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Abstract Quantum Artificial Intelligence (QAI) is the

intersection of quantum computing and AI, a technolog-

ical synergy with expected significant benefits for both.

In this paper, we provide a brief overview of what has

been achieved in QAI so far and point to some open

questions for future research. In particular, we summa-

rize some major key findings on the feasability and the

potential of using quantum computing for solving com-

putationally hard problems in various subfields of AI,

and vice versa, the leveraging of AI methods for build-

ing and operating quantum computing devices.
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1 Introduction

It is known that quantum computing can simulate and

even go beyond classical computing in terms of compu-

tational speedup in theory [3,130,153] for quite some

time. But initial versions of real quantum computing

hardware and frameworks for quantum programming

became available only in about the past decade. Even

the Quantum Internet of networked quantum comput-

ers and with secure quantum communication channels,

long time considered as mere science fiction, is on its

way with early stage prototypes available [26,59,33].

On the other hand, artificial intelligence (AI) [156] is

commonly considered as one of the most disruptive key

technologies of our time for industry and business, our

private and social life, notwithstanding the challenges

of its future, trustworthy and controlled use for the ben-

efit of the people affected by it.

Quantum Artificial Intelligence (QAI, Quantum AI) is

the intersection of both technologies (cf. Fig. 1) and

concerned with the investigation of the feasability and

the potential of leveraging quantum computing for AI,

and vice versa, AI for quantum computing [152]. While

quantum machine learning [17,16] is currently the most

popular application [162,47,53,117], quantum AI goes

much beyond covering more subfields of AI [156,73],

such as quantum reasoning [36,34,21], quantum auto-

mated planning and scheduling (QPS), quantum nat-

ural language processing (QNLP), quantum computer

vision (QCV), and quantum agents and multi-agent

systems (QMAS). Notably, each of these QAI subfields

covers research and development in both directions; for

example, QML refers to both the use of quantum com-

puting for machine learning and vice versa. In this re-

spect, it would be premature to follow the current hype

cycle around QML.

Though QAI still is a nascent and inherently interdis-
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Fig. 1 Quantum AI (QAI) as intersection of quantum com-
puting and AI with subfields in relation to AI each covering
both directions.

ciplinary research field, remarkable progress has been

already made in the recent past. It has been shown, in

part also experimentally on real quantum computers of

the current NISQ (Noisy Intermediate-Scale Quantum)

era, that tailored QAI algorithms could indeed make

a positive difference in solving certain computationally

hard problems such as for combinatorial optimization in

AI applications compared to classical solutions. So far,

the potential quantum utility of direct quantum or hy-

brid quantum-classical methods of QAI is under investi-

gation for applications in diverse domains such as man-

ufacturing, automated driving, transport and logistics,

energy management, healthcare, finance, aerospace, cli-

mate and earth sciences, and pharmaceutical and chem-

ical industries. In this regard, quantum AI use cases

are concerned with, for example, portfolio optimization

in finance [150], traffic management [193], capacitive

vehicle routing [62,82], safe navigation of self-driving

vehicles [163], satellite network constellation [178] and

mission planning [147], energy network management

[22,124], job-shop scheduling in manufacturing [158],

weather simulation and forecasting [83,68,132,170] and

simulation of materials and chemicals for drug discov-

ery [142,91,111] and material design [37,10]. On the

other hand, there is active research on the use of QAI

algorithms that leverage AI methods, in particular from

machine learning, to address challenges of the building

and operation of quantum computing devices. These re-

search activities in both directions of QAI are in part

also fueled and influenced by the made progress and

still ongoing race in building ever more powerful quan-

tum computing devices and network, and vice versa.

Currently, the global market value of QAI applications

on future quantum computing devices in general is esti-

mated to be about eighteen billion USD by 2030 [148],

and three to five billion USD for the automotive in-

dustry by 2035 in particular [169,25]. This emphasizes

that quantum AI has graduated from being a mere aca-

demic niche to a topic with a potential future beyond

the current hype. However, it remains unclear when

QAI methods and their applications, including those

mentioned above, can be used and commercialized at

large in practice, as this would require way more quan-

tum computational resources and fault tolerance than

current quantum computers have but future computing

devices could provide [93].

Remarkably, as in AI, there are also discussions related

to QAI on ethical issues of quantum computing such as

those concerned with non-transparency of information

processing in a “quantum-box”, or clashes of quantum

privacy with security demands [139], as well as on the

role of quantum computing in neuroscience (quantum

neuroscience). The latter includes speculative multi-

scale simulations of the human brain [168] and explana-

tion of some consciousness-related brain functions [90],

though not of how the human brain produces thoughts

[108], as well as a better representation of and infer-

ence means for certain psychological models in cogni-

tive science (quantum cognition) [140]. One should keep

in mind, that these concerns apply in similar form to

classical stochastic algorithms as well.

In this paper, we provide a first overview of selected

methods, use cases and insights from research in the in-

terdisciplinary field of QAI for both its directions, with-

out any claim to completeness. In Section 2, we infor-

mally recall the basics of quantum computing from the

computer science perspective only in very brief; read-

ers who are roughly familiar with them can easily skip

this section. Section 3 then summarizes selected key

findings of research on quantum computing for AI in

several subfields of QAI. The same is done for research

on AI for quantum computing in Section 4 before we

conclude in Section 5.

2 Quantum Computing in a Nutshell

Quantum computing [130,153] harnesses the principles

of quantum mechanics [149] to process information and

perform computations, potentially surpassing the capa-

bilities of classical computers. There are two primary

models of quantum computing. The first is gate-based

quantum computing, which functions analogously to

classical computing by using quantum gates to ma-

nipulate quantum information. This model facilitates

the design of complex quantum circuits, which are the
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Fig. 2 Representation of a quantum state |ψ⟩ on the Bloch
sphere. The state is described by the angles θ and φ, where
θ defines the polar angle from the z-axis and φ defines the
azimuthal angle in the xy-plane. The Bloch sphere provides
a geometric representation of the pure states of a qubit, with
|0⟩ and |1⟩ corresponding to the poles of the sphere.

quantum counterparts to Boolean circuits in classical

computation.

In contrast, adiabatic quantum computing [7] is based

on the adiabatic theorem and, in principle, equivalent

to quantum gate-based computing [4]. In this model,

the quantum system, which represents the search space

of the given computational problem, gradually evolves

from an initial, simple quantum state to a final state

that encodes the problem’s solution. The choice be-

tween these models depends on the nature of the prob-

lem being addressed and the availability in terms of

hardware.

2.1 Gate-Based Quantum Computing

The basic unit of information in classical information

processing is a single bit that can exist in one of two

states, represented as the integer numbers 0 or 1. Con-

sequently, a sequence of n bits can represent 2n unique

values, with the bit register being in only one of these

2n possible states. A quantum bit (qubit) is the quan-

tum analog of a bit and can assume the two basic states

|0⟩ = ( 10 ) and |1⟩ = ( 01 ). Qubits adhere to the princi-

ples of quantum mechanics and can be implemented

using various physical systems, such as the spin states

of subatomic particles, ion traps, neutral atoms, or su-

perconducting circuits.

One of the intriguing properties of qubits is their ability

to exist not just in the state |0⟩ or |1⟩ but in a super-

position of both. An arbitrary single-qubit state can be

expressed as:

|ψ⟩ = α|0⟩+ β|1⟩ =
(
α

β

)
, (1)

where the coefficients α and β are complex numbers

that satisfy the normalization condition |α|2+ |β|2 = 1.

A visual representation of a qubit is shown in Figure

2. When building multi-qubit systems, an n-qubit sys-

tem provides access to a 2n-dimensional Hilbert space,

where an arbitrary pure quantum state is defined as

|ψ⟩ = c0|0 · · · 0⟩+ c1|0 · · · 1⟩+ · · ·+ c2n−1|1 · · · 1⟩, (2)

with ci ∈ C and
∑2n−1

i=0 |ci|2 = 1. The multi-qubit ba-

sis states, e.g., |0 · · · 1⟩ = |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |1⟩,
are tensor products of the individual qubits. The state

|ψ⟩ → [c0, c1, · · · , cN−1]
t possesses N = 2n complex

amplitudes, whose absolute squared values must sum

to one. Thus, due to the principle of superposition, an

n-qubit system is capable of encoding information that

scales as 2n, while classical systems are limited to n. A

multi-qubit state is entangled if the states of its compo-

nent qubits cannot be described independently of each

other as a tensor product. Quantum entanglement al-

lows for non-local correlations such that operating on

one component qubit changes the states of others in-

stantaneously and independent of their separate loca-

tions; a prominent example are the entangled 2-qubit

Bell states.

In order for computation to be possible, there must be a

way to manipulate quantum states. This is achieved by

operators that describe the evolution of a closed quan-

tum system with unitary. In order to preserve the nor-

malitation, these have to be unitary, and therefore re-

versible, that is, for a quantum operator U must hold

that U†U = I. In fact, any operation on qubits can be

described as a matrix operator. Notice that this is fun-

damentally different from classical computing, where

operations are not required to be unitary and not even

reversible.

