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The relevance of studies in queuing theory in social systems has inspired its adoption in other mainstream technologies with
its application in distributed and communication systems becoming an intense research domain. Considerable work has been
done regarding the application of the impatient queuing phenomenon in distributed computing to achieve optimal resource
sharing and allocation for performance improvement. Generally, there are two types of common impatient queuing behaviour
that have been well studied, namely balking and reneging. In this survey, we are interested in the third type of impatience:
jockeying, a phenomenon that draws origins from impatient customers switching from one queue to another.

This survey chronicles classical and latest efforts that seek to model jockeying behavior in queuing systems with a focus on
those findings related to information and communication systems, especially in the context of Multi-Access Edge Computing.
We comparatively summarize the reviewed literature regarding their methodologies, invoked models and use cases.
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1 INTRODUCTION
Over the recent past, the latest developments in Information and Communications Technology (ICT) have enabled
numerous new use cases. Some of them, such as remote control, industrial automation [8, 182] and autonomous
driving [63, 174, 189] are challenging the legacy solutions to manage queues of data packets or computation tasks
in ICT systems with their unprecedented stringent latency constraints and traffic dynamics [27]. It is therefore
worthwhile, to adopt concepts from impatient queuing tomodel and assess their applicability to resource allocation
paradigms in communication or cloud computing systems. One of these concepts is jockeying, where consumers
can choose from different resource pools amongst the available ones to ensure parallelism for maximum utilization
of each service line, consequently enabling performance optimization [85, 177]. This preference was earlier on
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hindered by the homogeneous nature of preexisting communication setups where consumption was limited
to specific vendor implementations given the prevalent lack of flexibility in the systems architectures. Pioneer
efforts by the Open Radio Access Network (O-RAN) community [143] for Fifth Generation (5G) networks and
Beyond suggest the introduction of programmable interfaces, virtualization technologies [9, 143] and intelligence
to radio resource management allowing for fusion of functionalities of the control and distributed units from
different vendors [24, 187]. It is suggested that the interleaving in the architectural design can be achieved
from the abstraction of previously hardware-embedded control plane functions as software components (virtual
network functions) that can be ported to distributed cloud computing platforms such that hardware resources
can be provisioned to scale with usage or demand [1]. The decoupling of this functionality from the hardware is
envisaged to allow for the adoption of implementations that seek to address foreseeable shortcomings associated
with real-time morphing of the Radio Access Network (RAN) [58, 183] in a multi-vendor environment to meet
ever changing consumer or application requirements.

The disintegration of the Baseband Unit (BBU) and Remote Radio Unit (RRU) to hierarchically form layers of
specialized functionality is expected to revolutionize definitions for optimal resource consumption [108, 140]. This
split in the lower and higher layers (fronthaul to backhaul) into independent units (like the Distributed Unit (DU),
Control Unit (CU)) constituting other sub-units (like the Control Plane (CP), User Plane (UP)) that are abstracted
as network functions with interfaces to one another can be assembled to form a chain of distributed software
components that can characterize a slice in the network [16, 135]. An instantiation of the network slice then
organizes into a logical end-to-end connectivity with specialised capabilities [50]; a technique that deviates from
the one-size-fits-all approach to instead dynamically organize resource consumption based on the underlying
application scenarios and Service Level Agreements (SLA) [137, 156]. It is this heterogeneity therefore, that
Engineering enthusiasts envisage will bridge the gap between the dynamic behaviour of an impatient consumer
and the challenges forthwith such that continuous evaluations of the resource usage profiles will be requisite for
preference over slice configurations listed by different vendors. Depending on the resource requirements of any
running service instance, the consumer will in essence weigh the choice for a resource pool in real-time whether
to switch slice decks or not with the objective of minimizing costs and latency measures while maintaining
optimal resources usage to suit the defined Quality of Service (QoS) requirements [162, 176].

It is worth mentioning that concepts from queuing theory, such as jockeying, are highly relevant. This relevance
is evident from the extensive coverage in the literature. Such modeling is applied to diverse domains, ranging from
manufacturing [62, 159] to biological processes [13, 38]. Existing empirical studies provide strong plausibility
for the adoption of these concepts in communication systems, especially in the context of resource sharing in
cloud computing [97, 152]. For a deeper understanding of these concepts, a technical brief that chronicles this
impatience behavior then becomes handy and our contributions in this survey can be summarized as below:

• Because the consumption of existing resources usually surpasses the provisioned capacity in communication
systems, buffering or scheduling algorithms in queues help mitigate the impacts of degradation in system
service quality. As the interactivity between multiple interfaces from distributed components continue to
place strict response time requirements on the existing infrastructure, competitiveness for the available
pools leads to switching from one pool to another as defined by the components’ needs. A retrospective
chronology of literature that coherently adumbrates the attempts to model for these preferences is what
this manuscript embodies and to the best of our knowledge no such repository exists thus far.

• Moreover, the complexity introduced by the integral application landscape ignites the need for assessment
of more agile modeling techniques that can encompass all modalities arising from uncertain behavior
of the queue occupants in Multi-Access Edge Computing (MEC) setups. Centralized control of uncertain
behavior in most buffering approaches has been the norm with disregard for delegation of routing decisions
to the resource tenants for more decentralized control. It could be argued however, that because most

ACM Comput. Surv., Vol. XXX, No. XXX, Article XXX. Publication date: January 2023.



Chronicles of Jockeying inQueuing Systems • XXX:3

studied queueing models adopt statistical techniques, decentralized control would be complex to model
given the state-space curse suffered by these techniques. We therefore propose other methodologies like
behavioral modeling to characterize for the inherent dynamics in such queueing systems. This manuscript
also highlights existing open issues and promising approaches worth further discourse, specifically with
regards to practicability of jockeying in next generation communication systems.

We continue our story line in the next section with some general description of concepts about jockeying in
queues and some classification of existing approaches in jockeying studies. Then in the subsequent section, based
on the groupings of these approaches, we delve into the specifics of each individual finding and results. We
however try to refrain from most of mathematical proof of the resultant equations employed when expressing
for the underlying problem but where necessary highlight some theorems or lemmas followed to ascertain the
final solution. And finally in our discussion section, we shed more light about open issues, promising trends
or approaches worth further studies specifically in the context of applications of impatience for performance
optimization in next generation communication networks.

