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Abstract—Quantum computing is expected to transform a
range of computational tasks beyond the reach of classical
algorithms. In this work, we examine the application of vari-
ational quantum algorithms (VQAs) for unsupervised image
segmentation to partition images into separate semantic regions.
Specifically, we formulate the task as a graph cut optimization
problem and employ two established qubit-efficient VQAs, which
we refer to as Parametric Gate Encoding (PGE) and Ancilla Basis
Encoding (ABE), to find the optimal segmentation mask. In addi-
tion, we propose Adaptive Cost Encoding (ACE), a new approach
that leverages the same circuit architecture as ABE but adopts a
problem-dependent cost function. We benchmark PGE, ABE and
ACE on synthetically generated images, focusing on quality and
trainability. ACE shows consistently faster convergence in train-
ing the parameterized quantum circuits in comparison to PGE
and ABE. Furthermore, we provide a theoretical analysis of the
scalability of these approaches against the Quantum Approximate
Optimization Algorithm (QAOA), showing a significant cutback
in the quantum resources, especially in the number of qubits
that logarithmically depends on the number of pixels. The results
validate the strengths of ACE, while concurrently highlighting its
inherent limitations and challenges. This paves way for further
research in quantum-enhanced computer vision.

Index Terms—Quantum algorithms, variational circuits, image
segmentation, combinatorial optimization

I. INTRODUCTION

Variational Quantum Algorithms (VQAs) aim to leverage
NISQ devices for practical uses through a hybrid quantum-
classical approach [1]. VQAs address classical problems,
which lack polynomial-time solutions but have verifiable an-
swers, showcasing their potential for real-world applications.
One application area that highlights the potential of VQAs
is in solving Quadratic Unconstrained Binary Optimization
(QUBO) problems, an NP-Hard class of optimization prob-
lems with applications in various domains, including logistics,
finance, and machine learning [2]. The Quantum Approximate
Optimization Algorithm (QAOA) represents a notable example
of VQAs applied to such challenges [3]. While classical com-
puters can handle QUBO for instances with several thousand
variables, running QAOA on similar tasks requires thousands
of qubits, a requirement that appears out of reach given the
constraints of near-term quantum technology. The scalability
of QAOA is inherently limited by the linear relationship be-
tween the number of binary variables in QUBO problems and
the number of logical qubits required, underscoring the press-

Fig. 1.The figure depicts an architecture for segmenting an image. Generating
a graph representation of the image, the distinct semantic regions in the
image are identified by finding the minimum cut in the graph that can be
formulated as Quadratic Unconstrained Binary Optimization (QUBO). The
QUBO problem is subsequently solved using a VQA by optimizing the circuit
parameters that incidentally explore an exponentially large solution space to
locate the global optimum, which can be decoded as the segmentation mask.

ing need to explore more efficient encoding strategies. These
strategies are designed to mitigate the hardware limitations
of current quantum devices while simultaneously unlocking
new possibilities for efficiently addressing complex tasks that
classical computing capabilities cannot solve.

In this work, we adapt two existing variational quantum
algorithms, which we refer to as Parametric Gate Encoding
(PGE) [4] and Ancilla Basis Encoding (ABE) [5], to address
the task of image segmentation formulated as a combinatorial
optimization problem [6]. PGE encodes the segmentation
solution in the parameterized gates exerted in the quantum
ansatz, while ABE [5] uses the probability distribution of the
qubits’ basis states for encoding the solution [4]. Furthermore,
we propose an enhancement of ABE, termed Ancilla Cost
Encoding (ACE) that uses a problem-specific cost function
and demonstrates an improved performance. Importantly, these



algorithms require exponentially fewer qubits than QAOA
and its variants, scaling logarithmically with the number of
image pixels. This represents a significant improvement in
scalability for image segmentation tasks using VQAs. We
begin by reformulating the image segmentation problem as
a graph partition problem, subsequently framed as a QUBO.
The experiments are focused on analyzing the solution quality
and the efficiency of various classical optimizers for these
algorithms. We also provide a theoretical analysis of essential
quantum resource requirements as a function of the number
of pixels of the input image. For a well-rounded study, we
also discuss the specific limitations of each approach. Our
findings open new research directions for leveraging quantum
computing in computer vision, particularly in the optimization
of quantum resources for complex computational tasks.