Another crucial difference between classical and quan-

tum computation is how information can be accessed

after processing. In classical computing, the state of

each bit is well-defined and can be directly observed at

any time, revealing whether it is in a state of 0 or 1.

This observation does not alter the state of the bits,

allowing us to access the exact information stored in

the system without any disturbance. However, as men-

tioned above, in quantum systems the state of a qubit

is generally a superposition of multiple states, mean-

ing it can exist in a combination of both 0 and 1 si-

multaneously. To extract information from a quantum

system, one must measure an observable physical quan-

tity - which from now on we assume to be the binary

number associated with the computational basis states.

This measurement process forces the quantum system

to collapse from its superposition into one of the pos-

sible definite states. Crucially, this collapse is proba-
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bilistic, meaning that the outcome of the measurement

cannot be precisely predicted but rather is governed

by the amplitudes of the quantum state. Furthermore,

the measurement fundamentally alters the state of the

system, making it impossible to retrieve the original su-

perposition state after the measurement is performed.

This is a key distinction from classical systems, where

observation is non-intrusive and reversible.

For the quantum state given by Eq. (1), the measure-

ment will yield one of the basis states |0⟩ or |1⟩ with

classical output 0 or 1, respectively The probability of

observing |0⟩ is |α|2, and the probability of observing

|1⟩ is |β|2, with the total probability summing to 1

(|α|2 + |β|2 = 1). After measurement, the qubit will

be found in the state corresponding to the measure-

ment outcome. For the state described in Eq. (2), the

measurement outcome will be one of the 2n possible

basis states. The probability of observing a particular

multi-qubit state |ψ⟩ = |b1b2 · · · bn⟩ is given by |cindex|2,
where index represents the binary number correspond-

ing to the combination b1b2 · · · bn, and the total prob-

ability is 1 (
∑2n−1

i=0 |ci|2 = 1). After the measurement,

the system collapses to the state observed, with the

measurement outcome determining the final state of

the system. Quantum state measurement is the only

non-unitary (irreversible) operation in an ideal quan-

tum computer, and according to the no-cloning theorem

of quantum computing, in contrast to classical comput-

ing, it is not possible to generate an identical copy of an

arbitrary quantum state. Note that the squaring of the

amplitude over probabilities allows for negative and ar-

bitrarily complex-valued amplitudes. These account for

destructive interference which can be used in quantum

alogortihms to supress undesired solution. This interfer-

ence is a crucial distinction of quantum algorithms rel-

ative to classical stocahstic algorithms. Note also, that

the need for the state vector to retain its norm (from

which we infered that operations have to be unitary)

can be understood as conservation of total probability.

The aforementioned basic concepts of quantum com-

putation are direct consequences of the postulates of

quantum mechanics and provide a foundation for ex-

ploring how these principles can be applied in practice

through quantum circuits, which function as the quan-

tum counterpart of classical algorithms.

A quantum circuit typically begins with qubits in a de-

fined initial state, followed by the application of quan-

tum gates that transform these states according to the

intended computation. The circuit concludes with a

measurement, which extracts classical information by

collapsing the qubits into definite classical states. Quan-

tum circuit diagrams serve as a useful tool for visual-

izing quantum algorithms. Individual qubits are repre-

|0⟩ H X

Fig. 3 A simple quantum circuit demonstrating the combi-
nation of basic quantum gates. The circuit starts with a qubit
in the |0⟩ state. The Hadamard gate (H) is applied first, cre-
ating a superposition of |0⟩ and |1⟩. Following this, a Pauli-X
gate (X) is applied, flipping the qubit’s state. The circuit con-
cludes with a measurement, represented by the meter symbol,
which collapses the qubit’s state into either |0⟩ or |1⟩, produc-
ing a classical output.

sented as horizontal lines, and the sequence of opera-

tions, also known as gates, is indicated by their position

along these lines. An example of a simple quantum cir-

cuit is depicted in Fig. 3.

Similar to classical computing there is a universal set

of quantum gates, and quantum computing can simu-

late classical computing, while the converse is also true

[57]. However, quantum computing solutions are in the

complexity class of bounded-error quantum polynomial

time for problems solvable in polynomial time by prob-

abilistic quantum Turing machine with bounded error

(error probability less or equal than 1/4). This class in-

cludes not only that of P but also interleaves with NP

and PSPACE. Among other, that motivates research on

quantum-supported problem-solving methods beyond

those with an already proven significant speed-up com-

pared to their classical counterparts such as quantum

prime factorisation [160] and quantum search [138].

2.2 Adiabatic Quantum Computing

As an alternative, adiabatic quantum computing (AQC)
[7] performs problem-solving by gradually evolving a

quantum system toward its lowest energy state as a so-

lution. According to the adiabatic theorem, this grad-

ual evolution allows the system to remain in its ground

state throughout the process, theoretically enabling it

to perform any quantum computation. This process is

designed to encode the solution to a given computa-

tional problem into this ground state, and AQC theo-

retically possesses the capability to perform any quan-

tum computation, rendering it a universal approach to

quantum computing. However, this theoretical poten-

tial relies on ideal conditions, including a perfectly iso-

lated system, the ability to exert extremely precise con-

trol, and sufficiently long computation times to mitigate

errors. Note that the total time for this evolution is con-

trolled by the inverse of the energy gap, i.e., the differ-

ence between the two lowest energy eigenvalues during

the sytem evolution, and an efficient adiabatic quan-

tum algorithm is characterized by this gap shrinking

only polynomially with problem size.
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Fig. 4 A Hybrid Quantum-Classical Optimization Workflow (adapted from [115]). The diagram illustrates a hybrid quantum-
classical optimization process. The quantum part involves three main stages: State Preparation: An initial quantum state
is prepared using the unitary operator US . Computation: The prepared state is processed by a parameterized quantum
circuit U(Θ) to search for the optimal solution x based on the parameters Θ. Measurement: The quantum state is measured
to obtain the expectation value ⟨M⟩. The classical part includes three steps: Post-Processing: The measured expectation
value ⟨M⟩ is processed to extract the classical variable x. Evaluation: The function f(x) is evaluated based on the classical
variable x. Update: The parameters Θ are updated using classical optimization algorithms to improve the search in the
next iteration. The process iterates, with the updated parameters Θi+1 being fed back into the quantum circuit, forming a
closed-loop optimization cycle between the quantum and classical computations.

Amore practical application of AQC principles isQuan-

tum Annealing (QA) [87], which involves guiding a quan-

tum system towards a low-energy state but is specifi-

cally focused on finding approximate solutions to com-

binatorial optimization problems. Consequently, QA does

not fully meet the criteria for universal quantum com-

puting, making it more suitable for specific problem-

solving scenarios rather than serving as a versatile com-

putational tool akin to AQC.
In quantum annealing, computational problems are for-

mulated as Quadratic Unconstrained Binary Optimiza-

tion (QUBO) problems, mathematically described as

follows:

minimize Q(x) =
∑
i,j

Qijxixj (3)

where x is a vector of binary variables xi (with xi ∈
{0, 1}), and Qij are the coefficients of the quadratic

terms. The goal is to find the binary vector x that min-

imizes the value of Q(x).

In practice, while QA does not guarantee the correct

solution, it remains a powerful tool for addressing clas-

sically intractable problems. Notably, the QUBO for-

mulation in Eq. (3) is NP-complete, implying that any

NP-hard problem can be mapped into a QUBO for-

mulation with only a polynomial overhead. This sug-

gests that rather than viewing direct QA-based quan-

tum algorithms as merely an alternative to classical

or direct gate-based quantum computing for solving

QUBO problems, it should be considered a tool that

leverages quantum mechanics to provide potential ad-

vantages in specific cases, which warrant further explo-

ration in practice.

2.3 Hybrid Quantum-Classical Computation

While several theoretical results demonstrate that di-

rect (gate-based or AQC-based) quantum algorithms

can solve complex problems more efficiently than classi-

cal alternatives in terms of worst-case time complexity

[51,160,14], these results invariably assume the exis-

tence of quantum computers with a very low logical er-

ror rates. This assumption necessitates the use of quan-

tum error correction to safeguard quantum information

against errors and noise that may arise during com-

putation. Quantum computers are inherently sensitive

to external disturbances, hardware imperfections, and

spurious decoherence, all of which can introduce errors.

In contrast, NISQ devices, which represent the current

state of quantum hardware, operate without full fault

tolerance and have limited computational capabilities.

Such machines are not yet powerful enough to outper-

form classical computers and it is an open challenge to

find clear quandaum advantage in NISQ.

Consequently, the concept of hybrid quantum-classical

computation has been proposed to exploit near-term

quantum devices and benefit from the anticipated per-
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formance boost offered by quantum technologies. Specif-

ically, in the domain of gate-based quantum comput-

ing, variational quantum algorithms (VQAs) have been

developed to address optimization problems by utiliz-

ing both classical and quantum resources. The quantum

component, often referred to as a variational quantum

circuit (VQC) or parameterized quantum circuit (PQC),

plays a critical role in this hybrid approach.

Within this framework, the classical input data x is ini-

tially pre-processed on a classical device to determine

a normalized input quantum state for the PQC. Fol-

lowing this pre-processing, a VQA is executed, which

comprises two sets of quantum gates: US and U(θ).