2 JOCKEYING IN QUEUES

2.1 Definitions and Concepts
From the behavioral perspective, studies have categorized impatient consumers as those that observe queue
status and refrain from joining, a manner termed as balking [12, 139]. Then there are those that join a queue and
abandon it when the accumulated delay is more than expected (renege) [70, 166] and another queue setup where
consumers join any queue with the option to switch to a supposedly more optimal alternative queue (jockey).
For the tenant allowed to jockey from one buffer to another, profiled setups have been characterized by rule
definitions that associate costs and classes to each buffer. The classes define the heterogeneity of the system
[67] such that some buffers have more processing capacity (priority queues) than others. Supposedly, it is this
heterogeneity that triggers preference of one buffer over another, but is it the only reason for such impatience?
Generally, the reasons that influence impatience among consumers as covered in most literature [126, 167]

can be irrational with no consideration for prevailing buffer conditions or rational [29]. However, the most
widely studied trigger for impatience in queues has been the queue length difference. That is, length of one
queue becoming longer than the other by a preset threshold such that when this threshold is reached, a customer
at the end of the longer queue jockeys to the end of the shorter [4, 69, 195]. Other variations in modeling
premise this jockeying behavior on a combination of the jockeying threshold and the expected waiting time
[53, 194]. The switching can also occur from the shorter to the longer buffer [165] or only jockey when the
alternative queue is empty [141, 172]. In more versatile setups though, entities can rationally choose to switch
from any position within the queue to the end of an alternative queue [103] or more aggressively intermingle
randomly in what is referred to as pre-emptive jockeying [23, 81]. However, in heterogeneous systems like
mobile communication or cloud compute, the jockeying threshold becomes inapplicable and instead impatient
tenants assess measures like the amount of time required to get serviced [47, 67], the distance over which the
workload must be migrated [31, 46] or expected delay [141]. Therefore, the tenant’s decision to move around
workload factors in such information about changes in the system characteristics [76, 92]. This information in
other findings is characterized as costs that define service level agreements, subscription profiles or network
traffic classifications [87] to influence the rationality of the jockeying tenants [165].
Predominately, queues are composed of multi-server or single server lines. [96]’s effort to standardize the

setups into categories has seen the arrangement of these service lines adopt notations derived from three
factors 𝐴/𝑆/𝑐 (where 𝐴, 𝑆, 𝑐 denoted the arrival rate, service interval and the number of channels available for
processing respectively). The categorizations formed the origins to acronyms like Markovian/ Markovian/ number
of queues (M/M/C), General/ General/ number of queues (G/G/C), 𝐸𝑟𝑙𝑎𝑛𝑔𝑘 / Phase-type Distribution/ number

ACM Comput. Surv., Vol. XXX, No. XXX, Article XXX. Publication date: January 2023.



XXX:4 • Anthony Kiggundu, et al.

of queues (E/PH/C) etc. The notations have been extended to include other descriptive queue properties like
queuing discipline rules and the First Come First Server (FCFS) rule have been mostly adopted [25, 134]. Other
service disciplines considered in literature are Last Come First Serve (LCFS) [91, 112] and Serve In Random
Order (SIRO) [102]. Priority queuing [180, 181] was also introduced for scheduling time critical processing.
In summary, although studies exist that differentiate between the statistical distribution properties of both

arrivals and departures in buffers [36, 55], most findings posit that for system stability, the admission of new
entrants to and departures from any buffer line obey a Poisson distribution [142, 178]. Others assume the
periodicity as batch arrivals [34, 190] and the effect that this periodicity at which the two events occur has on the
impatient consumer has been highlighted by [72]. In generalized processor sharing for example, call admission
control (CAC) or leaky bucket admission control, admission and departure strategies are key factors in QoS
provisioning for multi-media application [33, 188]. In the next subsection we delve more into such resource
sharing use cases where jockeying has found practicability.

2.2 Applications of jockeying
From supermarkets, airports, banks or health facilities to call centers, computer and communication networks,
operating systems [151] etc, practitioners always seek mechanisms to optimize the sharing of these queues with
the objective of improving overall utilization to enhance system performance and to minimize costs [69, 101].
In the realm of cloud computing, geographically distributed data-centers run jobs on servers in parallel while
obscuring the sparseness in the distribution of these servers. The inter-connectivity takes shapes of clusters or
organized as multi-server queues [51] for the seamless provision of services or caching content at the network
edge. In some more complex scenarios, computing resources can even be deployed over different architectural
layers with diverse latency profiles [22]. With such heterogeneity in the underlying support infrastructure [68],
processing computationally intensive workload involves queueing and the stochastic nature of the service lines
motivates studies that suggest the deployment of concepts from jockeying for resource sharing policies to reduces
the under-utilization or over-utilization of one resource pool over another. Recently, collaborative approaches
like task offloading [74] have received coverage in literature with objectives ranging from optimizing the sharing
of the buffers [116] or figuring out the best task offloading strategy to minimizing processing delays [111, 117]
for performance improvement [196] and energy reduction [32, 152].
In packet switched networks or next generation communication systems like 5G and beyond, concept of

jockeying has found use in different layers in the RAN as packet scheduling and routing algorithms [60] or
implemented as compute protocols (for example OpenFlow) in switches or routers, to in minimizing overall
packet delays during transmission [193]. Jockeying has also found relevance in network slice controllers for
Software Defined Networks (SDN) in rapidly evolving constellations of terrestrial and non-terrestrial elements to
balance the load [2]. With frequency sub-bands modelled as queues, where duty cycling has proven to reduce
collision rates and meet latency or QoS requirements, researchers have been interested in impatient behavior like
jockeying to model preference of one sub-band over another in LoRaWANs protocols [168].
At a more granular level, processors are intrinsically designed with multi-threading capabilities to realize

the requisite concurrency in instruction execution. These executions share writable data culminating into
dependencies between the threads that execute given program code. Embedding such concurrent behavior then
necessitates process synchronization and exchange of data between these processes [48]. As a buffer management
technique for shared memory where processors are abstracted as buffers alongside cache, jockeying behavior is
allowed within memory blocks and the requests to the buffers are composed of application code instructions
that seek access to memory addresses. Analysis of the jockeying behavior as multiprocessor sharing schemes in
distributed servers has been documented with varying objectives not limited to performance evaluation [23, 158]
or load balancing [131] but also energy efficiency [59].
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So, depending on the application use case, switching workloads from one buffer to another benefits either
the end user or the system but can also lead to performance bottlenecks. With specific attention to MEC, we
highlight some of the benefits that are associated to this jockeying phenomenon in the paragraphs.