II. RELATED WORKS
Supervised deep learning models have set benchmarks in

image segmentation by leveraging precisely annotated data.
However, the collection of such labeled datasets faces hurdles,
including significant annotation time and costs, the necessity of
specialized knowledge, and issues scaling to vast datasets, not
to mention the inconsistencies arising from variable interpre-
tations by different annotators [7]. These limitations highlight
the importance of unsupervised segmentation methods, espe-
cially valuable for leveraging extensive unlabeled data pools
[8]. Nonetheless, the computational demand of some unsuper-
vised techniques, like graph-based segmentation [9], presents
a significant limitation, making these tasks ideal targets for
quantum computing to promise more efficient solutions.

A wide range of research has explored the use of quan-
tum algorithms for computer vision tasks, primarily focus-
ing on image classification [10]–[13] and matching [14],
[15]. Additionally, quantum-inspired classical techniques have
been applied to segmentation [16] and edge-detection [17],
[18], blending quantum concepts with traditional computing
infrastructure. In particular, quantum annealers and hybrid
quantum-classical approaches have demonstrated promise for
image segmentation, converting these challenges into a QUBO
problem [6], [19], [20]. Despite their innovative methods,
they face limitations in scalability and are constrained by the
current capabilities of quantum annealers for handling high-
resolution images.

In contrast, our work focuses on leveraging the versatility
of VQAs, particularly suited for NISQ devices, to overcome
the scalability limitations in existing quantum and hybrid
approaches. Unlike methods requiring extensive quantum re-
sources or fault tolerance, we adapt established encoding
strategies to harness the potential of quantum circuits in
enhancing computer vision techniques, specifically image seg-
mentation, through efficient quantum resource utilization.

III. PRELIMINARIES
The segmentation process involves representing an input

image as a lattice graph with nodes corresponding to pixels
and edges representing pixel similarity. The approach is par-
ticularly interesting as it can capture both spatial and spectral

information in the image [9]. Segmentation seeks to partition
this graph’s vertices into mutually exclusive subsets, such that
the total weight of the edges connecting vertices from one
subset to another is minimized, defined as:

MINIMUMCUT(G) = argmin
A,A

∑
i∈A,j∈A

w(vi, vj) (1)

where G denotes the graph and w(vi, vj) is the weight of
the edge connecting the nodes vi and vj . Given the NP-hard
nature of the min-cut problem for arbitrary weights, classical
solutions become computationally challenging, motivating the
reformulation into a QUBO problem to exploit the power of
quantum computers [21].

Example: Let’s consider an image of size 2 × 2, which
is converted to a grid graph with a one-to-one mapping of the
pixels to the vertices. The edge weights are assigned as the
similarity measure between the neighboring pixels. Finding
the minimum cut in this grid graph will eventually give the
segmentation of the image.

Fig. 2.Transformation of a 2 × 2 pixel image into a grid graph, where edge
weights indicate pixel similarity. The red dashed line depicts the edges that
are cut to partition the graph.

Focusing on the capabilities of existing NISQ technology,
we target near-optimal solutions as they are often tolerable
for downstream computer vision tasks. With n vertices, the
binary encoding of each vertex in graph G facilitates the
representation of potential solutions as vector ∈ {0, 1}n
delineating the vertices into two disjoint subsets, with edges
intersecting these subsets identified as cuts. Such an encoding
allows to reformulate the minimum cut as a QUBO without
loss of generality as [22], [23]:

x⃗∗ = argmin
x⃗

∑
1≤i<j≤n

xvi(1− xvj )w(vi, vj)

= argmin
x⃗

x⃗TQx⃗
(2)

where x⃗∗ represents the optimal solution for the minimum
cut of G. The construction of the Q ∈ Rn×n matrix is derived
from the coefficients of terms in the quadratic expression
of the binary variables xvi for i ∈ {1, 2, ..., n} obtained by
substituting the edge weights w(vi, vj) and simplifying.