Quantum operations US represent the data encoding

(or embedding) step and consist of a sequence of quan-

tum gates designed to generate a quantum state that

represents the classical input x as accurately as pos-

sible. The structure of US is task-dependent, varying

according to the specific computational problem be-

ing addressed. For instance, in combinatorial optimiza-

tion problems, the encoding step involves generating

a quantum state that represents the classical search

space of the original problem. A prominent example

is the Quantum Approximate Optimization Algorithm

(QAOA) [61], a well-known variational quantum algo-

rithm for solving QUBO problems. In QAOA, the initial

step of data encoding consists of generating a quan-

tum state where the basis states encode all possible

binary strings that might be solutions to the problem.

Conversely, in the context of machine learning, the en-

coding step involves mapping the set of features into a

quantum state. This mapping can be achieved through

various methods, such as using the basis states, am-

plitude encoding, or other encoding strategies. Each of

these approaches has its own advantages and disadvan-

tages. For a more detailed discussion of these methods

and their implications, see [183].

Subsequently, a sequence of parameterized quantum gates

U(θ), referred to as the Ansatz, is applied with ran-

domly initialized parameters θ. After the execution of

the PQC, which includes the quantum gates US and

U(θ), the result of the measurement is classically post-

processed to obtain a classical output f(x). This output

is then utilized to evaluate a task-dependent cost func-

tion. Based on this evaluation, the parameters of the

PQC are updated using gradient descent or another

optimization algorithm. This process is repeated itera-

tively in a closed loop between the classical and quan-

tum hardware until the optimization converges or the

desired performance is achieved.

The strength of this approach lies in the adaptabil-

ity of the architecture, which allows for customization

through learning of the gate parameters in the PQC

of the VQA to address various use cases. The entire

procedure is depicted in Fig. 4.

Quantum annealing can also be utilized within a hy-

brid framework. In this case, the approach involves de-

signing hybrid quantum-classical algorithms that itera-

tively generate large QUBO problems, which can then

be solved using quantum annealing. Here, only a spe-

cific computational component is delegated to quantum

annealing, while the rest of the computation remains

classical.

3 Quantum Computing for AI

One direction of quantum AI refers to the use of quan-

tum computing for solving computational problems in

AI. As mentioned above, this concerns all subfields of

AI such as automated planning, machine learning, com-

puter vision, natural language processing, and multi-

agent systems, for each of which we provide selected

results and insights in this section. The other direction

of QAI, namely, AI for quantum computing is covered

in Section 4.

3.1 Quantum Machine Learning

Quantum machine learning (QML) seeks to harness the

principles of quantum computing to perform traditional

machine learning (ML) tasks [20,16,17]. Although the-

oretical research indicates that fault-tolerant quantum

computing could accelerate the training of various ML

algorithms providing a computational advantage in terms

of worst-case time complexity [151,113,114], current

quantum hardware is not yet powerful enough to im-

plement these algorithms effectively. Consequently, in

QML the focus has shifted towards leveraging hybrid

quantum-classical computation with VQAs (cf. Section

2.3), which aims to exploit gate-based near-term quan-

tum devices to develop innovative models and poten-

tially achieve performance gains from quantum tech-

nologies.

The hybrid QML approach with the use of VQAs (cf.

Section 2.3) shares significant similarities with the train-

ing of classical neural networks (NNs), notably in their

reliance on parameterized models, gradient-based opti-

mization techniques, and structured layers for approxi-

mating complex functions. As such, this common ground

has paved the way for the development of quantum

neural networks (QNNs), which essentially are the use

of PQCs for machine learning applications. QNNs are

widely used in both supervised and reinforcement learn-

ing. In quantum supervised learning [112], these algo-

rithms typically involve fitting a parameterized function
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to a training dataset, that can represent complex hy-

pothesis functions that classical models might struggle

with. Therefore, the use of QNNs in supervised learning

seeks to identify problem classes that are intractable for

classical approaches from a learning perspective, rather

than expedite the training process in terms of wors-time

complexity.

Similarly, QNNs can be effectively utilized in quan-

tum reinforcement learning (QRL) [122,54]. In rein-

forcement learning (RL), an agent interacts with an

environment to maximize cumulative rewards by learn-

ing optimal policies[72]. Hybrid quantum-classical ap-

proaches of RL can employ QNNs to encode and process

states and actions within the environment, leveraging

a potential quantum advantage in representing and ex-

ploring complex state-action spaces. QNNs can be used

to approximate value functions or policy distributions,

while classical components handle the optimization of

these quantum parameters through iterative updates.

This hybrid strategy can enhance the learning efficiency

and representational power of RL algorithms, poten-

tially solving problems that are challenging for classical

methods alone.

Recently, a quantum deep reinforcement learning method

has been developed and experimentally evaluated on

noisy gate-based quantum simulation for the use case

of safe navigation by self-driving cars that do not need

a quantum device on-board during testing but train-

ing only [163]. The QRL method leverages the model

capacity of quantum neural networks, only requires a

few dozen noisy qubits and relies on hybrid quantum-

classical computations to be effective. The experimental

evaluation provided evidence in favor of quantum util-

ity in terms of faster and more stable training with

fewer parameters compared to the classical counter-

part. These results suggest that existing noisy quan-

tum computing devices with a few tens of qubits might

soon become viable alternatives to overcome the chal-

lenges faced by classical methods in, for example, en-

hancing autonomous systems and optimizing large dis-

tribution networks through quantum-supported rein-

forcement learning.

The focus on using quantum algorithms for unsuper-

vised learning primarily involves fault-tolerant quan-

tum approaches that can theoretically provide a com-

putational speedup in terms of worst-time complexity.

Key advancements include the introduction of quantum

algorithms that utilize amplification techniques in clus-

tering problems [5,55], the proposal of a quantum k-

means and k-nearest centroid algorithms [110,88], and

recent efforts focused on graph sparsification achieving

by leveraging superposition access to classically stored

graph weights [12].

3.2 Quantum Planning and Scheduling

Quantum automated planning and scheduling (QPS) re-

search focuses on quantum-supported means of auto-

mated planning (QP) and scheduling (QS) in AI, and

vice versa. Automated planning methods in AI can be

divided into online and offline planning each with cer-

tainty or under uncertainty. Offline planning is decou-

pled from the subsequent execution of produced plans

and gets no feedback about it during planning, while

online planning is interleaved with a controlled action

execution in a closed-loop manner. In many real-world

applications, action planning under uncertainty is re-

quired that allows for actions with non-deterministic

effects and incomplete initial states caused by only par-

tial observability of the environment such as in partially

observable Markov decision processes (POMDP). De-

pending on the chosen technique of planning with cer-

tainty or under uncertainty, a plan can take the form

of, for example, a finite sequence of primitive actions,

a conditional action plan, or an action policy on be-

lief states with maximal expected utility. For a more

comprehensive introduction to automated planning, we

refer the interested reader to, for example, [66].

In any case, automated planning methods in AI are

known to be computationally expensive, such as clas-

sical (state-space or planning graph-based) action plan-

ning already being PSPACE-complete, while belief states

in POMDPs and non-determinism as well as interactive

POMDPs make it even worse exponentially. Neverthe-

less, automated planning of symbolic AI is considered

more explainable in general than deep learning-based

POMDP solutions, and approximated online POMDP

planning methods are successfully used in many prac-

tical applications such as robot navigation. The funda-

mental question therefore arises as to whether, to what

extent and under which conditions quantum-supported

AI planning, particularly for (interactive) POMDPs, is

feasible and may lead to a significant reduction of plan-

ning time and space compared to the classical counter-

parts. As of today, not much is known in this regard

yet.

For example, a classical POMDP models an agent act-

ing in a partially observable stochastic environment. A

first quantum-based POMDP model was proposed in

[15], which is intended to generalize POMDPs and has

the same complexity for the strategy (plan) existence

problem, i.e. is PSPACE-hard for a polynomial (unde-

cidable for infinite) time horizon. In this model, actions

and observation process are represented by a super-

operator on quantum-encoded environment states as-

sumed by the agent. However, it is unclear to what ex-

tent this model is useful for quantum-supported plan-



8 Klusch et al.

ning and learning agents in POMDPs in concrete terms.

In [44], a quantum MDP model (QMDP) is defined

through a potential energy function of the quantum sys-

tem under consideration. It is shown how model-based

learning by approximate value iteration for POMDPs

can be applied to such a model. However, how QMDPs

are modeled when the energy function is unknown, and

whether this model may serve as a basis for quantum-

supported approximated interactive POMDP planning

is not known either. Another open question is to what

extent an adaptation of hybrid neuro-symbolic methods

for learning-assisted planning in POMDPs [141,46] for

quantum computing would be feasible and beneficial.

In [30], a quantum-supported method for optimal path

planning in robot navigation is presented that lever-

ages Grover’s quantum search in a classical tree-search

procedure. It is simulated for gate-based quantum com-

putation and shown theoretically to always provide a

quantum speedup up to that of the Grover algorithm

[70]. Earlier work [127] proposes a QP method that

adapts and benefits from standard quantum search for

planning in MDPs using Dynamic Programming (DP)

and a heuristic for controlling a discrete time quantum

walk on the MDP state graph, which reduces the num-

ber of states visited during a DP iteration compared to

classical.