2.3 Benefits of jockeying
While flow control ensures that a fast transmitter does not swamp the slow receiver, congestion control on the
other hand in infrastructural abstractions like buffers is aimed at developing optimal job routing procedures that
regulate the bulk of data pushed into the network [86, 164]. Usually the packets are buffered with minimum delay
until the finite capacity limit is hit, then any incoming packets are dropped based on a defined criteria (random
early detection, weighted tail drops etc) [41, 114]. However, individual hosts can also request for certain capacity
to be allocated for a flow and the router allocates enough resources (buffers and/or percentage of the link’s
bandwidth) to satisfy this request. Alternatively, more aggressive hosts can transmit without prior reservations
and adjust their transmission rates based on router responses to the traffic swamp. More proactive suggestions
integrate jockeying in networks of dynamic access points (parked vehicles) that reorganise as packet relays to
mitigate congestion by provisioning task dependent resources organized as slices in 5G and Beyond [11, 71].
In real-time load balancing, jockeying studies embed job migration heuristics to balance the utilization of

servers for the (re)distribution of tasks in distributed systems [53, 141]. Other jockeying or job migration studies
use information about traffic load in SDN controllers to guide application specific resource allocation to meet the
expected QoS [115, 169]. Allocation can also be based on the application’s average rate at which data is generated.
The objective is to achieve a balance between throughput and delay to optimize the performance of the system.
That is, minimizing the growth in router buffer size since it is common in practice that the size of the buffers is
finite, which leads to packet drops or increase in delays if the buffer size is infinite.

To sustain the expected QoS especially for critical ultra-low latency connections, like in smart grid systems [120],
prioritizing some traffic or consumers over others to give the network operator more leverage for control over
queueing occupancy becomes inevitable. The applicability of the impatience in queues is therefore encapsulated
in traffic scheduling algorithms during Slice-as-a-Service (SLAAS) operations [71] or channel selections [160].
The preference for one buffer over another (low to high priority or vice-versa) could include paying more in form
of subscription fees or more pricey options to meet application specific resource requirements [26]. The problem
with pegging a priority tag to each packet is that it becomes hard to differentiate traffic sources or arrange packets
according to the flow to which they belong. To cover up for these loopholes, fair queuing (FQ) algorithms which
maintain a separate queue with guaranteed minimum share of bandwidth for each flow in the router have been
suggested [28, 45, 138]. Or Weighted Fair Queuing (WFQ) which associates each flow (queue) with weights that
dictate how many bits to transmit for a given queue have been deployed to manage the link’s bandwidth that a
flow gets [19]. Measuring how fair a system is when allocating resources was evaluated in [148, 150]s’ findings.

2.4 Classifications of Jockeying Models
Different approaches have been adopted to characterize equilibrium conditions and optimize queue descriptors
for performance enhancement. These approaches model the dynamics associated with impatient queueing.

2.4.1 Stochastic Modeling. Most literature model the impatient queueing as Markov Decision Processes (MDP),
descriptive of the series of events that occur in chain to constitute finite state spaces in discrete or continuous
time. For an agile agent to orchestrate a discrete plan that achieves a predefined goal in a dynamic environment,
MDPs formally aid the decision making process [3, 130]. The plan basically searches for a deterministic optimal
policy (a set of decision rules) such that the best action returns the highest utility in the next system states. In
multi-agent settings, generalizations of MDP that premise their action plans on evaluating acquired environment
state information or likelihoods have been defined as Partially Observable Markov Decision Processes (POMDP)
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[128, 169] or Decentralized Partially Observable Markov Decision Processes (Dec-POMDP) for decentralized
agents [88, 136]. Generally, because of the state space exploration-exploitation (trial and error to get the optimal
policy) trade-off [155], markovian process modeling suffers from getting stuck in local or global optima and
evaluations of these approaches reveal computational complexity issues relating to optimal policy searches [66].
Another class of statistical techniques are Nash Equilibrium approaches, which seek optimal policies that

guide selfish participants in non-cooperative interactions independent of other participants’ behavioral activity
[98, 129]. Findings about this game theoretic technique curtail the participants’ behavior under varying strategies
like how much prior information each participant has about the environment or the effect of the behavior of some
players on the others [76, 77]. The strategies have been termed as either pure (a player is constrained to single
pre-selected action or game plan, sticks to it because change in plan does not yield any more reward) [79, 107] or
mixed (game plans are randomly selected based on a statistical distribution with options of combining actions)
[90, 192]. One of the main shortcomings of nash equilibrium in non-cooperative formations is the impractical
assumptions about players prior knowledge of other players strategies and desirable outcomes from given plans.
Arguments have also been made about the time these models take to converge to equilibrium [30, 40] and
susceptibility to saddle-point problems especially in sequential gaming setups [82].
Analogous to continuous fluid flow, fluid modeling has been deployed in a class of infinite size queueing

systems models [175]. Some findings characterize for selected performance measures like loss rate, maximum
buffer size, etc under different setup conditions of traffic burst [52, 61] while other studies seek to analyse the busy
periods, asymptotic and/or equilibrium conditions using different approaches like matrix-geometric techniques
[10]. Other modeling variations rewire queue length status in feedback fluid queues such that the transition rate
matrix and drift vector depend on this buffer information [154, 186] or fluid queues with Brownian motion [95].
Due to uncertainty and variation in the input space fluid models are inherently non-stationary in nature given
the heterogeneity in the flows. These techniques also exhibit non-linearity profiles yielding transient equations
that are difficult to solve analytically or numerically. And not forgetting the computational resources needed for
assessment of parametric sensitivity, optimization and validation of the models [109].

