthetiX has a Discriminative Score of 0.09 and a Predictive 
Score of 0.21, which is considerably better than the other methods. More importantly, for black swan region, 
our approach obtains a Discriminative Score of 0.08 and a Predictive Score of 0.28, outperforming 
TimeGAN by 29.56% in the Normal region and by 52.71% in the black swan region. 
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 Normal Black Swan 

 D-Score P-Score MAE D-Score P-Score MAE 

RCGAN 0.27 0.38 0.32 0.50 0.52 0.53 

CRNNGAN 0.29 0.41 0.34 0.54 0.56 0.55 

WaveGAN 0.23 0.37 0.29 0.48 0.50 0.54 

TimeGAN 0.15 0.32 0.28 0.42 0.44 0.49 

SwanSynthetiX 0.09 0.21 0.24 0.08 0.28 0.29 

 
Table 3.  Comparison of our approach to other state-of-the-art methods for 

generating synthetic data. Normal refers to data from Jan 2016 till Jun 2021, 
while Black Swan refers to data from Jul 2021 to Dec 2022. 

 
 
To visually assess the performance of SwanSynthetiX, we conducted a qualitative analysis by plotting 
Principal Component Analysis (PCA) representations for the original and synthetic data generated by our 
method, TimeGAN, RCGAN, and CRNNGAN. Figure 4 shows that SwanSynthetiX effectively generates 
synthetic data that closely resembles the original data distribution, capturing both normal and black swan 
patterns. This sets our model apart from these methods, which fail to fully capture the distribution of the 
data and struggle to represent rare and extreme values. 

 
(A) SwanSynthetiX 

 

(C) TimeGAN 
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Finally, to evaluate the contribution of scenarios in SwanSynthetiX, we conducted an ablation study in 
which we measure the impact of removing features from the scenario. Table 4 shows the discriminative 
score, predictive score, and MAE for different combinations of the three scenario features: GEV parameters 
𝑃, Contextual information set 𝐶, and label 𝑙. We observe that SwanSynthetiX by incorporating 𝑃, 𝐶, and 𝑙 
into scenarios achieves the best performance across all three metrics. Removing any of the features leads to 
performance degradation, confirming their importance in generating high-quality synthetic data. Notably, 
while removing 𝑃 and 𝐶 has a relatively small impact on MAE (only a 1% difference), it results in a sharp 
error increase in the discriminative score (5%) and the predictive score (3%). This suggests that although 
the synthetic data generated after removing these factors may be close in magnitude to those generated 
with all factors, they do not exhibit the same predictive capabilities. Furthermore, by removing all scenario 
features, i.e., removing conditioning on the GAN, we observe a substantial drop in performance. This 
highlights the importance of contextual scenarios in generating synthetic data that closely resemble real-
world data associated with extreme events.  
 

Label 𝒍 Contextual Information C GEV Params P D-Score P-Score MAE 

✓ ✓ ✓ 0.09 0.23 0.25 

✓ ✓ x 0.13 0.24 0.25 

x ✓ ✓ 0.16 0.29 0.28 

✓ x x 0.14 0.26 0.26 

x ✓ x 0.19 0.25 0.27 

x x ✓ 0.14 0.24 0.28 

x x x 0.18 0.26 0.27 

Table 4. Ablation study of the impact of the scenario features, including GEV 
parameters, contextual information, and labels, on the performance of our approach. 

The symbol ✓ indicates this feature is used, while x indicates it is removed.  

 

 
(B) RCGAN 

 

                     (D) CRNNGAN 

Figure 4.   Comparison of PCA plots for SwanSynthetiX with RCCGAN, TimeGAN and 
CRNNGAN. 
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Implications 
The proposed approach, SwanSynthetiX, aims to enhance the identification of crises by generating 
synthetic data that exhibit the characteristics of rare and unexpected high-impact events like black swan 
events. Our approach provides a plug-and-play method for generating data of any extreme event that can 
be represented by time-series data. The inclusion of contextual features as conditions for the generated data 
allows it to be adapted and extended to accommodate a wide range of crisis events. This flexibility is 
especially crucial for crises driven by complex and unique patterns, such as those influenced by political 
and socio-economic factors. Here, SwanSynthetiX leverages a Scenario Encoder to encode and integrate 
diverse types of contextual data—whether numerical or text-based—directly into the GAN's training 
process, making it generalizable across various domains. 