Quantum scheduling (QS) research actually focuses on

the use of quantum computation for solving the NP-

complete problem of job shop scheduling (JSS) and its

modern variants that allow for more flexibility (FJSS)

in the context of Industry 4.0. Roughly, the FJSS prob-

lem is to find a feasible schedule that assigns constrained

job operations to multi-purpose machines with, for ex-

ample, a minimal production makespan in total. There

exist many different kinds of variants of this problem

and classical approximate solution methods based on

genetic algorithms, artificial neural networks, particle

swarm optimization and reinforcement learning [191,

101]. In agent-based solutions for FJSS, individual ma-

chines, carriers, jobs or individual operations are often

represented by agents in a respective multi-agent sys-

tem.

However, there are only very few quantum-supported

solution methods for some variants of the FJSS problem

yet. These QS methods are limited to quantum genetic

algorithms and quantum PSO, in which iterative evo-

lutionary sets of suitably quantum-encoded individuals

can lead to approximate optimal solutions, for example

by means of quantum rotations [192,32,167].

In [8,6], an iterative quantum-supported hybrid MILP

(Mixed Integer Linear Programming)-based optimal so-

lution of the JSS problem is decomposed in a way that

is suitable for hybrid quantum-classical computing. The

hybrid method solves a relaxed MILP problem of the

original JSS problem with a classical MILP solver to

find possible optimal assignments of jobs to machines.

This is followed by solving related sequencing QUBO

problems that correspond to individual machines with a

D-Wave quantum annealer to search for feasible sched-

ules based on those assignments. The reported exper-

imental results show a significant computational time

speedup of this method over the classical solver Gurobi

for JSS problem instances comprising of up to 280 ma-

chines and jobs in a specific scheduling dataset.

Multi-agent reinforcement learning (MARL) is one clas-

sical solution approach for FJSS with dynamic changes

of optimization conditions and configurations [109,78,

135]. Currently, there are only very few initial, feasible

approaches of quantum-supported MARL (QMARL)

for this specific problem class [136,189] but without

any experimental analysis and concrete insights on their

benefits compared to classical counterparts yet.

Another NP-hard problem in the AI domain of auto-

mated planning and scheduling is the bin-packing prob-

lem, which is to find the minimum number of bins of

fixed capacity required to pack a set of items of vary-

ing size without exceeding the bin capacities. Recently,

a first QS method has been presented that solves this

problem reformulated as a QUBO problem on a quan-

tum annealer [28]. The method utilizes the Augmented

Lagrangian method to account for the bin packing con-

straints and heuristic penalty multipliers, scales with

increasing problem size but does not outperform the

selected classical counterpart in runtime yet due to cur-

rent limitations of quantum annealing hardware.

It is apparent that more in-depth theoretical and ex-

perimental investigations are needed on which types

of computationally hard AI planning may benefit from

the adoption of direct or hybrid quantum computation

under which conditions and assumptions of integration

compared to classical solutions in general, and for which

practical use cases in particular. Research in the other

direction of QPS, that is, the use of AI planning and

scheduling for advanced manufacturing and operating

quantum devices, is as relevant as the use of AI for the

same purpose regarding classical computing devices but

actually occurs less prominent in the literature (cf. Sect.

4).

3.3 Quantum Computer Vision

Quantum computer vision (QCV) research is mainly

concerned with the investigation of the feasability and

benefits of quantum-supported computer vision meth-

ods for the perception of intelligent agents in AI. Re-
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search in the other direction of QCV, that is, the usage

of computer vision methods for advances in the build-

ing and operating quantum computing devices actually

appears rather neglected.

The QCV subfield of QAI formed in the early 2000s

[173] and attracted renewed attention with recent ad-

vances in quantum image processing. The latter re-

quires the representation and processing of a given dig-

ital image on a quantum computer, and the final con-

version of the processed quantum image into a clas-

sical image. Quantum image representations such as

qubit lattices and normal arbitrary quantum superpo-

sition states store color image information using ampli-

tudes, phases, or basis quantum states [107,102]. For

the processing of quantum represented images, there

are already quite a few, mostly quantum annealing-

based methods available for tasks such as image recog-

nition and classification [27,172,89], image synthesis

[49], object tracking and detection [103], graph match-

ing [159], as well as for motion and image segmentation

[13,174,179].

For example, the problem of unsupervised graph-based

image segmentation is (a) to construct a weighted undi-

rected graph from a given image with set of vertices

(pixels), set of edges (synergies between pixels), and

set of weights (similarity between pixels), and then (2)

to find the best partition into disjoint subsets such that

the sum of weights between different subsets is mini-

mized. This NP-hard problem has been recently solved

in [174] with a quantum-supported method that first

reformulates segmentation as a graph-cut optimization

problem, maps it into the topology of and runs it on

the considered quantum annealer, in this case, a D-

Wave Advantage, then retrieves the results of quantum

measurement and eventually generates the segmenta-

tion mask from them. Despite the shared and remote

access of the D-Wave device, comparative experimen-

tal evaluation results revealed that this QCV method

outperformed the classical solver Gurobi on the same

task in terms of runtime with only slightly sub-optimal

solution quality. In this regard, it is particularly valu-

able when collecting labeled data is costly and speed is

of essence. In [179], quantum algorithms for the same

purpose are analyzed that allow to scale the number of

qubits exponentially with respect to the input size to

use current gate-based quantum computing devices.

Motion segmentation, on the other hand, aims to de-

tect independent motions in two or several input im-

ages. The QCV method presented in [13] solves this

problem reformulated as a QUBO problem directly on

a D-Wave quantum annealer with reported on-par per-

formance compared to classical solutions.

Recently, in [172], several variations of a quantum hy-

brid vision transformer were analyzed for solving an im-

age classification problem in high-energy physics with

the result of, again, an on-par performance compared to

classical counterparts with a similar number of model

parameters. For small-scale medical image datasets, it

has been shown in [89] that quantum transformer mod-

els with quantum attention layers may perform better

than classical vision transformers for this purpose in

terms of asymptotic run time and fewer model param-

eters.

In [49], two quantum hybrid diffusion models for image

synthesis are presented. The first model replaces con-

volutional ResNet layers with hybrid quantum-classical

variational quantum circuits only at the vertex, while

the second additionally does so in the second block of

the encoder part. The experimental evaluation via sim-

ulation in PennyLane indicate that such models are of

benefit in the sense that they synthesize better-quality

images and converge faster with a lower number of pa-

rameters to train.

3.4 Quantum Natural Language Processing

Quantum natural language processing (QNLP) is con-

cerned with the representation and processing of nat-

ural language through quantum computational means.

The other direction of QNLP, that is the utilization of

NLP means for quantum computing tasks remains fully

unexplored yet. As summarized in [71], most QNLP

works leverage quantum superposition to model uncer-

tainties and ambiguity in language or entanglement to

describe both composition and distribution of syntax

and semantics effectively. The current QNLP methods

are mainly developed for the NLP tasks of question

answering, text classification and translation. In [38],

Coecke and colleagues show that QNLP is not just the

quantum counterpart to NLP but allows to combine

linguistic structure and semantics or meanings in one

quantum computational system, in fact, represent this

kind of knowledge in respectively composed variational

quantum circuits more efficiently and inherently than

in the classical case. The common basis of most QNLP

approaches is the Categorical Distributional Composi-

tional (DisCoCat) diagram model for natural language

[39] with which one can encode the meaning of words

and phrases as quantum states and processes, hence as

quantum circuits. In this regard, the implicit flows of

meanings in respective diagrammatic reasoning due to

the underlying structure are exposed rather than en-

coded in black boxes of neural transformer-based large

language models (LLM) in classical NLP.

The potential speedup of running the DisCoCat model

on quantum hardware was discussed first in [190], while
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in [185,104] the potential of quantum computing tech-

niques such as quantum search and quantum neural

networks for faster training and testing of LLMs, and

vice versa, is conceptually discussed but not yet demon-

strated in practice. In this context, complementary work

includes quantum-inspired approaches such as the re-

cently reported compression of LLMs with quantum-

inspired tensor networks by supposedly more than 80%

without compromising accuracy [123].

However, more advanced experimental insights on and

development of hybrid quantum-classical QNLP meth-

ods, in particular quantum neural networks, for NLP

tasks are needed but limited by current NISQ quantum

computing hardware. For example, as in QCV, the po-

tential of quantum-supported transformers compared

to classical transformer neural network architectures

might be worth to investigate. For more information on

QNLP in Quantum AI, we refer the interested reader

to, for example, [185,71,38]

3.5 Quantum Agents and Multi-Agent Systems

Quantum multi-agent systems (QMAS) research mainly

focuses on two strains: (1) development of autonomous

agents and multi-agent systems for hybrid quantum-

classical computational environments, and (2) quantum-

supported methods for coordination and cooperation in

multi-agent systems. In modern AI, the concept of an

intelligent agent and multi-agent system is at the core

[156,184] and integral part of many agent-based scien-

tific, industrial and commercial AI applications [182].

