Leverage Asset Administration Shells to Support
Artificial Intelligence Planning

Alexis T. Bernhard, Benjamin Blumhofer,
Martin Ruskowski, Achim Wagner
Innovative Factory Systems
Deutsches Forschungszentrum
fiir Kiinstliche Intelligenz GmbH (DFKI)
Kaiserslautern, Germany
{firstname.lastname} @dfki.de

Abstract—Modern Digital Twin standards and technologies,
designed to enable smart factories in line with the Industry 4.0
vision, have not yet addressed all the challenges associated with
contemporary digital twins. This paper shows how to leverage the
Asset Administration Shell as an Industry 4.0 compliant Digital
Twin technology to provide all necessary data for Artificial Intel-
ligence Planning, represented via the Planning Domain Definition
Language. For this purpose, a model for preconditions and effects
of planning actions is defined. This model is applied to three
different use cases showing different problems of fetching data
from different partially standardized shell templates including
three defined actions of transport, assembly, and storage.

Index Terms—Asset Administration Shell, Planning Domain
Definition Language, Intralogistics, Digital Twin, Industry 4.0

I. INTRODUCTION

Over the past few years, the Asset Administration Shell
(AAS) [1] has established as a constituent technology for
digital twins in modern Industry 4.0 systems. In particular, a
product AAS represents a digital twin of the respective product
and is used in various forms throughout the whole production
process and beyond. This includes applications such as digital
product passport, as a handler for product representations (e.g.,
in CAD format) or for the production process. In the last case,
one typical task is to automatically create an executable plan
for a production process. Planning [2] belongs to the broad
family of Artificial Intelligence (AI) methods focused on the
problem of finding a (production) plan as a sequence of actions
that, when sequentially applied, transitions from a current state
to a desired goal state [3].

In order to derive such a plan, all required product and
factory data must be gathered. This paper examines the ap-
plicability of AAS to gather all planning data. Specifically,
we focus on defining an input format for an Al planning
domain which contains all relevant static and also contextual
information for planning in a symbolic and logical form. Given
a goal to achieve, e.g., a newly produced product instance,
a valid sequence of production steps will be found using a
backward chaining approach. These steps represent or will be
mapped to existing skills of available production resources.
This, however, requires that all preconditions as well as the
effects of the skill application are properly formalized. In

Andreas Luxenburger, Daniel Porta
Cognitive Assistants
Deutsches Forschungszentrum
fiir Kiinstliche Intelligenz GmbH (DFKI)
Saarbriicken, Germany
{firstname.lastname} @dfki.de

this context, a skill is an executable implementation of an
encapsulated (automation) function [4] and treated as a black-
box only knowing its preconditions and effects without any
information about the detailed implementation. This approach
follows the characteristic of independent encapsulated mod-
ules in modern cyber-physical production systems (CPPS),
reduces the planning complexity and increases the flexibility
and reconfiguration of modules inside a CPPS. As a part of
the applicability of AAS for production planning, this paper
tackles the following research questions:

RQ1 Can existing AAS submodels be reused or extended
to support the planning process, and / or new AAS
submodels need to be defined?

Do standardized AAS templates help to define new or
existing AAS models for artificial intelligence planning
instances?

How can particularly preconditions and effects as core
items of Al planning problems be represented?

RQ2

RQ3

To deal with question 3, we apply a new structure in the
AAS, which is related to the grammar of the Planning Domain
Definition Language (PDDL) [5]. PDDL is a widely accepted
language to represent planning problems and there are ready-
to-use PDDL solvers for generating a valid production plan.

To answer all research questions, the paper is structured as
follows. In Section II, the current state of the art in the topics of
AAS, skill-based production systems, intralogistics, and PDDL
is introduced. Section III defines a model for actions and shows
the currently defined general precondition and effect model
defined for different capabilities: Pick&Place, transport, and
assembly. Section IV and V show the precondition and effect
model in three different processes on real testbeds. On this
basis, Section VI discusses the answer of the research ques-
tions of the use cases. Finally, Section VII gives an overview
of potential research steps in the future, and Section VIII
summarizes the findings of the paper.

II. STATE OF THE ART

The AAS in its latest specification (V3) offers a uniform
modelling and provision of different information facets of a
production asset (e.g., the product itself, its manufacturing

process or involved machines and robots) in terms of standard-
ized submodels. This benefits not only collaborating domain
experts and partners along the entire value chain, but also Al-
based value-added services in particular, such as online process
planners and orchestration systems which plan production and
ensure its execution. In [6] it was shown how online process
planners in highly dynamic human-robot collaboration (HRC)
scenarios can be provided with planning-relevant information
before and during production in near real-time on the basis of
an AAS-based service and information architecture [7]. In this
context, submodels were developed to describe the hierarchical
structure of the production facility (topology), route networks,
access points and other geometric characteristics (layout), as
well as product properties, related manufacturing processes
and the location of product parts in corresponding warehouses
and their stocks. While established industry standards, such as
the VDA-5050 communication standard between automated
guided vehicles (AGVs) and a master control system, were
already considered the planning itself was a back-box. In this
paper, we aim to integrate the PDDL standard by means of cre-
ating PDDL-based planning domains and problem statements
from relevant AAS submodels to make this transparent.