QAOA, a special case of the Variational Quantum Eigen-
solver (VQE) [24], is designed for QUBO problems, im-
plementing a parameterized quantum circuit to approximate
the problem’s ground state. The binary encoding strategy
employed for solving the image segmentation problem using
QAOA leads to scalability challenges of representing high-
resolution images with individual qubits for each pixel. In



contrast to the problem-specific ansatz of QAOA, the methods
we explore use a problem-agnostic ansatz. This gives rise to a
need for efficient encoding strategies within the VQA frame-
work to address image segmentation, requiring fewer qubits
and offering scalable solutions for practical applications.

IV. METHODS

In this section, we will explain the two methods and
describe a new approach to obtain the segmentation of an
image employing innovative encoding strategies for solving
the QUBO problem.

A. Parametric Gate Encoding (PGE)

Given a grid graph G constructed from the input image, the
Laplacian matrix LG provides a compact representation of the
graph’s structure, capturing information about the connectivity
and degree of each vertex, and is given by LG = DG − AG,
where DG is the degree matrix, a diagonal matrix with vertex
degrees d(vi) for vi on the diagonal, and AG is the adjacency
matrix, a square matrix where the element AG[i, j] is the
weight of the edge between the vertices vi and vj . If the
dimension of the matrix LG is not a power of 2, without loss of
generality, we pad the matrix with zeroes to the nearest power
of 2 to ensure that the matrix dimensions are compatible with
the quantum register, as quantum states are represented in a
Hilbert space of dimension n for log2(n) qubits. Since the
Laplacian is a symmetric matrix consisting of real-valued edge
weights for undirected weighted graphs, it is also Hermitian
and thus serves as a suitable quantum observable [4].

The PGE method constructs a parameterized quantum cir-
cuit with n′ = ⌈log2(n)⌉ qubits, initializing with Hadamard
gates for equal superposition and applying a diagonal gate as
the ansatz which can be expressed as [4]:

Û(Θ⃗) =


exp(iπf(θ1)) 0 · · · 0

0 exp(iπf(θ2)) · · · 0
...

...
. . .

...
0 0 · · · exp(iπf(θ2n′ ))


(3)

where Θ⃗ = (θ1, θ2, ...θ2n′ ), and θi ∈ [0, 2π] for i ∈
{1, 2, ..., 2n′} and f is piecewise function defined as:

f(θi) = xvi =

{
0 0 ≤ θ < π

1 π ≤ θ < 2π
∀i ∈ {1, 2, ..., 2n

′
} (4)

with n′ − 2 two-qubit CNOT gates and n′ single-qubit
parametric gates, where each parametric gate in the variational
ansatz encodes a binary decision for the segmentation mask.
With LG as the observable, the measurement operation is
performed, and the energy of the system is evaluated as:

C(Θ⃗) =
2n

′

2
⟨ψ(Θ⃗)|LG|ψ(Θ⃗)⟩ (5)

Since LG is also a Hermitian matrix, it is decomposed
into a linear combination of tensor products of Pauli matrices,
enabling the evaluation of the quantum observable correspond-
ing to the graph structure. The parameters Θ⃗ are adjusted
iteratively using a classical optimizer to minimize the cost

function (Eq. 5). The optimal parameters Θ⃗ = {θ1, θ2, ...θ2n′}
are decoded to binary values (Eq. 4), obtaining the minimum
cut and eventually the binary segmentation mask of the image.

B. Ancilla Basis Encoding (ABE)

For an image with n pixels to be segmented, the QUBO
problem formulated will also have n variables. The ABE [5]
strategy uses only log2(n) + 1 number of qubits, where the
log(n) qubits are called the register qubits and the additional
qubit is termed as the ancilla qubit. Using a hardware efficient
ansatz where each layers consists of log2(n) CNOT gates
between adjacent qubits and log2(n) + 1 parametric Ry(θ)
gates for each qubit, the quantum state is represented as:

|ψ(Θ⃗)⟩ =
n∑

i=1

βi(Θ⃗)(ai(Θ⃗)|0⟩a + bi(Θ⃗)|1⟩a)⊗ |ϕi⟩r (6)