Roughly said, in a multi-agent system, multiple homo-

geneous or heterogeneous agents coordinate their ac-

tions to achieve joint goals and carry out tasks flexi-

bly, autonomously and interactively in complex envi-

ronments with cooperative or competitive settings de-

pending on the considered application problem.

There are quite some tools and frameworks for the en-

gineering of autonomous agents and multi-agent sys-

tems for environments of classical computing [11,19,24,

23,41]. However, architectures and approaches to build

and operate agents with quantum computational ca-

pabilities in AI applications to run on one or multiple

networked quantum computers or in hybrid quantum-

classical computing environments are very rare. In fact,

concepts, tools and frameworks for quantummulti-agent

system programming based on the currently available

quantum programming frameworks and quantum com-

putational models are needed but still missing and top-

ics of future research in QMAS.

Early work in this direction [92,94] proposed a first

conceptual classification and architecture of quantum

multi-agent systems. More recent, a quantum modeling

approach for reactive agents with subsumption archi-

tecture has been proposed and exemplified for a simple

ball picking robot in [96]. The agent state is encoded

as the superposition of the tensor products of a 4-qubit

perception vector with a 5-qubit action vector, and the

simple quantum control circuit for the robot is shown

for gate-based quantum computation but not yet eval-

uated.

Research on quantum-supported means of coordination

and cooperation in multi-agent systems is still in its in-

fancy. In [128], two first quantum-supported methods

for coordination in a quantum multi-agent system are

presented for gate-based quantum computing devices.

These methods were concerned with quantum versions

of Kernel-based coalition negotiation and a specific con-

tract net protocol with embedded auction. The used

quantum coalition protocol provides a marginal speedup

in computation and quadratic reduction in communica-

tion between agents compared to the classical counter-

part, while the quantum contract net version offers no

computational speedup but more data privacy to the

bidding agents.

Likewise, [31] initially discusses the potential of leverag-

ing entangled quantum states for coordination in (mixed)

multi-agent systems by means of a quantum public-

goods protocol and quantum auctions for resource al-

location. Their experiments on the latter indicates, for

example, that the quantum version may provide more

privacy than the classical (first price) auction but at

the cost of lower economic efficiency.

More recently, quantummulti-agent reinforcement learn-

ing (QMARL) for adaptive coordination in collabora-

tive settings for the quantum gate-based model [50,136,

189] or quantum annealing [129,100] gained some inter-

est. For example, in [50] a QMARL version for central-

ized training and decentralized execution (CTDE) relies

on distributed advantage actor-critic architecture with

a quantum critic uniquely spread across the agents and

coupling of local observation encoders through entan-

gled input qubits over a quantum channel. That elimi-

nates explicit sharing of local observations of agents and

reduces classical communication overhead. Whereas in

[136,189] alternative QMARL versions for CTDE are

proposed with a quantum critic at a central server and

agents sending their local observations via a classical

channel.

In any case, experimental evidence in favor of, or against

some quantum utility compared to classical MARLmeth-

ods is shown for simple toy domains only [50], if at

all. More investigations in this regard are definitely re-

quired to assess the potential of QMARL.

One prominent class of micro-level coordination tech-

niques for multi-agent systems [133] in competitive en-
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vironments is coalition formation based on coopera-

tive game theory. In general, coalition formation refers

to situations in which groups of individually rational

agents intend to work jointly in (temporary) coalitions

with binding agreements in order to accomplish their

tasks they cannot accomplish individually [58,157]. Re-

search in this area focuses on two main problems, namely,

coalition negotiation and coalition structure generation

[146,145]. Roughly said, for a given coalition game (A, v)

with a set A of rational agents and characteristic or

coalition value function v, the goal is either (a) to ne-

gotiate a game-theoretically stable coalition structure

as partition of A with individual payoffs for coalition

members, or (b) to generate the optimal coalition struc-

ture that maximizes the social welfare or joint profit of

the multi-agent system as a whole without individual

payoff distribution. Both problems are computationally

expensive, thus potential candidates for the investiga-

tion of quantum-supported solution alternatives. For

coalition negotiation this holds subject to the chosen

stability criteria like the exponential Kernel and Shap-

ley value, while coalition structure generation (CSG) is

a NP-hard optimization problem.

Since early work on quantum (non-)cooperative games

[81,79,128,29,80,52], only recently methods for quan-

tum coalition structure generation have been developed

and experimentally evaluated against classical coun-

terparts revealing evidence in favor of some quantum

utility [176,177,175]. As an example, [175] presents a

direct quantum solution of the CSG problem reformu-

lated as a QUBO problem for both quantum gate-based

simulation and quantum annealing devices, while [176]

proposes a hybrid quantum-classical CSG method for

induced subgraph games. In particular, the latter lever-

ages quantum annealing to iteratively solve the embed-

ded NP-hard optimal splitting problem in only linear

runtime to find the best bipartition of agents by mov-

ing down partition hierarchy until no value-increasing

bipartitions remain. In fact, it explores a larger por-

tion of the solution space compared to other approxi-

mate classical bottom-up solvers and outperforms them

with its quadratic runtime in the number of agents and

an expected worst-case approximation ratio of 92% on

standard benchmarks.

Remarkably, quantum coalition formation methods have

already been applied to practical use cases of energy

management [22,124]. The management of energy re-

sources presents complex computational challenges, par-

ticularly with scenarios involving dynamic energy con-

sumption and optimizing energy distribution in micro-

grids and larce-scale power networks as well. For ex-

ample, the use case problem considered in [124] is to

find an optimal coalition structure of energy prosumers

with the aim to minimize network management costs

through optimized power flow analysis, that is to maxi-

mize the overall network efficiency. The results of using

the quantum CSG method from [176] for solving this

problem on quantum annealers showcase quantum util-

ity compared to classical standard solutions. Advancing

in this direction will facilitate the broader adoption of

quantum AI solutions for real-world energy manage-

ment challenges.

Another use case of quantum CSG methods in the aero-

space domain was recently investigated in [178]. The

problem to find constellations of large-scale low-earth

satellite networks such as StarLink networks by dy-

namic clustering of moving LEO satellites with minimal

inter- and intra-cluster communication is NP-hard. Ac-

cording to initial experimental results, the used quan-

tum CSG method on a quantum annealer outperformed

the classical state-of-the-art solver for this problem on

real-world orbital datasets from Celestrak related to

Starlink satellites.

Coalition formation methods have also been leveraged

in the domain of transport and logistics for collabora-

tive solutions of the NP-hard problem of vehicle routing

and variants of the capacitive vehicle routing problem

(CVRP) [116,194,181]. However, quantum-supported

solutions for the same are still rare and topic of fu-

ture research [62,82]. For example, in [62] a CVRP is

solved hybrid quantum-classical through classical clus-

tering and optimal route planning in each cluster, while

the latter is done with a direct quantum optimization

algorithm for solving the corresponding TSP(Traveling

Salesman Problem)-QUBO problem on a D-Wave quan-

tum annealer. The method did not provide a clear ben-

efit in solution quality and runtime, though the latter

might change with the advent of a more advanced quan-

tum annealer in the future.

4 AI for Quantum Computing

In this section, we turn our attention to the other direc-

tion of QAI, namely, the use of AI for quantum com-

puting. It summarizes selected approaches to exploit

AI, particularly ML methods, in support of the whole

process from quantum algorithm and experiment de-

sign, search for near-optimal parameters, transpilation

of quantum circuits, error correction during execution,

and the calibration and design of quantum devices as

shown in Fig. 5. It can be seen as a particular example

of the field of AI for science.



12 Klusch et al.

Quantum Algorithm & Experiment 
Design

Near-Optimal PQC Parameter Search

Transpilation

Quantum Error Correction and Error 
Mitigation

Quantum Device Calibration

U(θ)

Fig. 5 Stack of tasks in the building and operation of quan-
tum computing devices for which AI techniques (currently
mainly from ML) are utilized.

4.1 Quantum Algorithm and Experiment Design

Though the design and implementation of quantum al-

gorithms in general is manually done by human experts,

there are quite a few approaches to leverage ML meth-

ods in support of both the experiment design and pro-

tocol development. There is a common agreement that

humans might not be predestined to design new exper-

iments and protocols in quantum computing when re-

cent experimental findings deliver counter-intuitive re-

sults. Most approaches to experiment design suggest

the use of reinforcement learning and minimizing the

influence of the human developer.

In this regard, the framework Melvin [98] offers the

use of ML methods to discover new experimental meth-

ods for creating and manipulating complex quantum

states. It creates experiments with optical components,

arranges them randomly, calculates and analyzes quan-

tum states, and simplifies configurations based on user-

defined criteria, if the desired properties are met. Re-

markably, Melvin produced correct and useful but un-

familiar, asymmetric techniques that are hard to un-

derstand intuitively.

Inspired by Melvin, [119] and [180] use the physics-

oriented ML approach of projective simulation based

on RL for autonomous experiment design. For exam-

ple, the authors in [119] applied projective simulation

for developing complex photonic quantum experiments

with multi-photon states entangled in high dimensions.