To be able to utilize the AAS for planning tasks, it is nec-
essary to describe the functionality of the production systems
in the factory accordingly. To accomplish that, the concept of
Capabilities, Skills, and Services (CSS) was published by [8]
as the so-called CSS model. This model extends the Product-
Process-Resource (PPR) model published in [9] by incorpo-
rating functions in the concept of production. These functions
are encapsulated on three levels of abstraction. The terms’
capability, skill, and service follow the definitions from [4]
and the extensions from [8] and [10]. These definitions can be
briefly summarized as follows. Services are the most abstract
descriptions, including commercial properties. Capabilities
(IDTA-02020) are implementation-independent specifications
of functions. Skills implement the capabilities for a specific
machine and may belong to a Control Component (IDTA-
02015, IDTA-02016) with standardized control interfaces.
Within a capability, skill, and service description, precon-
ditions and effects can be included, which is essential for
planning. According to [11] the CSS model can significantly
enhance intralogistics flexibility and interoperability. These
transport systems can utilize the skill concept as shown in
[12] and [13].

PDDL is an action-centered language, inspired by the well-
known strips formulations of planning problems [14]. Each
action is expressed with preconditions and effects to describe
the applicability and the consequences of an action. One main
design decision in PDDL is to split the defined domain actions
and predicates as well as problem definition with its object
instances, initial- and goal-conditions into two files. PDDL is
factored into a subset of features, called requirements, and thus
each PDDL solver can specify in detail which input features it
supports. More complex features like numeric fluents, derived
predicates or events [14], [15] are typically computationally
more expensive. In this paper, we focus on a common baseline

of features that are supported by many PDDL solvers. For our
validation, we specifically rely on the Fast Downward planner
[16].

(define (domain on_off switch)
(define (problem turnOffSwitch)
(:domain on_off switch)

:requirements :adl
:types switch)
:predicates (on ?sl - switch))

:typing)

(:objects
on_off switch - switch

:action turnOff)
:parameters (?sl - switch)
:precondition (on ?sl)
:effect (not (on ?sl))

))

:action turnOn
:parameters (?sl - switch)
:precondition (not (on ?sl))
:effect (on ?sl))))

(:init
(on on_off switch)

(:goal (and
(not (on on_off switch))

))

Fig. 1. The sample PDDL instance of turning off an on-off-switch with the
domain part (left) and the problem part (right).

Figure 1 shows an example of the use case of turning off
a switch in PDDL. The domain part describes two actions
of turning the switch on and off. The problem part shows
particularly the use case for the plan to turn the switch off.

The presented combination between AAS and PDDL was
not explicitly treated in the literature. However, other ap-
proaches exist that are capable of using and transforming
digital twin representations into PDDL instances. De Giacomo
et al. [17] created a transformation between different digital
twin languages such as Azure Digital Twins, Eclipse Ditto
and Bosch IoT Things into PDDL. Novdk et al. [3] use
a problem generator to define input from a digital twin to
a PDDL problem and generate live production plans and
schedules without supporting AAS notations. Both papers do
not particularly tailor their solutions to the AAS technology.
In addition, [18] shows the usage of planning and scheduling
tasks in the AAS context. However, they do not particularly
cover the problem of skill / capability sequencing solved with
PDDL.

III. AAS-BASED INFORMATION REPRESENTATION FOR Al
PLANNING

As described in RQ1 in Section I, the scope of the paper
is to use data from AAS submodels to represent and handle
the various contents of PDDL instances. To reduce the initial
complexity of this problem, this paper focuses on PDDL parts
with a marked high usage based on the definition in [19]. This
includes requirements, object types, predicates, and actions of
a PDDL domain, as well as objects, initial- and goal-conditions
in a PDDL problem description. As basis for the PDDL
domain part, a new submodel called planning description is
added to the demonstrator AAS as displayed in Figure 2.

This submodel defines the name of the domain part in
PDDL as a property, a SubmodelElementCollection (SMC) for
all necessary PDDL requirements and an SMC for included
object types, listing all object types such as product or module
necessary for the execution. Underneath the object types SMC,
all predicates are defined in a respective SMC. Each predicate

4 m"PIanningDomainMetaData" [https://smartfactory.de/subr
m "Name" = Productionisland_KUBA
! m "Requirements” (4 elements)
! m "ObjectTypes” (10 elements)
4 m “Predicates” (13 elements)
4 M“Predicateﬁom“ (2 elements)

m "Name" = at
4 m “Parameters” (3 elements)
m "Parameter 0001" = p1 @{Type=Product}

Fig. 2. The structure of the PDDL specific submodel in the demonstrator
asset administration shell.

is also modeled as SMC including the name of the predicate
and all parameters including their object types.