2.4.2 Analytic Modeling. Matrix geometric approaches have proven relevant for formulating the steady-state
probabilities of Quasi-Birth-Death (QBD) and continuous markovian chains with infinite state spaces where the
regularity of new events does not follow exponential distributions [125, 132]. The approach depends on identifying
the irregular (initial) and regular (repeating) portions of the representational generator matrices that encode the
various states a system (re)visits [78, 93]. [132] shows that from the mean drift condition, sufficient ergodicity
conditions follow from sub-division of the state space as encoded in the infinitesimal generator matrix into
sub-matrices each characterized by transition rates. The partitioning of this state space defines the system state
evolution. The sub-division is also fundamental for the iterative computation of the eigenvalues, eigenvectors of
the R matrix (a rate matrix defining the rate a state is visited) [94] and the corresponding equilibrium probabilities.
Concerns about using cyclic or logarithmic reduction techniques to solve the R matrix render the approach
computationally complex. The solution for this rate matrix depends on the partitioning scheme between the state
sub-levels to compose for initial and boundary states, making the unique solution more intractable.

2.4.3 Behavioral Modeling. As an emerging trend, the methodology is motivated by propositions for introducing
decentralized control of the impatience behavior in queueing systems in deviation from canonical techniques
that assume central control of this behavior [73, 97]. Another methodology in this class uses artificial neural
network, a connectionist approach originating from cognitive studies that posit mathematical encapsulation of
the human mental processes. Neural networks define for ways to obviate the high dimensionality curse suffered
by statistical models of complex systems. They can implicitly identify complex nonlinear relationships between
dependent and independent variables, hence their deployment in the quantitative prediction with of queueing
descriptors [14, 99]. Encapsulating complexity in a "black box" however makes it difficult to understand how
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the predictions are made. Other disadvantages of these approaches are the computational burden, proneness to
under or over-fitting, immature convergence, hyper-parameterization [21, 185], stopping rules, etc. [119, 144]

3 STOCHASTIC MODELS

3.1 Statistical Models
Preliminary findings to model for the behaviour of impatient consumers when queuing up for resources can be
traced back to a paper by [69], in which a simple setup with only two service lines (one "near" and the other
"far" ). Whether "near" or "far" queue was defined by the queue sizes 𝑋 (𝑡), 𝑋 ′ (𝑡) at the time 𝑡 of an admission
respectively. Such that, the inequality 𝑋 (𝑡) ≤ 𝑋

′ (𝑡) meant new customers preferred to join the shorter buffer
("near") line and were allowed to switch to the alternative one when deemed beneficial. The author analysed
cases two of customers arriving to stations following a Poisson distribution at rate 𝜆. The customer had the
choice to stay in a given queue operating at Poisson distributed service rate 𝜇𝑖 (𝑖 = 1, 2) or jockey to another. The
objective was to formulate expressions for steady state conditions in infinite time. The authors first considered
for the scenario when no jockeying was allowed such that for each change in state given any action (like a new
arrival, exit or both actions happening concurrently in either service lines at a given time), expressions for the
rate of change in the queue sizes 𝛿𝑝𝑥𝑦 (𝑡 )

𝛿𝑡
were first derived. The formulation then expressed for 𝑝𝑥𝑦 (𝑡) as 𝑡 → ∞

(where 𝑝𝑥𝑦 (𝑡) = 𝑃𝑟 {𝑋 (𝑡) = 𝑥, 𝑋
′ (𝑡) = 𝑦}) to yield the bi-variate generating representation as a product over

state space changes 𝑠𝑥𝑠 ′𝑦 and a subsequent summation over this product to denote for the generating function
Eq. (1). Partial derivations of this generating function were then evaluated under variations in queue states
((𝑠 = 𝑠 ′ = 0), (𝑠 = 1, 𝑠 ′ = 0), (𝑠 = 0, 𝑠 ′ = 1), (𝑠 = 𝑠 ′ = 1)) for each of these activities.

Φ(𝑠, 𝑠 ′ ) =
∑︁
𝑥

∑︁
𝑦

𝑃𝑥𝑦𝑠
𝑥𝑠

′𝑦 (1)

where 𝑠 and 𝑠
′
denoted the states of the "near" and "far" queues in terms of their queue lengths respectively.

The distributions of the sizes for each queue and the overall system occupancy were also formulated for from
the representational difference equations. The paper concluded with the proof for stability conditions of the
queue lengths when customers needed to switch from one line to another. The switching happened when the
queue sizes varied by one (hence the states 𝑥 − 1, 𝑥 or 𝑥, 𝑥 or 𝑥, 𝑥 − 1) and this was always from the longer to the
shorter line. The solutions for the equilibrium conditions in each of the states were expressed for in terms of
probability 𝜋 that both queues were not occupied.
[103] would later on conduct more concrete studies that compared heterogeneous queue setups and rules