As a result, the approach unexpectedly rediscovered ad-

vanced experimental techniques, in particular by inter-

acting with a simulated optical table using a set of op-

tical elements to create experiments. It places elements

on the table, analyzes the resulting quantum states, and

receives rewards based on the given task and state be-

fore iterating the process.

In [180] the same approach is used to discover and op-

timize protocols in quantum communication over long

distances. Their RL agent successfully rediscovered es-

tablished protocols such as for quantum teleportation,

entanglement purification, and quantum repeaters. The

results suggest that RL could be effective in finding so-

lutions that outperform human-designed ones for long-

distance communication challenges, especially in sce-

narios with asymmetric conditions.

In contrast, [43] investigates the use of differential evo-

lution and particle swarm optimization for improving

the precision of multi-particle entanglement-free quan-

tum phase estimation. Both methods are leveraged to

fine-tune feedback policies aimed at reducing different

types of noise. In fact, both methods showed supe-

rior robustness and precision compared to non-adaptive

methods, particularly for scenarios where noisy, non-

entangled qubits serve as sensors in quantum sensing

and metrology.

Related research on explainable AI (XAI) for quantum

computing is concerned with the use of XAI techniques

not only to explain the designed quantum algorithms

but quantum circuits in general and PQCs for QML

(cf. Section 3.1) in particular. For example, [165] reports

that PQCs introduce probabilistic errors due to quan-

tum measurements, which complicates the use of tra-

ditional XAI methods. Moreover, with the phase space

of a quantum circuit expanding exponentially with the

number of qubits, executing XAI methods in polyno-

mial time becomes challenging. The authors evaluated

the adaptation of the XAI methods IG (Integrated Gra-

dients) and baseline SHAP (SHapley Additive exPlana-

tions) for PQCs using truncated Fourier series. Based

on their findings, the authors introduced qSHAP (quan-

tum SHAP), which scales with the number of features

rather than qubits, making it suitable for larger quan-

tum circuits, and shows more robustness against noise

compared to the other two approaches.

In [77], SHAP is investigated in the form of quantum

Shapley (QShap) values to assess the impact of single

or group of quantum gates in PQCs, similar to evalu-

ating feature importance in classical ML. QShap values

are model-agnostic within quantum domains, treating

gates as players in a coalition game to measure their

contribution to tasks like expressibility, entanglement
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capability, or classification quality (see also [161]). To

handle the uncertainty in quantum computing, QShap

values are based on uncertain Shapley values, which

account for measurement noise and decoherence. The

authors tested QShap values on quantum support vec-

tor machines (QSVM), quantum generative adversarial

networks (QGANs) and QAOA (cf. Section 2.1), re-

porting on the significance of individual gates in these

algorithms.

In contrast, using the inception or so-called deep dream-

ing method, [85] analyzes a neural networks’ under-

standing of quantum optics experiments. This method

shows the ability of the used neural network to find

novel configurations beyond the initial data and reveals

a progression from simple to complex feature recogni-

tion in the layers of the network.

Overall, most progress is made in the area of experi-

ment design with algorithm design lacking behind. As

to XAI, first results, primarily based on Shapley val-

ues, were presented. Further, XAI will get extremely

important in QML as the EU AI Act defines trans-

parency rules, besides others, for all applications of AI,

including QAI. Further, a better understanding of the

influence of individual gates, as proposed in [77], might

help in optimizing the depth and width of PQCs during

the transpilation process.

4.2 Near-Optimal PQC Parameter Search

Warm-starting of quantum algorithms refers to the pro-

cess of finding near-optimal parameters of PQCs in

hybrid quantum-classical algorithms without executing

them. They aim to reduce the number of quantum cir-

cuit evaluations required during the optimization. Clas-

sical warm-starting protocols rely on relaxations of the

problem which have to be solved classically to find a

good initial state [56]. In the following, we summa-

rize selected approaches that involve classical ML al-

gorithms for this purpose.

For example, [9] investigates four regression-based ma-

chine learning methods to speedup the QAOA opti-

mization loop. These methods include Gaussian pro-

cess regression, linear model, regularized support vec-

tor machine, and regression tree. Of these, Gaussian

process regression achieved the best results. In partic-

ular, despite using a relatively small training set, this

approach generalized well and led to an average reduc-

tion of 44.9% in the number of optimization iterations

across all local optimization procedures.

In [84] and [105], the integration of graph neural net-

works (GNNs) with QAOA is explored to improve the

parameter initialization. Various GNN architectures such

as graph convolutional networks, graph attention net-

works, graph isomorphism networks, and GraphSAGE

[75] were investigated in [105]. Experimental evaluation

with benchmarks for their performance in initializing

QAOA showed that all GNNs provided a more stable

and reliable initialization compared to random initial-

ization. One of the strengths of GNN-based initializa-

tion is its ability to generalize across different graph

sizes. This means that a GNN trained on smaller graph

instances can still perform well on larger instances, pro-

viding a flexible and efficient warm-starting mechanism

for QAOA. Including graphs of different sizes the GNN

method in [84] generated solutions of approximately

95% of the quality of the Goemans-Williamson algo-

rithm.

The ability of matrix product states (MPS) for improv-

ing QML algorithms is explored in [48] by addressing

the issue of vanishing gradients, or barren plateaus that

complicate the training of PQCs. The authors propose

optimizing MPS with classical methods such as den-

sity matrix renormalization group and time-evolving

block decimation to approximate solutions for quan-

tum circuits. The optimized MPS is converted into uni-

tary matrices for quantum circuits using decomposi-

tions. Experiments showed that MPS-initialized circuits

for problems like Max-Cut on a six-vertex graph and

image classification with Fashion-MNIST achieved bet-

ter performance, that is, with fewer gradient steps and

faster convergence compared to random or identity ma-

trix initialization.

Overall, ML algorithms show promise in the warm-

starting of variational quantum algorithms. Future re-

search might aim at methods to find the optimal pa-

rameters of the PQCs of such algorithms directly using

some sort of ML algorithms and therefore replacing the

classical optimization loop completely. In a similar di-

rection, future ML-based algorithms might also assist

with choosing the best hyper-parameters such as for

the Ansatz circuit and the number of layers, which was

not explictly mentioned by the papers referenced in this

section.

4.3 Transpilation of Quantum Circuits

Given the challenges of NISQ devices, such as low fi-

delity and short coherence times, quantum circuits must

be designed with minimal gates. Afterwards, quantum

circuit transpilation includes the decomposition of non-

native gates into native ones and the addition of SWAP-

gates for connectivity compatibility, followed by an op-

timization to minimize resource usage. IBM Qiskit [86]

divides this quantum circuit transpilation process into
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six stages: Init (prepares the circuit by unrolling in-

structions and validating them), layout (maps virtual

to physical qubits considering connectivity and calibra-

tion), routing (ensures backend compatibility with ad-

ditional gates), translation (converts gates to the back-

end’s basis set), optimization (reduces circuit complex-

ity), and scheduling (applies hardware-aware schedul-

ing). Currently, ML-based algorithms are utilized for

most of the steps to find optimal transpiled circuits.

These include evolutionary algorithms, deep neural net-

works, and RL methods.

Evolutionary algorithms including genetic algorithms,

genetic programming, ant colony optimization, and evo-

lutionary deep neural networks are used in all stages of

the transpilation process [99]. Further, [45] and [60] uti-

lize evolutionary algorithms such as evolutionary deep

learning for an initial qubit mapping.

Neural networks are primarily used for circuit mapping

and circuit optimization. In [1], neural networks are uti-

lized to significantly speed up the circuit mapping pro-

cess while maintaining mapping accuracy and reducing

the required computational resources. The experiments

showed this on a 5-qubit IBM Q processors and com-

pared to classical state-of-the-art mapping algorithms

over a special data set for training [2]. However, [45]

argue that the method and dataset above lacks correct-

ness, generalization, and diversity of the dataset.

In [121], on the other hand, a framework based on long-

short term memory (LSTM) networks is proposed to de-

cide whether a quantum circuit can be optimized in the

first place. The reasoning is that, as mentioned above,

the optimization process is a complex task and it is not

guaranteed to receive a more resource efficient quantum

circuit. Thus, if their framework predicts that the quan-

tum circuit cannot be optimized, classical computing

resources are saved. Results show that their ML model

is able to decide if an arbitrary quantum circuit can be

optimized above a certain threshold with an accuracy

of 96.7%.

Similar to [121], Quetschlich et al. introduce in [143]

and [144] an algorithm, which finds the optimal compi-

lation flow for a given quantum circuit. [144] builds on

their previous work [143] by shifting from reinforcement

learning to a simpler, scalable supervised learning ap-

proach for predicting optimal compilation options. The

proposed tool recommends the best compiler options for

quantum circuits, targeting end-users who may struggle

with option selection. Using a statistical classifier, the

tool predicts the best technology, device and compiler

settings with accurate results for about 75% of unseen

test circuits.