The last and main part of the domain part are the domain
actions as displayed in Figure 1. In the considered modular
use cases, all actions are not centrally managed in one AAS,
but each module has an own AAS consisting of a submodel
listing all machine skills, as a similar concept to actions in
PDDL. For the transformation to actions as the main focus
of RQ3, the existing skills need to be extended by SMCs
for skill preconditions and effects. Both types of conditions
share in these SMCs the same condition structure, displayed
in Figure 3.

<<SMC>>
Condition

0.1

<<shcs>
<<shiCs> e 0. 8 -

LogicTerm 0.r

+ operator: ArithmeticOperator [1]
+ constants: Integer [0..]

+ operator: LogicOperator [1] [<g.+

o

<<enum>>
LogicOperator

<<enum>>
ArithmeticOperator

<<SMC>>
Predicate

<<SMC>>
Function

+and
+or + parameters: SML
+ not

+imply
+ exist 0. 0.

+ forall
+when v 7 o

+name: String [1] +GT
+ parameters: SML +GE

+name: String [1]

«ReferenceElement» +SUB
Parameter

value:

<<SM>> Skills
<<SMC>> SkillinterfaceDescription
<<SMC>> ConditionParameters
<<Property>> Parameter*

Fig. 3. The structure of a SubmodelElementCollection for Conditions.

This figure shows that conditions are modelled as either
logical terms or arithmetic terms. A logic term consists of a
logical operator. In plain PDDL version 1 without any require-
ments, the logic operator and is allowed in conditions. The
other logical operators are added in additional requirements
such as disjunctive preconditions for the operators imply, or;
negative preconditions for the operator not (only available in
PDDL 2.1); existential preconditions for the operator ezist;

universal preconditions for the operator forall and conditional
effects for the operator when in effects. In the AAS, all
operators are available by default for preconditions and effects,
although the usage of added operators in requirements is
restricted to their defined condition type. Currently, they are
implemented in the AAS via using FormChoices, however a
more suitable way to implement operators might be advis-
able in the future. One idea might be to use the Function
Submodel Element, which is currently not supported in AAS
implementations. Besides one logic operator, a logic term can
consist of an arbitrary number of logic subterms, arithmetic
subterms or atomic boolean predicates. Each predicate has
a name and multiple parameters. A parameter in an action
is a reference to one particular resource parameter stored in
an SMC in the Skill Submodel (and SkilllnterfaceDescription
SMC) called ConditionParameters SMC. Each parameter has
a unique idShort and requires a valid object type as a type.

In contrast to logic terms, arithmetic terms expect numeric
planning enabled by (numeric) fluents. Arithmetic terms con-
tain arithmetic operators such as comparative operators (Less
Than, Less Equal, Equals, Not Equals, Greater
Than and Greater Equal). As remark, the comparative
operator Equals is already enabled by the requirement
Equality. Besides, the comparative operators, the four basic
mathematical operators add, subtract, multiply, and
divide are supported. Similar to logic terms, arithmetic
terms consist of an arbitrary number of logic and arithmetic
terms and use functions as analogues concept to predicates as
atomic building blocks.

Based on the given model, this paper discusses three differ-
ent kinds of skills in the domain description as main building
blocks for all use cases in the following chapters. The first
skill kind is the storage skill kind, including the store
and deplete skills, each implemented via a pick&place
operation. The store skill requires a resource with storage
capabilities. This resource picks a product from an external
storage at a for the resource accessible location. Afterward,
the resource places the product in another internal storage at
another internal location. As a side effect, the external storage
space is empty. Thereby, a location is a physical place which
is accessible by one or multiple modules and/or transport
systems. The deplete skill works the other way around
and picks a product from an internal storage at an accessible
location and places the product to another external storage at
an external location. As for the store skill, the deplete skill
leaves an empty internal storage space.

The second skill kind is transport. For the transport task,
four different skills are supported. GetTransport orders
a transport vehicle containing a certain product in its inter-
nal storage to a location. As preconditions, the respective
transport system of the vehicle must be able to access the
location, the location must be free of other transport vehi-
cles and the product is not already at the desired location.
GetEmptyTransport is similar to GetTransport, but
orders an empty transport vehicle to a location and the product
related precondition is omitted. The opposite to get transport

skills are the release transport skills. ReleaseTransport
itself releases a transport vehicle containing a certain product
from an accessible location and frees the vehicle to fulfill other
tasks. ReleaseEmptyTransport releases a transport ve-
hicle without a product on it.