Such synthetic data can be utilized in evaluation studies where state-of-the-art ML models are trained to 
predict these events, which is particularly beneficial for organizations seeking to proactively detect and 
manage potential crises. This is especially relevant in sectors like finance and healthcare, where the ability 
to model and predict black swan events can significantly impact decision-making and risk management 
strategies. As presented in the results section, the generated data from our approach not only shows high 
fidelity but also demonstrates high-impact usability when used to train ML models for forecasting the next 
temporal value in time-series data, which is explained by its low Predictive Score (P-score). 
In general, synthetic data generation tries to capture the most prominent statistical properties of a dataset 
and samples similar data points, but the design of SwanSynthetiX allows for capturing the properties of 
anomalies in the data, which are considered a strong minority class, especially in the case of black swans. 
This indicates that the data generated by SwanSynthetiX is highly effective in enabling accurate predictions 
of future values in time-series data with anomalies, making it particularly valuable for classification and 
forecasting tasks. Subsequent studies will be conducted to evaluate the results from our approach for 
predicting potential black swan instances in several domains and observe the outcomes for organizations 
in terms of mitigating risks and minimizing negative consequences. 

Limitations 

Despite the promising results of SwanSynthetiX, several limitations need to be addressed in future work. 
Firstly, the current scenario generation process assumes that black swan events emerge slowly and then 
exponentially, which may not account for all possible scenarios of such events (Taleb 2007a). Moreover, 
the use of GANs, which are inherently biased towards the data they are trained on, can lead to issues like 
mode collapse, limiting the diversity of the generated data (Grover et al. 2019). Techniques such as mode 
regularization, multiple discriminators, or using Transformers (Vaswani et al. 2017) could help address 
these limitations by capturing long-range dependencies and generating more diverse samples. Additionally, 
our approach relies on historical data to generate black swan events, which contradicts the inherently 
unpredictable nature of these events. Although this reliance on historical data provides context and 
parameters necessary for simulation, it also assumes the existence of black swan events in historical 
records, which may not always be the case in different contexts. To overcome this, future work would 
explore integrating expert knowledge or domain-specific heuristics to build a prediction model that can 
more accurately forecast unpredictable black swan scenarios. Lastly, further investigation is required to 
validate the applicability of our approach across different domains and types of black swan events, ensuring 
its effectiveness in diverse contexts. 
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Conclusion 
In this work, we introduced SwanSynthetiX, a novel approach for generating context-driven synthetic black 
swan events that closely resemble real-world data. Combining Extreme Value Theory, conditional GANs, 
and Monte Carlo sampling, our method addresses data scarcity and the uniqueness of black swan events. 
By using scenarios that incorporate contextual information, SwanSynthetiX generates distinct, context-
aware synthetic black swan events. Our experiments demonstrate SwanSynthetiX's performance compared 
to recent methods in synthetic time-series generation. Our approach holds the potential to improve early 
signal detection mechanisms in crisis management, leading to more effective responses to real-world black 
swan events and paving the way for future research in generating anomalies for time-series datasets. 

References 
Allen, D., Singh, A., and Powell, R. 2011. “Extreme Market Risk-An Extreme Value Theory Approach,” 

Mathematics and Computers in Simulation (94:August). 
Aven, T. 2014. “Risk, Surprises and Black Swans: Fundamental Ideas and Concepts in Risk Assessment and 

Risk Management,” Risk, Surprises and Black Swans: Fundamental Ideas and Concepts in Risk 
Assessment and Risk Management. (https://doi.org/10.4324/9781315755175). 

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. 2015. “Scheduled Sampling for Sequence Prediction with 
Recurrent Neural Networks,” in Advances in Neural Information Processing Systems (Vol. 2015-
January). 

Bengio, Y., Courville, A., and Vincent, P. 2013. “Representation Learning: A Review and New Perspectives,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence (35:8). 
(https://doi.org/10.1109/TPAMI.2013.50). 

Bhanja, S., and Das, A. 2022. “A Black Swan Event-Based Hybrid Model for Indian Stock Markets’ Trends 
Prediction,” Innovations in Systems and Software Engineering. (https://doi.org/10.1007/s11334-021-
00428-0). 

Cho, H., Seol, J., and Lee, S. G. 2021. “Masked Contrastive Learning for Anomaly Detection,” in IJCAI 
International Joint Conference on Artificial Intelligence. (https://doi.org/10.24963/ijcai.2021/198). 