where |ϕi⟩r are the computational basis states of the register
qubits, |0⟩a and |1⟩a are the states of the ancilla qubit, ai
and bi are the amplitudes for the ancilla qubit, and βi(Θ⃗)
are coefficients dependent on variational parameters Θ⃗. The
expectation measurements obtain a probability distribution
over the basis states of the qubits in the circuit and the solution
is decoded as:

xvi =

{
0 |ai|2 > |bi|2

1 otherwise
(7)

where |ai|2 + |bi|2 = 1.
The probability of finding the optimal solution increases as

the number of measurements tends to ∞ [5]. While it may
appear impractical, for relatively small quantum circuits, the
number of measurement operations only needs to be large
enough to adequately approximate the optimal probability
distribution; it does not necessarily need to be ∞. Additionally,
well-established VQAs like QAOA are guaranteed to find
the optimal solution only as the depth of the corresponding
quantum circuit tends to infinity. According to the ABE ap-
proach, the quantum circuit is typically initiated by a layer of
Hadamard gates to generate a uniform superposition, followed
by a hardware-efficient ansatz applied to evolve the quantum
state. For the parameters Θ⃗, the cost is given by:

C(Θ⃗) =

n∑
i,j=1

Qij

⟨P̂ 1
i ⟩Θ⃗⟨P̂

1
j ⟩Θ⃗

⟨P̂i⟩Θ⃗⟨P̂j⟩Θ⃗
(1−δij)+

n∑
i=1

Qii

⟨P̂ 1
i ⟩Θ⃗

⟨P̂i⟩Θ⃗
(8)

where P̂i are projectors over the basis states of the register
qubits |ϕi⟩r, irrespective of the state of the ancilla qubit,
δij = 1 when i = j and Q is the matrix representing the
QUBO problem. The objective is to find a binary vector x⃗∗

that minimizes x⃗⊤Qx⃗. The expectation values ⟨P̂i⟩ embody
the probabilities of observing the qubit states that encode the
binary variables xvi of the QUBO solution vector x⃗. The
projectors Pi and P̂ 1

i are operators that map the quantum state
onto the respective basis states of the register qubits, with Pi

aligning with the state that encodes xvi = 1. P̂ 1
i modifies

this to include the state of the ancilla qubit [5]. Finally,
an optimizer running on a classical computer optimizes the
variational parameters Θ⃗ to minimize C(Θ⃗) (Eq. 8).



Fig. 3. Quantum circuit of ABE/ACE for finding the segmentation mask of the example image in Fig. 2. illustrating the encoding of the solution of a
QUBO problem of size 4 into a quantum state facilitated by 3 qubits: q1, q2 are the register qubits and q3 is the ancilla qubit. The circuit initialization
employs Hadamard gates to induce superposition across all qubits, followed by two layers of hardware-efficient ansatz with entanglement and rotation gates
parameterized by Θ⃗. Executing and measuring the circuit obtains a probability distribution over the basis states. For the basis states whose register qubits
are the same encodes the value of the binary variable. For example, with the register qubit basis states |ϕ1⟩r = |00⟩, we obtain the value xv1 = 1 as the
probability of the ancilla qubit in state |1⟩ > |0⟩ (Eq. 7).

C. Adaptive Cost Encoding (ACE)

We propose a modified cost function using the same encod-
ing strategy as ABE. During each iteration of the optimization,
once we measure the circuit multiple times, we get a proba-
bility distribution that can be decoded into a binary vector x⃗
that represents a possible solution. Instead of using the cost
function in Eq. 8, we can make use of the min-cut problem’s
cost function i.e.,

C(x⃗) =
∑

1≤i<j≤n

xvi(1− xvj )w(vi, vj) (9)