where tenants could instantaneously jockey given some threshold on queue length difference or jockeying based
on some probability computations. The decision to move from one service line to another either was made
immediately when the size of the adjacent queue was shorter by one or given a certain probability based on
how the differences in sizes of the queue changed. Figure 1 was a depiction of the heterogeneity in setup (also
referred to as strategies), each associated with a set of behavioural rules for the customers. Under the "Tellers’
Windows with Jockeying" strategy (Figure 1C), new arrivals were queued to the end of the shorter line and could
move to the other queue when the difference between the two queues exceeded one (instantaneous strategy) or
based on the rate (𝑘 (𝑤𝑖 −𝑤 𝑗 )) (𝑤𝑖 ,𝑤 𝑗 as queue sizes) at which the queues varied in size (probability strategy).
In the case of probabilistic jockeying, the structure of the generator function 𝑔𝑟 (𝜉) and the evaluations for the
steady state conditions revealed that the behaviour of the system was the same as the setup where customers
simply joined the shortest queue and never left until the end of service ("Teller’s Window"). For the instantaneous
jockeying, equations were derived under the three presumed occupancy state categories (𝑛, 𝑛), (𝑛 + 1, 𝑛) and
(𝑛, 𝑛 + 1) that restricted jockeying within the system to the shorter line always (where n was the average number
of occupants in a given queue). More complexity was introduced in the "Lane Changing" strategy (setup) where
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Fig. 1. Jockeying strategies: In the left-most (A) of the illustration is the Maitre d’Hotel queueing strategy where customers waited in a single line and got
served when one of the available stations was empty. In the middle (B) is the Tellers’ Window strategy where customers joined and waited in the shorter of the
two queues and no switching lines was permitted thereafter. In the right-most (C) was the Tellers’ Window with Jockeying, a behaviour where despite a new
customer having joined the shorter of the two queues, switching to an alternative one was permitted later given a deviation in the sizes by one.

instead of jockeying to the shorter queue given the threshold, switching was based on rate at which the two
service lines differed with probability (1 − 𝑒 (−𝑘𝑖 (𝑤𝑖−𝑤𝑗 )𝑡 ) ). It was however observed that under this setup, the
number of customers that wanted to jockey grew exponentially and that equilibrium conditions were a factor of
only 𝜆, (𝜆 = 𝜆1 + 𝜆2) and not 𝜆𝑖 , 𝑖 = 1, 2. In addition to that, it was noted that some of these strategies led to states
where one service line was empty while the other had customers queuing up, states in which queue utilization
was compromised. Another interesting customer flow "Route changing" was presented where jockeying was
probabilistic, depending on how dissatisfied a customer was being at a certain position in the queue. This was
given the fact that customer had no access to queue status information, and the probability that a customer

moved from move from queue 𝑖 to 𝑗 at time 𝑡 was computed as 𝑃−→
𝑖 𝑗
(𝑡) =

{
0, 𝑛𝑖 = 0
1 − 𝑒−𝑘𝑖 (𝑛𝑖−1)𝑡 , 𝑛𝑖 ≥ 1

where 𝑛𝑖 was

the number of users in queue 𝑖 and 𝑗 was the preferred queue.
It was proven that expressions for equilibrium conditions for the average queue occupancy, the expected

number of customers processed and the probability that the a queue was not occupied could be formulated
from the transition equations. The work finally presented results from the numerical studies that involved
experimentation with varying queue parameters under the aforementioned strategies (setups) and shared insights
into the queues’ performance and quantitative measures on certain queue descriptors.
It would later be revealed that using the generating function to formulate the steady-state solution to the

behaviour of instantaneous switching of service lines was not the only approach to the problem. [46] showed that
a closed form solution for some queue descriptors like queue length could be derived from inversion operations
on the representational state space matrix. The authors differed in methodology to reason that the underlying
Markov process could be modelled using a transition diagram to capture the state changes. It was proposed
that, the equivalent coefficient matrix to the equilibrium equations that defined the transition state space was
constituent of the regularity property and it was from this property that the solution evolved. Customers that
joined the M/M/C queue system were governed by different rules both at admission (like which queue to join
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based on probabilities or queue size) and in cases of switching queues (say 𝑛1 − 𝑛2 ≥ 2). The formulation for the
proof followed from the definitions of matrices that underpinned the transitions in state (Λ0,Λ𝑛). The constituent
sub-matrices were then partitioned (Λ0𝑖 ,Λ𝑛𝑖 , 𝑖 = 0, 1...𝐶) to characterize for the coefficient matrix Λ (where 𝑃 was
a column vector that denoted probabilities that a queue was in a given state). Then this coefficient matrix formed
the basis for derivation of expressions for the equilibrium conditions (Λ𝑃 = 0) of the queue sizes and it was
therefore argued that the solution depended on choosing the proper sub-divisions. Eq. (2) defined for such a
coefficient matrix (Λ) constituent of sub-matrices in the case of 𝐶 = 2 (under the assertion that the number of
servers did not affect the formation of the coefficient matrix Λ):

Λ =



𝜆01 𝜆02 0 0 0 0 ....

0 𝜆11 𝜆12 0 0 0 ....

0 0 𝜆21 𝜆22 0 0 ....

0 0 0 𝜆31 𝜆32 0 .....
...

...
...

...
...

...
. . .


(2)

The matrices of varying dimensions were defined and elements partitioned into vectors to characterize specific
queue state probabilities. This iterative technique was followed by an inversion of each matrix (Λ𝑛2 and Λ02) to
yield expressions for the closed form solution of all state probabilities. It was shown how the preference for a
certain buffer when both were equal in size then became be a factor of the distance (𝑛𝑖 − 𝑛𝑘 ≥ 2; 𝑖, 𝑘 were queues)
the jockey candidate had to traverse to the alternative queue. It was also shown how a closed form solution could
exist in scenarios where the coefficient matrix was dependent on the number of customers in a queue.
Findings from [46] inspired further exploratory work where [51] not only sought to formulate a general