Dai, A. M., and Le, Q. V. 2015. “Semi-Supervised Sequence Learning,” in Advances in Neural Information 
Processing Systems (Vol. 2015-January). 

Devarajan, J. P., A, M., and Sreedharan, V. R. 2021. “Healthcare Operations and Black Swan Event for 
COVID-19 Pandemic: A Predictive Analytics,” IEEE Transactions on Engineering Management. 
(https://doi.org/10.1109/TEM.2021.3076603). 

Diks, C., Hommes, C., and Wang, J. 2019. “Critical Slowing down as an Early Warning Signal for Financial 
Crises?,” Empirical Economics (57:4). (https://doi.org/10.1007/s00181-018-1527-3). 

Ding, C., Pang, G., and Shen, C. 2022. “Catching Both Gray and Black Swans: Open-Set Supervised Anomaly 
Detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition (Vol. 2022-June). (https://doi.org/10.1109/CVPR52688.2022.00724). 

Donahue, C., McAuley, J., and Puckette, M. 2019. “Adversarial Audio Synthesis,” in 7th International 
Conference on Learning Representations, ICLR 2019. 

Ehrhart, M., Resch, B., Havas, C., and Niederseer, D. 2022. “A Conditional GAN for Generating Time Series 
Data for Stress Detection in Wearable Physiological Sensor Data,” Sensors (22:16). 
(https://doi.org/10.3390/s22165969). 

Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C. K., Li, X., and Guan, C. 2021. “Time-Series Representation 
Learning via Temporal and Contextual Contrasting,” in IJCAI International Joint Conference on 
Artificial Intelligence. (https://doi.org/10.24963/ijcai.2021/324). 

Esteban, C., Hyland, S. L., and Rätsch, G. 2017. “Real-Valued (Medical) Time Series Generation with 
Recurrent Conditional GANs,” ArXiv (abs/1706.02633). 
(https://api.semanticscholar.org/CorpusID:29681354). 

fu, rao, Chen, J., Zeng, S., zhuang, yiping, and Sudjianto, A. 2019. “Time Series Simulation by Conditional 
Generative Adversarial Net,” SSRN Electronic Journal. (https://doi.org/10.2139/ssrn.3373730). 

Fu, K. wa, and Zhu, Y. 2020. “Did the World Overlook the Media’s Early Warning of COVID-19?,” Journal 
of Risk Research. (https://doi.org/10.1080/13669877.2020.1756380). 

Golan, I., and El-Yaniv, R. 2018. “Deep Anomaly Detection Using Geometric Transformations,” in Advances 
in Neural Information Processing Systems (Vol. 2018-December). 



 Generating Context-Driven Synthetic Black Swans
  

 Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
 15 

Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., Venkatesh, S., and Van Den Hengel, A. 2019. 
“Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised 
Anomaly Detection,” in Proceedings of the IEEE International Conference on Computer Vision (Vol. 
2019-October). (https://doi.org/10.1109/ICCV.2019.00179). 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, 
Y. 2020. “Generative Adversarial Networks,” Communications of the ACM (63:11). 
(https://doi.org/10.1145/3422622). 

Goyal, A., Lamb, A., Zhang, Y., Zhang, S., Courville, A., and Bengio, Y. 2016. “Professor Forcing: A New 
Algorithm for Training Recurrent Networks,” in Advances in Neural Information Processing Systems. 

Grover, A., Song, J., Agarwal, A., Tran, K., Kapoor, A., Horvitz, E., and Ermon, S. 2019. “Bias Correction of 
Learned Generative Models Using Likelihood-Free Importance Weighting,” in Advances in Neural 
Information Processing Systems (Vol. 32). 

Hensgen, T., Desouza, K. C., and Kraft, G. D. 2003. “Games, Signal Detection and Processing in the Context 
of Crisis Management,” Journal of Contingencies and Crisis Management (11:2). 
(https://doi.org/10.1111/1468-5973.1102003). 

Huang, R., and Li, Y. 2021. “MOS: Towards Scaling Out-of-Distribution Detection for Large Semantic 
Space,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition. (https://doi.org/10.1109/CVPR46437.2021.00860). 

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther, O. 2016. “Autoencoding beyond Pixels Using 
a Learned Similarity Metric,” in 33rd International Conference on Machine Learning, ICML 2016 (Vol. 
4). 