where x⃗ = xv1 , xv2 , ..., xvn such that xvi ∈ {0, 1} given
by Eq. 7, and w(vi, vj) ∀ i, j ∈ {1, 2, ..., n} is the edge
weight between vi and vj . In case of ABE, given two sets of
parameters, say Θ⃗1 and Θ⃗2, obtaining the binary vectors x⃗1
and x⃗2 respectively (Eq. 6 and 7), if C(Θ⃗1) < C(Θ⃗2) (Eq. 8)
does not always guarantee that C(x⃗1) < C(x⃗2) (Eq. 9) which
implies that the optimal circuit parameters may not correspond
to the minimum cut. Whereas, ACE guarantees that the opti-
mization process obtains the solution of the original problem,
i.e., the optimal circuit parameters Θ⃗ implies the corresponding
x⃗ minimizes the minimum cut cost function (Eq. 9). Moreover,
the QUBO formulation of the original problem also becomes
obsolete as the cost function directly involves the weights of
the edges in the graph and not the QUBO coefficients. In the
following section, through our experiments, we demonstrate
ACE to have improved trainability, a strong tendency to find
better solutions and a more consistent behavior using different
optimizers with our proposed problem-specific cost function
compared to ABE.

Furthermore, the adaptive cost function can be extended to
other combinatorial optimization problems where the problem
formulation expresses the solution as a binary vector and uses
the original cost function. This approach can be crucial for
tasks where the optimization problem includes constraints and
reformulating the problem as a QUBO involves integrating
the constraints as penalty terms into the cost function with
an appropriate penalty coefficient, eventually not depicting
the original problem [25]. Even an optimal penalty coeffi-
cient should be set, while a very low value can lead to the
consideration of an invalid binary vector as a solution, or

a high value can cause any valid solution to be considered
optimal. Whereas, ACE allows finding the optimal solution
of the original problem without modifying the cost function
or the constraints, by setting a high or low cost for binary
vectors that do not obey the constraints depending on whether
the problem is minimization or maximization respectively.

Example: Considering again the 2 × 2 image from the
previously discussed example (Fig. 2).

For PGE, the Laplacian LG is of size 4×4 and the encoding
scheme uses a quantum circuit with just 2 qubits. The circuit
consists of an initial layer of Hadamard gates, followed by the
ansatz Û(Θ⃗) (Eq. 3) which is a diagonal gate of size 4 × 4.
With LG as the observable, optimizing the cost function and
obtaining the optimal circuit parameters θ∗1 , θ

∗
2 , θ

∗
3 , θ

∗
4 , we can

decode the binary mask x∗v1 , x
∗
v2 , x

∗
v3
, x∗v4 (Eq. 4). While this

approach is efficient in terms of the number of qubits, the
main drawback is the number of parameters which implies an
overhead in the classical optimization process.

Figure 3 represents the quantum circuit and the encoding
strategy for solving this example. In the cost function (Eq. 8)
of ABE, the term ⟨P̂i⟩Θ⃗ is the probability of the basis state
(|0⟩a+ |1⟩a)⊗|ϕi⟩r, and the term ⟨P̂ 1

i ⟩Θ⃗ is the probability of
the state |1⟩a⊗|ϕi⟩r, where |0⟩a and |1⟩a are the basis states of
the ancilla qubit. Updating the parameters, a unitary evolution
is performed over the state |ψ0⟩ which produces a new state
|ψ1(Θ⃗)⟩ = Û1(Θ⃗)|ψ0⟩. The optimization iteratively adjusts
Θ⃗, and each iteration involves running the quantum circuit
and evaluating the cost function. A classical optimizer is used
to find the optimal parameters Θ⃗opt that minimize the cost
function C(Θ⃗). Decoding the final quantum state |ψ1(Θ⃗opt)⟩,
we obtain a binary vector x⃗ which represents the solution of
the QUBO problem, which is the binary segmentation mask
of the given image. Whereas in the case of ACE, at each
iteration of the optimizer, the measurement is decoded to get
the binary vector x⃗, and the value of the cost function in Eq.
9 is minimized by optimizing the circuit parameters Θ⃗.



Fig. 4.The figure illustrates the performance of PGE, ABE and ACE for finding the minimum cut on grid graphs of size 2×2 and 4×4 with the layers in the
ansatz of the quantum circuit ranging from 1 to 5 in terms of the solution quality and the efficiency of the optimization process. The plots show the average
and standard deviation of the relative errors in the obtained solution’s cost as a measure of quality and the number of iterations to quantify the trainability
using COBYLA, Powell, and SLSQP optimizers.