The third skill kind is assembly. The created assembly
skill description including its preconditions and effects orig-
inates from the original assembly action defined as one
domain in AIPS-98 planning competition for PDDL. The
assembly action enables the assembly of an arbitrary num-
ber of parts together into subproducts and afterward the
assembly of these subproducts together into a product in a
hierarchical manner. To do so, a precondition is required which
defines that a subproduct is part of an assembled product and
an assemble-order predicate defines the order between two
subproducts to assemble the assembled product. Besides that,
all products for the assembly must be in the same storage to
assemble them together.

In addition to the domain description and the presented skill
kinds, the given AAS should also support problem descrip-
tions. The problem definition is implementation-specific and
differs depending on the factory structure. In this paper, the
idea is to present different ways to find module information, to
get information about storages inside each module, to define
certain transport or product locations, to define all active
resources or capabilities of the products and to define all
(sub-)products in the process. As basic structure throughout
all use cases, each use case consists of three different types
of AASs. Product AASs contain information about a prod-
uct. Production System AASs provide information about the
respective system topology and layout, including information
about modules, storages, their current capacities and locations.
The module AAS contains module skills and capabilities and
their conditions. Out of these information sources, all initial-
and object information needs to be built. Goal-conditions
depend on the product configuration of each order and need
to be set depending on the order information from the product
AAS.

IV. USE CASE: 3D-PRINTED BATTERY PACK ASSEMBLY

This section introduces the use case of assembling a bat-
tery pack at SmartFactory-KL!. The battery pack consists of
3D-printed model batteries, and a battery case including a
preassembled inlet to insert the batteries. The battery pack
is displayed in Figure 4.

The battery pack in this use case is assembled at a mod-
ular demonstrator called productionisland_KUBA shown in
Figure 5. The productionisland consists of four production
modules. The Conveyor Module is a transport system that uses
a linear motor to convey shuttles on a track. The Connector
Module contains an input and output storage for incoming
and outgoing parts, and a robot arm to pick and place parts
from the Conveyor Module to this storage and vice versa.

'All PDDL instances and the battery pack AASs can be found in https:
//github.com/SmartFactory-KL/Leverage_ AAS_PDDL

« @] -sittofmaterial”
4 m"Battery_Pack"
m “Battery_Case"
4 m"Battery_Black"

Fig. 4. The battery pack including 3D-printed black model batteries and the
respective Bill-of-Material of the Battery Pack.

The Assembly Module stores and depletes products from
the Conveyor Module and assembles two parts together. The
Quality Control Module uses Al-supported image processing
to carry out a quality inspection of the manufactured products.
However, quality control is not integrated in the production
process. In addition, productionisland_KUBA contains the
partial productionisland_SYLT that includes a 3D printer, a
label-printer module, a robot to pick and place products at
each module, and a manual assembly module.

Connector
Module

Quality
Control
Module

Assembly
Module

Productionisland_SYLT

Assembly
Module

Fig. 5. The modular demonstrator productionisland_KUBA.

To answer RQ1, most objects and initial preconditions of
the PDDL problem connected to the use case are fetched
from existing AASs. For the product related initial conditions
and products, this use case uses the bill of material (BOM)
submodel of the product AAS 2. The product AAS is, in
general, used for all order and related product and process
information. For example, this skill sequencing step has the
goal to generate a planning submodel and adds this submodel
to the product AAS. Before this planning step, the BOM
submodel is already defined based on the ordered product
configuration. A reduced version of the BOM of the battery
use case is displayed in Figure 4.

Each entity in the BOM submodel maps to exactly one
object of type product in the PDDL object definition. Fur-
thermore, all hierarchically embedded entity relations map

2The BOM follows the reference model in https://www.plattform-i40.de/
IP/Redaktion/EN/Downloads/Publikation/AAS_Reference_Modelling.pdf

to one part-of predicate in the initial conditions. For exam-
ple, this includes the predicate part-of battery_black
battery_pack. Furthermore, two entities on the same
hierarchy level lead to an assemble-order initial condition.
This means that Battery_Case is added to the Battery_Pack
assembly before all six Battery_Black.

Besides product-related information, also resource-related
information needs to be modeled. As a basis, all entities as
defined in the BOM submodel of productionisland_KUBA
shown in Figure 6 need to be mapped to modules in the object
model.

4 M"BiIIOfMaterial" [https://smartfactory.de/submodels/0d4cd435-4cfb-471c-86a6-812ba301a13b]
4 m "Productionisland_KUBA"

m “Quality_Control_Module™

m “Connector_Module"

@ "Productionisland_SYLT"

m “Conveyor_Module"
m “Assembly_Module”
m “Label_Printer Module"

Fig. 6. The BOM submodel of productionisland_KUBA.