solution for the stability conditions of certain queue descriptors but also modelling how queue parameters like
time-until-service and how often newcomers arrived in the system influenced the jockeying behaviour. Here, to
switch to any shorter line was preconditioned on the size of any two of𝑀/𝑀/𝐶 finite size queues differing by
two and a different technique for the partitioning of the state space transitions into sub-matrices was utilized. The
first model considered the case when no jockeying was permitted, expressions that characterized for the stability
conditions and transition probabilities for an 𝑀/𝑀/3 setup from the representational differential equations
(which were simply probabilities that a given queue was in a certain state) were proven. Analytically, these
differential equations were generalised as𝐴𝑃 = 0 such that𝐴 denoted an 𝑛(𝐶2−1)+1 sized matrix whose elements
corresponded to the measure (coefficient) of the state probabilities, vector 𝑃 denoted the actual probabilities that a
given queue was in a certain state and 0 was a vector that constituted non-zero elements. It was this matrix𝐴 that
was sub-divided into a series of other column vectors and sub-matrices of varying dimensions and by applying
boundary constraints to the generalised equation, expressions that evaluated for the probabilities of the queue
being a given state were formulated. The second model then analysed the queue dynamics under the jockeying
behaviour where the queue parameters like the arrival 𝜆, the service 𝜇 rates and system utilization 𝜌 were a
factor of the state of the a given queue; hence the variation in the representative matrix 𝐴 and magnitudes of the
state probabilities. The performance results revealed that the time a customer had to wait before being processed
was greater when jockeying was not allowed compared to when the behaviour was permitted reaffirming [46]’s
findings. Also, there was a higher probability of the queues staying idle under the non-jockeying setup. Other
evaluations for performance measures like the predicted system occupancy under varying degrees of the system
utilization or the state dependent queue parameters over time were documented.

[195] caused case for contention about the approaches used by researchers in most of the above reviewed find-
ings, arguing that besides the solutions being repetitive, they yielded no equations that evaluated for the boundary
probabilities. In their𝑀/𝑀/𝐶 model, the researchers’ findings were aimed at unravelling some hidden dependen-
cies between the transition rate matrix 𝑅 and the overall queue utilization. Arrivals tended to a Poisson distribution

ACM Comput. Surv., Vol. XXX, No. XXX, Article XXX. Publication date: January 2023.



XXX:10 • Anthony Kiggundu, et al.

at rate 𝜆 were queued to the shorter of 𝑛 ≥ 2 servers. Each server processed jobs at Identical and Independently
Distributed (IID) rates 𝜇1, 𝜇2, . . . , 𝜇𝑛 . The resultant stochastic process ({(𝑋1 (𝑡)), 𝑋2 (𝑡)), . . . , 𝑋𝑛 (𝑡)), 𝑡 ≥ 0}) encap-
sulated the changes (𝑆 = {−→𝑖 = (𝑖1, . . . , 𝑖𝑛 |𝑖𝑖 ≥ 0) for 1 ≤ 𝑗 ≤ 𝑛} and |𝑖𝑘 − 𝑖𝑙 | ≤ 1) in server sizes over infinite
time as a factor of the traffic intensity (𝜌 = 𝜆

𝜇
< 1). And stable conditions for this process were defined as

𝑝−→
𝑖
= lim𝑛→∞ 𝑃−→𝑖 (𝑡),

−→
𝑖 ∈ 𝑆, (𝑘 and 𝑙 denoting the number of customers in given states). The generator matrix

𝑄 and its partitions (sub-matrices 𝐴𝑖 𝑗 with varying dimensions) resulted from arranging the state space (the
ordering of state transitions 𝑖 and 𝑗 ) based on a function that defined which state came prior to or after another.
The −→𝑝 𝑖 , 𝑖 ≥ 1 distributions were said to each constitute 2𝑛 − 1 elements as states that formed a block 𝑖 with
𝑃0,

−→
𝑝 1 as the bounds. The proof for the solution adopted mathematical techniques (separation of variables plus

differential equations calculus)[124][17] for the derivation of the equilibrium probabilities as a factor of the traffic
intensity 𝜌 . Taking the case of 𝑖 ≥ 2 (therefore only interested in the 2𝑛 − 2 probabilities in −→

𝑝 2 since the bounds
were known), it was shown that a solution only existed under steady conditions defined by −→

𝑝 𝑖+1 =
−→
𝑝 2𝜔

𝑖−1, 𝑖 ≥ 1
only when det(𝐴0 + 𝐴1𝜔 + 𝐴2𝜔

2) = 0, 0 < |𝜔 | < 1 (where 𝜔 = 𝜌𝑛). And it was proven through a couple of
theorems (which theorized that the eigenvalue(s) 𝑟𝑛2 − 1 of the rate matrix R as the lone zero(s) in the determinant)
that 𝜌𝑛 was the only quantity that held true under this conditionality. These theorems were a basis for evaluating
for the boundary and equilibrium probabilities of 𝑝 (𝑖1, ..., 𝑖𝑛), −→𝑝 𝑖+1(for block i+1 ) and −→

𝑝 2 to yield a relation
between the rate matrix and the equilibrium probabilities. Then taking the case of 𝑛 servers, to show that 𝑝𝑛
was the lone zero in the determinant above, a new chain for the stochastic process (𝑆 = {(𝑖1, 𝑖2, ...., 𝑖𝑛) |𝑖𝑡 = 0 or
1, 1 ≤ 𝑡 ≤ 𝑛}⋃{𝑚 |𝑚 > 𝑛}) consisting of 2𝑛 states was defined and the associated transition state infinitesimal
generator matrix 𝑄 constructed. Most (2𝑛 − 1) of the columns in both generator matrices (𝑄 and 𝑄) were similar
except for some few states (for which a specific generator matrix was formulated). The proof showed that for
any server 𝑘 in the server deck 𝑛, ( 𝑝

𝑛

𝜔
)𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑖 ≥ 1 if and only if 𝑝𝑛 = 𝜔 (𝜔 as the only real solution of the

determinant). Expressions that characterized for measures in the average system occupancy and the time jobs
spent being serviced to completion followed from these derivations and the application of Little’s Law. The paper
then shared numerical results under varying configurations of the system descriptors to verify the formulations.