Massey, F. J. 1951. “The Kolmogorov-Smirnov Test for Goodness of Fit,” Journal of the American Statistical 
Association (46:253). (https://doi.org/10.1080/01621459.1951.10500769). 

Mirza, M., and Osindero, S. 2018. “Conditional Generative Adversarial Nets Mehdi,” ArXiv:1411.1784v1 
[Cs.LG] 6 Nov 2014 Conditional. 

Mogren, O. 2016. “C-RNN-GAN: Continuous Recurrent Neural Networks with Adversarial Training,” ArXiv 
(abs/1611.09904). (https://api.semanticscholar.org/CorpusID:259842). 

Pang, G., Chen, L., Cao, L., and Liu, H. 2018. “Learning Representations of Ultrahigh-Dimensional Data for 
Random Distance-Based Outlier Detection,” in Proceedings of the ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. (https://doi.org/10.1145/3219819.3220042). 

Pang, G., Shen, C., and Van Den Hengel, A. 2019. “Deep Anomaly Detection with Deviation Networks,” in 
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. (https://doi.org/10.1145/3292500.3330871). 

Paté-Cornell, E. 2012. “On ‘Black Swans’ and ‘Perfect Storms’: Risk Analysis and Management When 
Statistics Are Not Enough,” Risk Analysis (32:11). (https://doi.org/10.1111/j.1539-6924.2011.01787.x). 

Perera, P., Nallapati, R., and Xiang, B. 2019. “OCGAN: One-Class Novelty Detection Using Gans with 
Constrained Latent Representations,” in Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (Vol. 2019-June). 
(https://doi.org/10.1109/CVPR.2019.00301). 

Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G., and Schmidt-Erfurth, U. 2019. “F-AnoGAN: Fast 
Unsupervised Anomaly Detection with Generative Adversarial Networks,” Medical Image Analysis 
(54). (https://doi.org/10.1016/j.media.2019.01.010). 

Smith, E. P. 2002. “An Introduction to Statistical Modeling of Extreme Values,” Technometrics (44:4). 
(https://doi.org/10.1198/tech.2002.s73). 

Swango, D. L. 2020. “Black Swans: When the Impossible Occurs.,” Appraisal Journal (88:2). 
Taleb, N. N. 2007a. The Black Swan: The Impact of the Highly Improbable, Random House. 
Taleb, N. N. 2007b. “Black Swans and the Domains of Statistics,” American Statistician (61:3). 

(https://doi.org/10.1198/000313007X219996). 
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. 

2017. “Attention Is All You Need,” in Advances in Neural Information Processing Systems (Vol. 2017-
December). 

Yoon, J., Jarrett, D., and van der Schaar, M. 2019. “Time-Series Generative Adversarial Networks,” in 
Advances in Neural Information Processing Systems (Vol. 32), H. Wallach, H. Larochelle, A. 
Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (eds.), Curran Associates, Inc. 
(https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-
Paper.pdf).  



 Generating Context-Driven Synthetic Black Swans
  

 Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
 16 

Min, H. 2022. Examining the impact of energy price volatility on commodity prices from energy supply 
chain perspectives. Energies, 15(21), 7957. 

Sensfuß, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of the price 
effect of renewable electricity generation on spot market prices in Germany. Energy policy, 36(8), 
3086-3094. 

Hartley, P. R., Medlock III, K. B., & Rosthal, J. E. (2008). The relationship of natural gas to oil prices. The 
Energy Journal, 29(3), 47-66. 

Bessec, M., & Fouquau, J. (2008). The non-linear link between electricity consumption and temperature in 
Europe: A threshold panel approach. Energy Economics, 30(5), 2705-2721. 

Marohn, F. (1998). Testing the Gumbel hypothesis via the POT-method. Extremes, 1(2), 191-213. 
Wabartha, M., Durand, A., Francois-Lavet, V., & Pineau, J. (2021, January). Handling black swan events in 

deep learning with diversely extrapolated neural networks. In Proceedings of the Twenty-Ninth 
International Conference on International Joint Conferences on Artificial Intelligence (pp. 2140-
2147). 

Saha, A., Chatterjee, A., Ghosh, S., Kumar, N., & Sarkar, R. (2021). An ensemble approach to outlier 
detection using some conventional clustering algorithms. Multimedia Tools and Applications, 80, 
35145-35169. 