Paler et al. [134] introduce a quantum circuit mapping

heuristic, named QXX, and its ML-enhanced version

QXX-MLP to improve layout, routing, and optimiza-

tion stages. The goal is to map circuit qubits to phys-

ical qubits while optimizing the circuit depth. QXX-

MLP uses a multi-layer perceptron to infer optimal pa-

rameter values for QXX, reducing circuit depth by a

Gaussian function estimation. QXX achieves depth ra-

tios about 30% lower than Qiskit on shallow circuits

and performs competitively with Qiskit and TKET on

deeper circuits. Beyond that QXX-MLP achieves al-

most instantaneous layout performance, significantly re-

ducing the quantum circuit compilation time.

Reinforcement learning is primarily utilized to find near-

optimal gate synthesis for a specific hardware back-

end. A deep reinforcement learning method for approx-

imating single-qubit unitaries is proposed in [126]. This

method aims to reduce the overall execution time by

learning a general strategy through a single pre-compilation

procedure. The authors highlight the trade-off between

the length of the sequence and execution time, suggest-

ing that their approach can potentially allow for real-

time operations by improving on this trade-off.

In [60], the problem of quantum circuit placement [118]

is addressed as a bilevel optimization problem to min-

imize SWAP counts. The authors use a deep reinforce-

ment learning algorithm for the lower-level optimiza-

tion, improving SWAP costs through state space en-

coding. For the upper level, as mentioned earlier, an

evolutionary algorithm is used. This ML-based frame-

work reduces SWAP gates by up to 100% and runtime

costs by up to 40 times compared to heuristic methods.

Fosel et al. [63] describe a deep RL agent that optimizes

quantum circuits tailored to specific hardware, improv-

ing efficiency for near-term devices. Their method re-

duced average circuit depth by 27% and gate count by

15% in 12-qubit random circuits, demonstrating effec-

tive resource reduction. The RL agent also scales well,

optimizing larger circuits effectively.

Recently, Kremer et al. [97] presented an RL-based method

for synthesizing quantum circuits, including Clifford,

Linear Function, and Permutation circuits, which di-

rectly matches native device instructions and constraints.

This approach eliminates the need for extra transpila-

tion steps, optimizing the transpiling process. It also

enhances circuit routing, reducing the two-qubit gate

depths and counts more effectively than heuristics like

SABRE. That led to a better performance on quantum

devices with up to 133 qubits. For 8- to 10-qubit quan-

tum volume [137] circuits, the RL method achieved a

reduction around 20% in the CNOT depth.

In contrast to the aforementioned ML algorithms, the

authors of [171] discuss the effectiveness of classical au-

tomated reasoning and formal methods in AI, namely,

decision diagrams, SAT solvers, and graphical calculus-
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based methods such as the ZX-calculus, for the compi-

lation of quantum circuits. The considered compilation

tasks are classical simulation, optimization, synthesis,

and equivalence checking of quantum circuits. As one

result, the authors expect that the use of automated

reasoning methods may play a role in other quantum

computing applications as well, such as for the finding

of ground states, phase transitions, and quantum error

correction.

Overall, we have seen several ML algorithms targeting

one ore more transpilation stages. We are currently at

a stage, where first ML-enhanced transpilers are rolled

out to the end-users for testing in IBM Qiskit [97]. How-

ever, as long as we have only access to NISQ-devices we

are always striving to find shallower circuits. Further-

more, besides reducing the depth of quantum circuits,

also reducing the width, that is, the number of qubits

required, is another topic of future research in this con-

text.

4.4 Quantum Error Correction and Mitigation

Quantum error correction and error mitigation are both

relevant processes on our way to fault-tolerant quantum

computing. While error correction, as the name sug-

gests, actively corrects errors during the execution of a

quantum circuit, error mitigation targets the readout

error and therefore is a classical post-processing step.

A significant challenge with quantum error mitigation

is the necessity for a large number of circuits, which

have to be run in advance. In essence, each possible

bitstring has to be tested for read-out errors. In [106],

ML is used to improve quantum error mitigation by

predicting near noise-free values from noisy quantum

output. Their key innovation is that trained ML mod-

els can mitigate errors without additional circuits, re-

ducing overhead compared to zero-noise extrapolation.

The authors explore several models, including linear re-

gression, random forests, multi-layer perceptrons, and

graph neural networks, finding that all except graph

neural networks outperform traditional methods, with

random forests consistently performing best. In fact,

ML-based quantum error mitigation reduces the quan-

tum resource overhead by 30% and the runtime over-

head by 50% compared to zero-noise extrapolation.

Quantum error correction is actively researched as it

will deliver fault-tolerant quantum computing. In [42],

an ML algorithm for continuous quantum error cor-

rection is proposed. The approach facilitates recurrent

neural networks to identify bit-flip errors in continuous

noisy syndrome measurements.

Further, in [74] a deep neural network decoder for quan-

tum error correction on IBM quantum processors was

developed and benchmarked. The study demonstrates

the DNN decoder’s capability to efficiently process syn-

drome data and correct errors, outperforming the tra-

ditional Minimum-Weight-Perfect-Matching method in

certain aspects. The performance of the DNN decoder

was validated through simulations and experiments on

IBM devices, showing promise for real-time, scalable er-

ror correction, which is crucial for fault-tolerant quan-

tum computing.

Overall, the research on ML algorithms for quantum

error correction and quantum error mitigation is still

in its early stages. In addition, the use of AI methods

other than from ML for quantum error correction re-

mains to be investigated.

4.5 Calibration of Quantum Computing Devices

The calibration and design of quantum computing de-

vices such as superconducting or ion trap gate-based

quantum computers, quantum annealers and quantum

sensors can benefit from classical ML. This is originally

an application of the field of quantum optimal control

theory [67,95], which aims at finding the right analogue

controls for given hardware to perform desired quan-

tum tasks. This field has already used mathematical

tools similar to those of AI and is now rephrasing a

lot of its work in modern AI language [186,154,188].

In fact, this has recently led to the tongue-in-cheek re-

mark statement, that AI is in fact a subfield of quantum

control theory.

These methods typically have a model-based and

an experiment-based part and ideally also use experi-

mental data to improve the model, in order to create a

digital twin and provide a shortcut for optimal control.

This is done in isolation e.g. in [166,40,76,69,164,65]

and integrated in the commercial offerings of a number

of startups [155,18,125].

For example, [131] presents a practical, efficient, and

model-independent ML method for Bayesian parame-

ter estimation (BPE) in quantum systems. Traditional

BPE methods often require extensive calibration and

explicit modeling of the measurement apparatus, which

makes them impractical for complex systems. The au-

thors frame parameter estimation as a classification prob-

lem solved using supervised learning techniques, where

the output of the neural network is a Bayesian poste-

rior distribution centered at the true parameter value,

bounded by Fisher information. This approach requires

fewer calibration measurements and is model-independent

outperforming conventional calibration-based BPE.

In [187], the energy spectrum of a Hamiltonian on a

superconducting quantum device is predicted, outper-

forming the current state-of-the-art by over 20%. The
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method uses multi-target regression to predict multi-

ple related variables, uncovering relationships between

them by employing explainable AI techniques. This ap-

proach significantly improves the accuracy of quantum

device calibration.

To simplify the calibration process, [35] introduces a

method to calibrate quantum photonic sensors using

neural networks. The approach relies on data collected

using available probe states, reducing overhead, and im-

plicitly accounting for imperfections. The neural net-

work demonstrated robustness to noise and scalabil-

ity, making it suitable for future quantum technologies.

Quantum hardware design can be made more system-

atic and be improved by AI as well, as shown, for ex-

ample, in [64,120].

Overall, the calibration of quantum devices can be prac-

tically improved through the use of ML. In conjunction

with ML-assisted experiment design (see Sec. 4.1) one

even might find advantages in the use of ML for design-

ing new quantum computers with better fidelities and

connectivity.

5 Conclusions

Research in the interdisciplinary and nascent field of

quantum AI is concerned with the use of quantum com-

puting for addressing computationally hard problems

in AI, and vice versa. So far, an impressive progress

was made in both directions of QAI research. In fact,

there are quite a few quantum-supported solutions of

selected hard optimization problems in AI with differ-

ent degrees of potential quantum utility for relevant use

cases in various domains such as manufacturing, auto-

mated driving, finance, and energy management. In ad-

dition, initial research revealed that quantum comput-

ing itself may benefit from the use of ML for optimizing

the control, performance and calibration of quantum

computational devices.

In our view, future QAI research across all its sub-

fields should focus even more on investigations under

what conditions and settings in concrete (industrial)

use cases are direct or hybrid quantum-classical solu-

tions feasible with what quantum utility in practice.

Further, the appropriate and timely transition to and

investigation of the feasibility and potential of nowa-

days QAI methods on future built non-NISQ devices

is another challenge. That is particularly important in

the context of current expectations of the economic

value of QAI applications in relevant industries. Among

other, this requires both the physics and computer sci-

ence communities to even more join forces, and on the

other hand, a further, sustainable support of research

on both quantum AI and the building of more resource-

ful, fault-tolerant quantum computing devices at gov-

ernment and industry level worldwide.
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C. Linnhoff-Popien. Multi-agent quantum reinforcement
learning using evolutionary optimization, 2024.

101. M. E. Leusin et al. Solving the job-shop scheduling prob-
lem in the industry 4.0 era. Technologies, 6(4), 2018.

102. H.-S. Li, S. Song, P. Fan, H. Peng, H. ying Xia, and
Y. Liang. Quantum vision representations and multi-
dimensional quantum transforms. Information Sci-
ences, 502:42–58, 2019.