Instead of single job transfers, [122] provided expressions for policies that could guided bulk workloadmigration
from unreliable or broken servers to available ones with the object of minimizing the accumulated costs. Because
no queue status information existed at arrival, a new job was tagged with a time threshold (given the arrival
timestamp) within which it had to be processed. In the event that this time threshold expired, the workload was
transferred to any available server. Selecting the right server on which to migrate the workload was dictated
by the transfer policy deployed. Different policies under different job expiry thresholds were compared to keep
the resultant costs (holding and transfer costs) charged during such migrations as low as possible. The costs
depended on which position the migrated job landed at and how many job migrations occurred at a given point
in time. Initial experiments aimed at obtaining a solution for a single server setup, such that when the server
was unavailable, job processing was simply abandoned (reneging). Jobs arriving at each service line following a
Poisson distribution 𝜆𝑖 and the processing rates 𝜇𝑖 at each server 𝑖 (𝑖 = 1, 2, 3, . . .) were exponentially distributed.
The performance of the model was evaluated based on how optimal configurations for the job expiry periods were,
the workload transfer or reneges/transfers (𝛽𝑖, 𝑗 ) under steady conditions for the queue sizes (𝐿𝑖 say for queue 𝑖) etc,
while keeping costs low. For the case of the single queue, the stationary probabilities (𝑝𝑖, 𝑗 ) of the queue being in a
specific state 𝑖, 𝑗 , (where 𝑖 was the server status of up or down and 𝑗 as the number of jobs) were ascertained for
a few special scenarios. The authors then experimented with the case of 𝑁 service lines under similar dynamics.
From the transitions within the systems emanated a matrix constituent of job migration possibilities 𝑄 = 𝑞𝑖, 𝑗

𝑁
𝑖,𝑗=1

that influenced which job(s) was migrated to which queue (transfer policy) with which probability 𝑞𝑖, 𝑗 . How often
workload was migrated from one queue to another (transfer rate) was then defined by 𝛽𝑖𝑞𝑖, 𝑗 (i and j as queues).
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To quantitatively obtain the transfer rates, an iterative Poisson approximation was followed to estimate these
rates and the total cost given the workload on the server. The process would terminate when two successive
rates did not differ beyond a certain margin. However, choosing a job migration rule 𝑄 that ensures optimal
performance requires exploring the parameter space for each service line. As the number of servers increased,
the migration probabilities explodes exponentially making the search harder. It was observed that the Poisson
Approximation technique was less viable for the embedded dynamics in such 𝑁 server setups. The authors
proposed some existing heuristic rules (round-robin, fastest other, etc.) that could lead to optimal solutions for
the transfer policy under assumptions of consistency in some queue parameters and comparisons in performance
of the above mentioned heuristic policies under varying server configurations were also benchmarked.

More like an extension to his [172] earlier work, [171] investigated the evolution in the transition state space of
an asymmetric𝑀/𝑀/2 setup of finite capacity 𝐿 using two techniques (randomisation theorem and Runge-Kutta)
to formulate statistical equations that characterized the dynamics in the state space. Jockeying was only allowed
from the longer line when any of the other service line was empty and the behaviour was captured as a Markovian
process. The probability of having a certain number of customers at a time 𝑡 (𝑝𝑖, 𝑗 = 𝑃𝑟 (𝑁1 (𝑡) = 𝑖, 𝑁2 (𝑡) = 𝑗))
in either service lines was defined in a series of difference equations ([171], Equations 1 - 21). The formulation
of the model stemmed from the definition of the state probability vectors 𝑃𝑘 (𝑡) (and their derivatives 𝑃 ′

𝑘
(𝑡),

𝑘 = 0, 1, 2, 3, . . . , 𝐿) for all state transitions over 𝐿 at given time 𝑡 . The difference equations were then re-defined in
terms of these state probability vectors to evolve into a generalized block-matrix formation 𝑃 ′ (𝑡) = 𝑄𝑃 (𝑡) (where
𝑃 (𝑡) = (𝑃0 (𝑡), 𝑃1 (𝑡), 𝑃2 (𝑡), . . . , 𝑃𝐿 (𝑡))𝑇 ) constituting sub-matrices (𝐴, 𝐵,𝐶). The sub-matrices denoted state space
partitions to compose the generator matrix

𝑄 =


𝐵0 𝐶1 0 ... 0
𝐴0 𝐵1 𝐶2 0 0 0

𝐴1 𝐵2 𝐶3 0 0
...

0 .. 0 𝐴𝐿−1 𝐵𝐿


(3)

It was argued therein that the expressions for the rate matrices (𝑅𝐿 = 𝐵−1
𝐿
, 𝑅𝑘 ) could be ascertained from

iterations of computations, a method that deviated from the usual technique of calculating for the eigenvalues
and eigenvectors of the rate matrix. The modified vector-geometric solution for equilibrium probabilities of the
Markov chain emerged therefore from the evaluations of the block-matrix equations in relation to the author’s
method of expressing for the rate matrix, given 𝑃 ′ (𝑡) = 0. The resolution for the transition probabilities (𝑃𝑖, 𝑗 (𝑡))
in finite state space followed from the randomization theorem [171, Theorem 3.1], which was more statistically
efficient when computing for probabilities in state changes. From applying this theorem to the difference equations
emanated recurrence expressions whose properties were used to calculate for the distribution of state changes.
It was also shown how the Runge-Kutta method could be manipulated to provide an equivalent evaluation for
the transition state distribution. The work then provided numerical and comparative analyses (with [37]) of the
results from both methods when used for the calculation of the probabilities in state changes, probabilities that
the queue was empty, distributions about the entire system occupancy etc. The author was also interested in
tests that sought to understand how probabilities and capacities of the queues were influenced by the overall
system utilization 𝜌 under variations in queue parameters. Also, the impact of switching queues on the average
processing times and sizes of the queues was assessed versus when no switching queues was possible.