V. EXPERIMENTS

A. Experimental Settings

PGE, ABE, ACE algorithms are implemented in Qiskit
framework, and the experiments are executed on a classical
computer using Qasm simulator. Inspired from the existing
literature [6], the synthetic dataset consist of square grid
graphs by sampling edge weights from a uniform distribution
in the range [-1,1], and the experiments were executed for
sizes 2 × 2 i.e., 4 pixels, and 4 × 4 i.e., 16 pixels, as
all the approaches discussed previously behave similarly for
images of sizes from log2(n + 1) pixels up to size n. For
the reproducibility of results and fair comparison, we have
executed the experiments using 5 fixed seeds for generating
the problem instances and the initial values for the parameters
of the variations circuits. We evaluated the local optimizers
from the Scipy library, detailing the results for COBYLA,
Powell, and SLSQP. For ABE and ACE, we increased the
number of layers up to a maximum of 5, allowing additional
layers to introduce more parameters for optimization, causing
significant overhead for the classical optimizer. To ensure
the solution quality improves with an increased number of
measurements [5], we conducted our experiments with 65, 536
measurements for each optimization iteration.

We benchmarked the solution quality and optimization effi-
ciency of PGE, ABE, and ACE against the results from Gurobi,
known for its effectiveness in solving combinatorial optimiza-
tion problems. Solution quality was evaluated by calculating
the relative error of the minimum cut value from the VQAs rel-
ative to Gurobi, defined as Relative Error = |CVQA−Cgurobi|

|Cgurobi| . We
measured optimization efficiency by the number of iterations
needed for the cost function, which directly correlates with the
frequency of quantum circuit executions. PGE uses a constant-
depth quantum circuit and shows no variance across different
layers of the ansatz. The software for these experiments was
developed using Python 3.10.

B. Results
Figure 4 illustrates the experiments for synthetically gen-

erated problems fixing 5 seeds with layers ∈ [1, 5] using
different classical optimizers. We see that using our modified
cost function in ACE parameterized by the binary vector
decoded from the measurement of the quantum circuit helps
the optimizer decide upon the optimal solution much quicker
than ABE that uses a cost function parameterized directly by
the probability distribution obtained from the measurement
process. Moreover, the training is more consistent for ACE
as we observe minimal variations in the number of iterations
and the quality across 5 seeds. The number of iterations is
consistently lower for ACE as the different costs explored
during the optimization are discrete as the minimum cut is a
combinatorial optimization problem, lowering the possibilities
to explore in contrast to ABE where the optimization land-
scape is not only non-convex but also infinitely many values
are explored. However, certain optimizers, such as SLSQP,
demonstrate limitations when faced with a higher number of
layers, struggling with the increased overhead from optimizing
a larger parameter set and thus proving unsuitable for scenarios
demanding extensive parameter optimization. Although, PGE
can be seen performing better with Powell optimizer, the
number of parameters optimized is exponential to that of
qubits. Therefore, we extend our experiments using a more
robust classical optimizer to prove the efficacy of ACE in terms
of the number of parameters to optimize.

Given the non-convex and non-differentiable nature of the
problem, classical optimizers focused on local optimization
may not always secure the global optimal solution. Although
inefficient in terms of runtime, using a metaheuristic optimizer
like Differential Evolution could be more effective as the cost
function lacks smoothness. This approach helps illustrate that
even a single layer of ACE, with just a logarithmic number
of parameters equal to the number of qubits, can capably
represent the solution to the original problem.



Seed Size Iterations Execution Time (s) Obtained Value Exact Value

111 4 3463 236.13 -1.13 -1.13
16 14601 1320.92 -1.54 -1.54

222 4 4966 362.44 -0.62 -0.62
16 75225 3557.49 -3.97 -3.97

333 4 5439 379.46 -1.16 -1.16
16 40287 3477.47 -3.57 -3.57

444 4 9174 622.83 -1.20 -1.20
16 75201 3797.97 -2.19 -2.19

555 4 3737 268.69 -1.86 -1.86
16 75201 4202.49 -2.56 -2.56

TABLE I. Table details performance metrics for ACE with a single layer,
optimized using a differential evolution strategy. It includes reproducibility

seeds, image sizes denoted by pixel count, total optimizer iterations,
computational runtimes in seconds, and minimum cut values obtained by

ACE alongside those calculated through an exhaustive search for validation.