103. J. Li and S. Ghosh. Quantum-soft qubo suppression for
accurate object detection. In A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, editors, Computer Vision
– ECCV 2020, pages 158–173, Cham, 2020. Springer
International Publishing.

104. Z. Liang, J. Cheng, R. Yang, H. Ren, Z. Song, D. Wu,
X. Qian, T. Li, and Y. Shi. Unleashing the potential

of llms for quantum computing: A study in quantum
architecture design. arXiv preprint arXiv:2307.08191,
2023.

105. Z. Liang, G. Liu, Z. Liu, J. Cheng, T. Hao, K. Liu,
H. Ren, Z. Song, J. Liu, F. Ye, et al. Graph learning
for parameter prediction of quantum approximate opti-
mization algorithm. arXiv preprint arXiv:2403.03310,
2024.

106. H. Liao, D. S. Wang, I. Sitdikov, C. Salcedo, A. Seif,
and Z. K. Minev. Machine learning for practical quan-
tum error mitigation. arXiv preprint arXiv:2309.17368,
2023.

107. M. Lisnichenko and S. Protasov. Quantum image rep-
resentation: A review. Quantum Machine Intelligence,
5(1):2, 2023.

108. A. Litt, C. Eliasmith, F. W. Kroon, S. Weinstein, and
P. Thagard. Is the brain a quantum computer? Cogni-
tive Science, 30(3):593–603, 2006.

109. R. Liu, R. Piplani, and C. Toro. A deep multi-agent
reinforcement learning approach to solve dynamic job
shop scheduling problem. Computers & Operations Re-
search, 159:106294, 2023.

110. S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum
algorithms for supervised and unsupervised machine
learning, 2013.

111. H. Ma, J. Liu, H. Shang, Y. Fan, Z. Li, and J. Yang.
Multiscale quantum algorithms for quantum chemistry.
Chemical Science, 14(12):3190–3205, 2023.

112. A. Macaluso. Quantum supervised learning. KI-
Künstliche Intelligenz, pages 1–15, 2024.

113. A. Macaluso, L. Clissa, S. Lodi, and C. Sartori. Quan-
tum splines for non-linear approximations. In Pro-
ceedings of the 17th ACM International Conference on
Computing Frontiers, pages 249–252, 2020.

114. A. Macaluso, M. Klusch, S. Lodi, and C. Sartori. Maqa:
a quantum framework for supervised learning. Quantum
Information Processing, 22(3):159, 2023.

115. A. Macaluso, F. Orazi, M. Klusch, S. Lodi, and C. Sar-
tori. A variational algorithm for quantum single layer
perceptron. In International Conference on Machine
Learning, Optimization, and Data Science, pages 341–
356. Springer, 2022.

116. S. Mak, L. Xu, T. Pearce, M. Ostroumov, and A. Brin-
trup. Fair collaborative vehicle routing: A deep multi-
agent reinforcement learning approach. Transportation
Research Part C: Emerging Technologies, 157:104376,
2023.

117. J. Marti-Guerrero et al. Quantum artificial intelligence:
A tutorial. In Proceedings of the 31st European Sym-
posium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN 2023), Oc-
tober 4-6 2023.

118. D. Maslov et al. Quantum circuit placement: optimizing
qubit-to-qubit interactions through mapping quantum
circuits into a physical experiment. In Proceedings of the
44th Annual Design Automation Conference, DAC ’07,
page 962–965, New York, NY, USA, 2007. Association
for Computing Machinery.

119. A. A. Melnikov et al. Active learning machine learns
to create new quantum experiments. Proceedings of the
National Academy of Sciences, 115(6):1221–1226, 2018.
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approach to bayesian parameter estimation. npj Quan-
tum Information, 7(1):169, 2021.

132. V. Oliveira Santos, F. P. Marinho, P. A. Costa Rocha,
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137. E. Pelofske, A. Bärtschi, and S. Eidenbenz. Quantum
volume in practice: What users can expect from nisq
devices. IEEE Transactions on Quantum Engineering,
3:1–19, 2022.

138. B. Pokharel and D. A. Lidar. Better-than-classical
grover search via quantum error detection and suppres-
sion. npj Quantum Information, 10(1):23, 2024.

139. L. M. Possati. Ethics of quantum computing: An out-
line. Philosophy & Technology, 36(3):48, 2023.

140. E. M. Pothos and J. R. Busemeyer. Quantum cognition.
Annual review of psychology, 73(1):749–778, 2022.

141. F. Pusse and M. Klusch. Hybrid online pomdp planning
and deep reinforcement learning for safer self-driving
cars. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 1013–1020, 2019.

142. A. Pyrkov et al. Quantum computing for near-term
applications in generative chemistry and drug discovery.
Drug Discovery Today, 28(8):103675, 2023.

143. N. Quetschlich, L. Burgholzer, and R. Wille. Compiler
optimization for quantum computing using reinforce-
ment learning. In 2023 60th ACM/IEEE Design Au-
tomation Conference (DAC), pages 1–6. IEEE, 2023.

144. N. Quetschlich, L. Burgholzer, and R. Wille. Predict-
ing good quantum circuit compilation options. In 2023
IEEE International Conference on Quantum Software
(QSW), pages 43–53, Los Alamitos, CA, USA, jul 2023.
IEEE Computer Society.

145. T. Rahwan. Algorithms for coalition formation
in multi-agent systems. PhD thesis, University of
Southampton, 2007.

146. T. Rahwan, T. P. Michalak, M. Wooldridge, and N. R.
Jennings. Coalition structure generation: A survey. Ar-
tificial Intelligence, 229:139–174, 2015.

147. S. Rainjonneau et al. Quantum algorithms applied to
satellite mission planning for earth observation. IEEE
Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 16:7062–7075, 2023.

148. R. Rake et al. Enterprise quantum comput-
ing market size, share, competitive landscape and
trend analysis report, by component, deployment
mode, technology and application, industry verti-
cal: Global opportunity analysis and industry fore-
cast, 2021-2030. www.alliedmarketresearch.com/

enterprise-quantum-computing-market, 2021.

149. J. Rau. Quantum theory: an information processing
approach. Oxford University Press, 2021.

150. P. Rebentrost and S. Lloyd. Quantum computational
finance: quantum algorithm for portfolio optimization.
KI-Künstliche Intelligenz, pages 1–12, 2024.

151. P. Rebentrost, M. Mohseni, and S. Lloyd. Quantum
support vector machine for big data classification. Phys.
Rev. Lett., 113:130503, Sep 2014.

152. J. Reichental. Quantum artificial intelligence is closer
than you think. Forbes, November 20 2023.

153. E. G. Rieffel and W. H. Polak. Quantum computing: A
gentle introduction. MIT press, 2011.

154. M. Rossignolo et al. Quocs: The quantum optimal
control suite. Computer Physics Communications,
291:108782, 2023.

155. A. S. Roy et al. Software tool-set for automated quan-
tum system identification and device bring up, 2022.

156. S. J. Russell and P. Norvig. Artificial intelligence: a
modern approach. Pearson, 2016.

157. S. Sarkar, M. Curado Malta, and A. Dutta. A survey
on applications of coalition formation in multi-agent sys-
tems. Concurrency and Computation: Practice and Ex-
perience, 34(11):e6876, 2022.

158. P. Schworm, X. Wu, M. Glatt, and J. C. Aurich. Solv-
ing flexible job shop scheduling problems in manufactur-
ing with quantum annealing. Production Engineering,
17(1):105–115, 2023.

159. M. B. Seelbach et al. Adiabatic quantum graph match-
ing with permutation matrix constraints. In 2020 Inter-
national Conference on 3D Vision (3DV), pages 583–
592, Los Alamitos, CA, USA, nov 2020. IEEE Computer
Society.

160. P. W. Shor. Polynomial-time algorithms for prime fac-
torization and discrete logarithms on a quantum com-
puter. SIAM Journal on Computing, 26(5):1484–1509,
1997.

www.alliedmarketresearch.com/enterprise-quantum-computing-market
www.alliedmarketresearch.com/enterprise-quantum-computing-market


Quantum Artificial Intelligence: A Brief Survey 21

161. S. Sim, P. D. Johnson, and A. Aspuru-Guzik. Express-
ibility and entangling capability of parameterized quan-
tum circuits for hybrid quantum-classical algorithms.
Advanced Quantum Technologies, 2(12):1900070, 2019.

162. A. Singh. What is quantum artificial intelligence?
Posted on Medium.com on 17.7.2023, 2023.

163. A. Sinha, A. Macaluso, and M. Klusch. Nav-q: Quantum
deep reinforcement learning for collision-free navigation
of self-driving cars, 2023.

164. T. M. Stace et al. Optimized bayesian system identifica-
tion in quantum devices. Phys. Rev. Appl., 21:014012,
Jan 2024.

165. P. Steinmüller, T. Schulz, F. Graf, and D. Herr. explain-
able ai for quantum machine learning, 2022.

166. M. P. V. Stenberg, O. Köhn, and F. K. Wilhelm. Char-
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