Next up are the storage and the location data. Since syn-
chronizing all data to the AAS is a lot of work, we have
decided to gather the data directly from the skill interface.
For this purpose, the standardized AAS templates provide the
standardized submodel “Asset Interface Description” (IDTA-
02017). However, for productionisland_KUBA, the technology
OPC UA is used as communication language as described in
Jungbluth et al. [12]. Neither, the asset interface description
in its current version supports OPC UA interfaces, nor a
standardized submodel for OPC UA is published yet. This is
why a non-standardized solution as a part of the skill submodel
is currently used.

Examining the OPC UA NodeSet of each module, each
NodeSet contains all locations and all currently active storages
of a module. Since this demonstrator does not implement
different storage types, all storages have the same exter-
nal_storage_type. The mapping between locations and storages
and modules, is ensured by the predicates contains and
accessibleBy. The corresponding module to each storage
and the location is given by their contained module name
in OPC UA. For all stock and capacity predicates
connecting storages to products, all storages contain either
battery_packs or battery_cases, since they are always trans-
ported on top of picked workpiece carriers. On the other hand,
productionisland_SYLT contains one storage for batteries, so
they cannot be stored elsewhere. Last, but not least, the
resources are set based on the capabilities the resources offer.
All possible options of modules involving certain capabilities
are given in the capability submodel of the resources. These
options are restricted to the capabilities the resource can actu-
ally provide based on a given product configuration estimated
in a capability matching between required capabilities of an
order and provided capabilities of productionisland_KUBA.

The results of the capability matching are given in a Process-
Chain submodel in the product AAS. Before the presented skill
sequencing step, a feasibility check can ensure the feasibility
of the sequenced skills. In this use case, for example, only the
manual assembly station is feasible of assembling 3D-printed
batteries into the AAS.

With the initial conditions generally set, this use case par-
ticularly requires batteries in a storage at the manual assembly
station at productionisland_SYLT and a preprinted 3D-battery
case consisting of an inlet for the batteries inside the storage of
the Connector Module. As an overview, the process of the use
case is presented, however the generation of the production
plan by a PDDL solver is not part of the paper.

1) Connector Load battery case to the conveyor module

2) Conveyor Transport battery chassis to productionis-
land_SYLT

3) SYLT Transport the battery case to the manual as-
sembly station, assemble the batteries into the battery
chassis, and transport the battery pack to the conveyor
module

4) Conveyor Transport the battery pack to the connector
module

5) Connector Load battery pack to the output storage

To generate such a production plan in PDDL out of the
transformed PDDL, the PDDL solver Fast Downward is used
[16]. As a goal condition for this use case, an assembled
battery pack should be available at the connector module.
Besides the general goal condition, the secondary goal of
freeing all allocated resources during the process is set.

V. USE CASE: AMR TRANSPORT AT SMARTFACTORYKL
AND RICAIP SAARBRUCKEN TESTBEDS

In the following, we describe the setup of our demonstra-
tor located at the RICAIP Saarbriicken testbed covering the
production of a raspberry pi with housing including manufac-
turing and transport processes. The target product is depicted
in Figure 7 and consists of four raw parts: a top and bottom
case, a fan unit and the raspberry pi circuit board. What is
also displayed is the manufacturing process of the product in
terms of required production skills and their relative order.
In this respect, for the sake of simplicity, we assume that all
product components are pluggable, neglecting the connection
of cables of the fan and screwing processes for the case. The
structure of the product (BOM) and its manufacturing process
are described in respective submodels of the product type
AAS according to previous work of [7]. The manufacturing
process submodel declares required steps, their preconditions
in terms of needed product parts with respective links to the
BOM submodel, relative order and corresponding capability
requirements (like picking, placing or joining of different
product part types) and their parameters in the form of a
priority graph. This graph is used as input for PDDL like the
Capability Matching described in Section IV.

Figure 8 shows the structure and layout of our demonstrator
environment in which the execution of the production process
will happen. A bin picking module is supposed to provide

Top Case

4:Pick &
Place

Top Case with Fan

5: Pick

1: Pick &
Place

Bottom Case

Fig. 7. Target product: a Raspberry Pi with housing, consisting of an upper
and lower case, a circuit board, and a fan. Depicted is the corresponding
manufacturing process with required capabilities like pick & place or join in
a respective order.