The results in Table I reveal that ACE can solve a com-
binatorial optimization problem consisting of n variables by
optimizing only log2(n) + 1 parameters. From a classical
perspective, treating the quantum circuit as a black box, ACE
allows to reformulate an NP-Hard problem of size n as a mul-
tivariate optimization problem of size O(log2(n)) leveraging
the power of quantum computing. In contrast, PGE requires
to optimize the same number of real-valued parameters and
also uses more number of gates.

C. Theoretical Analysis
Here we perform an analysis on the scaling of QAOA, PGE,

ABE and ACE based on the metrics typically considered for
evaluating the scalability of VQAs. In particular, we provide
the complexities of the discussed NISQ algorithms for image
segmentation in terms of qubit complexity which is a major
bottleneck for present-day applicability, the number of two-
qubit entanglement gates is vital to understanding the error
rates due to decoherence, the number of parametric gates is
crucial for assessing the overhead on the classical optimizer,
and the circuit depth which is the longest sequence of quantum
gates applied from the input till the measurement operation
which provides an estimate of circuit execution time.

Method Qubit
complexity

Entanglement
gates Parametric gates Circuit depth

QAOA O(n) O(n2) O(Ln) O(Ln2)

PGE log2(n) n− 1 n n

ABE/ACE log2(n)+1 L(log2(n)) L(log2(n) + 1) L(log2(n) + 1)

TABLE II. Scalability analysis of VQAs for solving QUBO problems in
terms of quantum resources.

Table II provides a theoretical scalability analysis, where
n is the number of binary variables in QUBO and L is
the number of layers in the ansatz of the quantum circuit.
Acknowledging the qubit limitations in emerging quantum
technologies, the scalability of the methods introduced here,
excluding QAOA, is notably superior. They potentially allow
for the segmentation of a 1−megapixel image, equivalent to
220 pixels, utilizing merely 20 qubits.

VI. DISCUSSION AND CONCLUSION

The segmentation methods explored in this paper demon-
strate substantial scalability in terms of quantum resources
compared to well-known variational quantum algorithms like
QAOA. For PGE, there is no increase in circuit depth,

and the ansatz remains constant regardless of the number
of edges in the graph, only depending on the number of
vertices. This implies that while the number of entanglement
gates, remains fewer than the number of variables in the
QUBO, the overall resource efficiency is maintained. The
number of parameters, which corresponds directly to the
number of pixels, represents the primary challenge for the
classical optimizer due to its exponential relationship with the
number of qubits. The consistency in circuit design across
different graph connectivities suggests that PGE could benefit
significantly from more intricate connections in the image-
derived graph. Such enhancements could potentially improve
the spatial information consideration for each pixel, enriching
segmentation quality without adding computational overhead.

The methods ABE and ACE similarly display a significant
reduction in quantum resource requirements for addressing
NP-Hard segmentation problems, aligning with the conserva-
tion goals typical of near-term quantum technologies. These
methods achieve scalability primarily through their linear
increase in parameters with the number of layers, which
enhances their applicability without exponential increases in
resource demands. However, the number of circuit measure-
ments scales exponentially with the number of qubits allowing
us to measure the ancilla qubit state for all possible register
basis states to obtain a complete binary vector solution.
Experimentally, ACE has proven to achieve optimal solutions
with increased layers and parameters, provided that a robust
classical optimizer is used. This highlights the potential for
optimizing the synergy between quantum circuit design and
classical optimization techniques, advancing applications of
quantum technology. Additionally, a deeper exploration of
the optimization landscape could unveil methods allowing
classical optimizers to find global optima more effectively.

In summary, the techniques covered here demonstrate the
potential of new encoding schemes, allowing vital applications
like image segmentation to benefit from emerging quantum
technologies, even with the current limitations of hardware
from the NISQ era. These developments highlight the cru-
cial role that novel quantum computational techniques play
in overcoming classical computational challenges and open
up promising directions for future research into quantum-
enhanced computer vision.

CODE AVAILABILITY

All code to generate the data, figures, analyses, as well as,
additional technical details on the experiments are publicly
available at https://github.com/supreethmv/NISQ-Seg.
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