the different product components as raw part materials in
respective bins (C6-C9) which serve as storages this way. The
module can be accessed by a mobile transport unit (MiR100)
in terms of an access node (S3), constituting a station for the
module. These access nodes, together with further waypoints
and connecting edges (green lines), are defined in a layout
submodel and manifest a valid navigation graph for the corre-
sponding AMR type. Besides its symbolic name, known to the
AMR, and its 2D pose in the associated map, a node declares
its type and connection to topology elements of the production
site such as the bin picking module. By node S1 the mobile
robot can then deliver raw parts to the assembly station, which
are then stored in associated cashes C1-C4 serving as tem-
porary storage. Another storage type at the assembly station
is constituted by the assembly stage for the assembly robot
(UR10e), an internal storage type for the module where actual
assembly steps will be conducted and which is supposed to be
primarily used by the robot itself. Similarly, also the storage
of an AMR is declared as internal storage type. Regarding
topology, we follow the approach of [7] and declare the
mobile robot and both one arm robots as WorkUnits together
with their relationships to respective modules (topologically
represented as WorkCenters), as well as associated storages
in terms of EquipmentModules. A WorkUnit, as self-managed
Entity, holds a reference to the respective AAS of the asset
describing its production skills in a Capability submodel. This
way, via said relationships, orchestration systems can infer the
set of skills of a certain module in terms of the capabilities
of its associated work units. Finally, the demonstrator setup is
completed by temporary and final storage modules for finished
product delivery at the assembly station (C9) and bin picking
module (C10), respectively. Concerning our storage submodel
of the AAS of the production site, we model storage as an
annotated relationship between a certain product or part type
(referencing respective elements in the BOM submodel of
the product) and respective storage EquipmentModules in the

¢ m——

-~

(ol

Raw Part Provision (Bin Picking)

c|c|cCc|cC
6 7 8 9

c10

P
i

"
=

'@
g Y ..

Fig. 8. The RICAIP Saarbriicken testbed demonstrator, consisting of a bin
picking module for part provisioning and a station for product assembly with
different storages (C1-C10). Route networks are made up by access points
for stations (S1-S4) and waypoints (W1-W3).

topology submodel while annotating the current amount of
stored objects and the maximum capacity of the storage.

In order to create a PDDL problem from said information
about the production site and the intended manufacturing
process, we proceed as follows. For participating objects,
we need to derive, which modules, locations, product parts,
storages and storage types exist, as well as which production
resources by means of assets with certain capabilities are
available. From the topology submodel of the production site,
we identify both available workcenters together with their
associated work units as modules and resources, respectively.
Locations are then derived from nodes in the layout submodel.
As mentioned before, the Capability submodels of the assets
encode the skills of the resources with respective parameters,
e.g., the ability of the mobile robot to autonomously navigate
to known symbolic positions and that a one-arm assembly
robot can pick, place and join specific object types. Note
that in this scenario, we equipped the mobile robot with
simulated capabilities of picking and dropping the mentioned
product parts. This part will be then executed in a simulation
environment by means of a virtual commissioning [6].
Storages and their type by means of internal or external

P Oductioy

Level

(v —

Fig. 9. Assembly of SmartFactory-KL model truck

storage, are inferred from the topology and storage type
submodel, respectively. Analyzing the BOM submodel of the
product type AAS gives us the different product components,
while the manufacturing process submodel tells us in
which order they need to be assembled as well as needed
capabilities. Having all PDDL objects at hand, we can define
the initial state of the problem. From the layout submodel,
we infer from nodes of type “AccessNode”, referencing a
workcenter, which modules are accessible by which location.
Storage is assigned to the corresponding modules (‘Contains’
attribute) using respective annotated Relationship elements
(“BelongsTo”) from the topology submodel and provided
with its corresponding storage type from the storage type
submodel. The product types that can be stored in a storage
(“capacity”) and quantities actually stored in it (“stock”)
result from the corresponding annotated relationships and
quantity properties of the Storage submodel, respectively.

As a second evaluation with AMRs, we describe a use
case in the SmartFactory-KL demonstrator. The goal of this
use case is the final assembly of the SmartFactory-KL model
truck. The truck consists of two subassemblies, the semitrailer
and the semitrailer truck, as shown in Figure 9. For each
subassembly, there are multiple configurations available.

As a demonstrator for this use case, the productionis-
land_KUBA introduced in Section IV is used in combination
with a storage module and an autonomous mobile robot. The
layout for this use case is shown in Figure 11. The BOM
submodel of the factory is shown in Figure 10. The storage
module consists of 3 core components, a high bay warehouse
with a linear axis system to store and deplete products, a robot
for pick and place applications and an output axis to make
products available for external access. Additional components
such as trolleys are simplified and not considered in this use
case. As initial state for this use case, both subassemblies
are located in the high bay warehouse within the storage
module. The goal is to deliver the assembled truck to the
label printer module. The products must be picked out of
the storage slot by the axis system and placed on a pick
position of the robot, which moves it onto the output axis.
The output axis brings the product to a location from which
the AMR picks up the product. The AMR consists of a robotic
arm, and an internal storage where the robot places multiple
products during the transportation. To bring the product into

m "BillOfMaterial™ [https://smartfactory.de/submodels/8303_9042_5042_1115]
[T -Productionisiand_KUBA"

m "AMR_Emrox"
4 m "Storage_Module”

m "High_Bay Warehouse™
m "GP4_Robot"
m "Output_Axis"

Fig. 10. BOM submodel of the SmartFactory-KL intralogistics testbed

Producticl)nisland_KUBA

Storage module
@] High bay warehouse

&
22
s
o
x

SmartFactory-KL AMR Use-Case

Fig. 11. Scenario for final truck assembly at SmartFactory-KL

the productionisland_KUBA the AMR moves to the open port
on the conveyor module. The positions of the ports for the
AMR are modelled in the production modules’ AAS and read
during navigation directly from the AMR. For each product,
a shuttle has to drive to this port, so the AMR can place
the product onto the shuttle. From there, the products are
brought to the assembly module. Thereafter, the final assembly
is executed, and the truck depletes to the conveyor module
and a quality control is executed. After a successful quality
control, the product is transported to the delivery module of
productionisland_SYLT. This marks the end of the process and
the achievement of the plan’s goal state.

VI. DISCUSSION

When considering the presented use cases in terms of the
research questions, the given PDDL domain and problems
are based on different data originating from a combination of
existing submodels. This data is fetched from partially existing
AAS elements including product and resource BOM submod-
els, or skill submodels for action data. On the other hand,
additional information is required and introduced. This applies
in particular to PDDL domain data, which is represented
in an own new submodel (SM PlanningDomainMetaData).
This also applies to the preconditions and effects of PDDL
actions as the main topic of RQ3. For this purpose, Sec-
tion IIT extends the skill submodel with a condition structure
for preconditions and effects. In addition, the definition of
conditions showed that further AAS concepts might help
to cope with problems such as conditions and constraints
more easily (e.g., via functions). Concerning RQ2, already
defined standardized submodels could mainly be used for data
gathering. This particularly includes the submodels Bill-of-
Material, capability, control component interface, and asset

interface description submodel, which is flexibly applicable for
different communication technologies to automatically fetch
data from different architectural levels such as a OPC UA-
based skill interface.

Using multiple use cases broadens the scope to include ad-
ditional applications. At first, it shows that AMRs can be used
with the same planning data structure as conveying systems
by utilizing a skill-based approach. Second, it indicates that
PDDL can also be used to plan skills on a component level
within a production module. Third, it shows the requirement
for additional concepts such as the concept of storage types.

VII. FUTURE WORK

Due to the fact that this is the first pilot test to combine the
technologies of PDDL and AAS, there is a high potential to
continue the work based on this paper. One potential option
is to include other production actions and capabilities in the
PDDL domain description and define additional related predi-
cates to them (for example, typical manufacturing capabilities
such as additive manufacturing). This also includes a usage
of the PDDL instance for the representation of scheduling
or optimization tasks in combination with action costs and
metrics. Furthermore, another topic is the treatment of al-
ternative action sequences, that can be changed dynamically
during production execution based on resource and skill states,
enabling a replanning or rescheduling. For example, a suc-
cessful or failed quality check at the quality control module
in the battery use case can be used to show this. Besides,
the utilization of PDDL version one limits the representable
planning problems. This is why, one promising expansion is
to investigate numerical conditions such as storage sizes or
scheduling with durative actions supported in higher versions
of PDDL and other extensions such as PDDL expansions or
axioms. Moreover, more research is desirable to automatically
create and design goal conditions in PDDL based on data
fetched from order-related submodels in the AAS. The same
holds for the problem of flexibly changing domain data and
automatically fetching / searching for data in the AAS to
define the PDDL problem file. As a next step, an autonomous
transformation between the AAS definition and the PDDL
is planned based on the theoretical description given in this

paper.
VIII. CONCLUSION

In conclusion, this paper demonstrates the applicability of
the asset administration shell in supporting Al planning with
PDDL. For this purpose, we discussed three research questions
based on three different use cases. As a result, some new
PDDL related AAS submodels, and a concept for conditions in
AASs are developed and information originating from existing
partially standardized submodels is reused.

ACKNOWLEDGMENT

This work has been supported by the European Union’s
Horizon 2020 research and innovation program under the grant
agreement No 857306, the project RICAIP (Research and
Innovation Centre on Advanced Industrial Production).

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

Industrial Digital Twin Association, “Specification of the Asset
Administration Shell Part 1: Metamodel,” (Visited on 28.06.2023).
[Online]. Available: https://industrialdigitaltwin.org/wp-content/uploads/
2023/06/IDTA-01001-3-0_SpecificationAssetAdministrationShell _
Part]_Metamodel.pdf

M. Ghallab, D. Nau, and P. Traverso, Automated planning and acting.
Cambridge University Press, 2016.

P. Noviék, J. Vyskocil, and B. Wally, “The digital twin as a core compo-
nent for industry 4.0 smart production planning,” IFAC-PapersOnlLine,
vol. 53, no. 2, pp. 10803-10809, 2020.

A. Kocher, C. Hildebrandt, L. M. Vieira Da Silva, and A. Fay, “A Formal
Capability and Skill Model for Use in Plug and Produce Scenarios,” in
2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). 1EEE, 2020, pp. 1663-1670.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, D. W. Sri, A. Barrett, D. Christianson et al., “Pddl - the
planning domain definition language,” Yale Center for Computational
Vision and Control, Tech. Rep., 1998.

A. Luxenburger, J. Mohr, D. Merkel, S. Knoch, D. Porta, C. Paul,
J. Widenka, P. Schifers, M. Baumann, S. Lehnhoff, and J. Schwab,
“Interactive digital twins for online planning and worker safety in intral-
ogistics and production,” in Proceedings of the 6th IEEE International
Conference on Artificial Intelligence and Extended and Virtual Reality
(AIxVR-2024). 1EEE Computer Society Press, 2024.

A. Luxenburger, D. Porta, S. Knoch, J. Mohr, and T. Schwartz, “A
service infrastructure for industrie 4.0 testbeds based on asset adminis-
tration shells,” in 2023 IEEE 28th International Conference on Emerging
Technologies and Factory Automation (ETFA), 2023, pp. 1-8.

C. Diedrich, A. Belyaev, R. Blumenfeld, Juergen Bock, S. Grimm,
J. Hermann, T. Klausmann, A. Kdcher, M. Maurmaier, K. Meixner,
J. Peschke, M. Schleipen, Siwara Schmitt, B. Schnebel, G. Stephan,
M. Volkmann, A. Wannagat, K. Watson, M. Winter, and P. Zimmermann,
“Information Model for Capabilities, Skills & Services,” 2022. [Online].
Available: https://publica.fraunhofer.de/handle/publica/428536

M. Schleipen, A. Liider, O. Sauer, H. Flatt, and J. Jasperneite, “Re-
quirements and concept for Plug-and-Work: Adaptivity in the context of
Industry 4.0,” atp magazin, vol. 63, no. 10, pp. 801-820, 2015.

A. Kocher, A. Belyaev, J. Hermann, J. Bock, K. Meixner, M. Volkmann,
M. Winter, P. Zimmermann, S. Grimm, and C. Diedrich, “A Reference
Model for Common Understanding of Capabilities and Skills in Manu-
facturing,” at-Automatisierungstechnik, 2022.

B. Blumhofer, M. Simon, A. Ritter, L.-M. Weil, T. Legler, and
M. Ruskowski, “Capability Skill Service Model as enabler for Intral-
ogistics 4.0: A Review,” 2024, presented at 2024 7th IEEE International
Conference on Industrial Cyber-Physical Systems (ICPS).

S. Jungbluth, T. Barth, J. NuBbaum, J. Hermann, and M. Ruskowski,
“Developing a skill-based flexible transport system using OPC UA,” atp
magazin, vol. 71, no. 2, pp. 163-175, 2023.

B. Blumhofer, A. Ritter, S. Jungbluth, J. Hermann, and M. Ruskowski,
“Skill-basierte intralogistik: Transport von produkten an produktions-
module durch mobile roboter,” atp magazin, vol. 65, no. 8, pp. 48-57,
2023.

M. Fox and D. Long, “PddI2.1: An extension to pddl for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61-124, 2003.

A. Gerevini and D. Long, “Plan constraints and preferences in pddl3,”
Technical Report 2005-08-07, Department of Electronics for Automa-
tion ..., Tech. Rep., 2005.

M. Helmert, “The fast downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, pp. 191-246, 2006.

G. De Giacomo, D. Ghedallia, D. Firmani, F. Leotta, F. Mandreoli,
and M. Mecella, “Tot-based digital twins orchestration via automated
planning for smart manufacturing,” in Workshop on Generalization in
Planning (GenPlan), 2021.

Z. Mueller-Zhang, P. O. Antonino, and T. Kuhn, “Integrated planning
and scheduling for customized production using digital twins and
reinforcement learning,” IFAC-PapersOnLine, vol. 54, no. 1, pp. 408—
413, 2021.

A. Green, B. J. Reji, ChrisE2018, C. Muise, E. Scala, F. Meneguzzi,
F. M. Rico, H. Stairs, J. Dolejsi, M. Magnaguagno, and J. Mounty,
“Planning.wiki - The AI Planning & PDDL Wiki.” [Online]. Available:
https://planning.wiki/ref/pddl