[194] studied the jockeying behaviour and its applicability to multi-beam satellite systems with earth-stations
ordered as disjoint zones to form up-link and down-link connections. The sequence of the incoming packets
was defined by an independent distribution function such that they were appended to the end of any of the
shortest buffers at the satellites and then processed at varying Markovian service rates following the FCFS rule.
The vector-geometric solution was based on the assumption that the underlying process that characterized
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for such behaviour was non-Markovian. Therefore, the process was segmented to first define an "imbedded
Markov chain" ({−→𝑋 𝑙 = (𝑋1 (𝑡𝑙 ), 𝑋2 (𝑡𝑙 ), ...., 𝑋𝑐 (𝑡𝑙 ))𝑙 = 1, 2, ....}) for which expressions for the probabilities of the
buffers’ capacities were ascertained under ergodic conditions. Then the solution for stable conditions of the
buffers arose from dividing the state spaces into groups 𝐵<𝑟 , 𝐵𝑚 (maximum size of the buffers and maximum
deviation between smallest and largest buffer respectively) given the probability (𝜔) that there existed only
a one-to-one relationship between any two states (with the exception of the boundary states) and that new
packets did not necessarily visit all states. Following the sub-division of the state transition matrix was the
formulation of the equilibrium equations (both for non-boundary and the boundaries states) that characterized
for these sub-divisions. The solution for the queue equations borrowed from earlier findings ([133], Lemmas
1.2.4) that there existed an eigenvalue 𝜔 = 𝜔0; 0 < 𝜔0 < 1 of the transition rate matrix 𝑅 and its determinant
det(𝜔𝐼 −∑∞

𝑘=0𝜔
𝑘𝐴𝑘 ) was 0. where I was an Identity matrix, 𝐴𝑘 was a square sub-matrix block of states when there

were k packets in the system. This same Lemma was adopted for the proof whether the vector-geometric solution
was valid for the boundary equations by taking the probabilities of any of the boundary states (𝑝𝑟,𝑟,...,𝑟 ) in −→

𝑝 𝑟
and evaluating for redundancy of each of the resultant substitutions of the vector-geometric expressions in the
equilibrium equations. The proof concluded by showing that for the stationary probabilities of this "imbedded
Markov chain" there existed a geometric parameter 𝜔 = 𝜎 that defined the uniqueness of the solution. It was also
proven that, the stationary probabilities vector (𝜋−→

𝑖
= lim𝑡→∞ 𝑃{

−→
𝑋 (𝑡) = −→

𝑖 },−→𝑖 ∈ 𝑆 , 𝑆 denoted the state space) of
the buffer capacities was also a modified vector-geometric solution governed by similar uniqueness constraints.
This followed by the definition of another "imbedded semi-Markov chain" (𝑋 ∗

𝑖 (𝑡), 𝑖 = 1, 2, . . . , 𝑐) that represented
the buffer capacities prior to any last packet at any time. Then, the fact that the stationary probabilities for this
kind of process were similar to those of the "imbedded markov chain", it was theorized that from the sub-division
of the −→𝜋 = (−→𝜋 <𝑟 ,

−→𝜋 𝑟 ,−→𝜋 𝑟+1, . . . . . .), the process assumed a modified vector-geometric solution too. Numerical
experiments were conducted with the purpose of evaluating the system. The performance when jockeying was
permitted versus when this behaviour was prohibited were documented and performance results showed how
the time the packets spent in the buffers before service varied relative to the processing times, justifying the
positive effects of this impatience behavior.
[184] derived for optimal rule-sets that controlled packets in an𝑀/𝑀/2 setup of infinite capacity buffers of

multi-beam satellite stations for cost effectiveness. Every packet that joined the server incurred holding costs and
moving (instantaneous) a packet from one lane to another generated a jockeying cost but no preemption was
allowed. The control of packets behavior (admission or jockeying) was also conditioned on the state of current
service station in terms of how much load and the monotonic properties of the function 𝐹𝑖 𝑗 (which defined
the optimal rule-set as a factor of the expected accumulation of costs under discounted or non-reduced service
costs and long-run average costs). Therefore, a packet would only be routed to or migrated to another station if
that station was in a valid state (𝑥1, 𝑥2) at time 𝑡 . In the model, the system changed states (𝑋 (𝑡) = (𝑋1 (𝑡), 𝑋2 (𝑡))
(state for lanes 1 and 2 respectively) then actions were taken when a new packet arrived or left any of the lanes.
Expressions for the expected reduction in costs (𝑉𝑡 (𝑥1, 𝑥2) over time 𝑡 and a predicted mean costs over longer
time-span under steady conditions were documented. The proof proposed theorems for the existence of a function
𝐹 (𝑥) that defined when it was okay for a new packet to be routed, when to move packets and when not to. And
the functions were adopted for the characterization of the optimal rule-sets for the different behaviour. Explicitly,
a new packet was routed to lane 2 only if 𝑥2 ≤ 𝐹 (𝑥1) was true. That is, if 𝐹12 and 𝐹21 were true then it was okay
to move a packet from lane 1 to 2 (𝑥2 ≤ 𝐹12 (𝑥1)) or from lane 2 to lane 1 (𝑥2 ≥ 𝐹21 (𝑥1)). Migrations of packets
was not optimal when 𝐹12 (𝑥1) < 𝑥1 < 𝐹21 (𝑥1) and when 𝐹12 (𝑥1) < 𝑥2 < 𝐹21 (𝑥1) One restrictive characteristic
of the control functions was that the decision to move from a station with lower costs than its alternative was
only plausible if the alternative station was idle. This characteristic was evaluated by taking a state of the system
when the alternative station was not empty and validating it under the jockeying control that underpinned the
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best-fit rule-set. The proof for existence of other asymptotic characteristics in control functions that defined the
optimal rule-set 𝐹 under discounted costs were also provided and it was shown that the same applied to the
non-discounted mean costing over time. It was ascertained though that, the control functions under both costing
environments only converged under specific conditions of the both the jockeying and service costs.

Inspired by the notion of vendors offering varying pricing for their services to give the user more preference,
according to [165], it did not matter whether the shorter or longer queue was joined or jockeyed to as long as the
choice for either yielded costs below a preset limit 𝑐 . These costs were a factor of both the size of the queue (𝑁𝑖 )
and processing fee 𝛽𝑖 > 0, (𝑖 ∈ {1, 2}, 𝑖 denoted a queue), such that new customers (with arrival rate 𝜆 as a Poisson
distribution) were added to a queue depending on the magnitude of 𝛼𝑖𝑁𝑖 + 𝛽𝑖 ≤ 𝑐 (where 𝛼𝑖 = 1 was a weighting
measure on queue) of either queue. And staying away completely from the services when the overall service
costs would turn up being too high was equally an option. In a setup with finite capacity buffers of maximum
length defined by 𝐾𝑖 = [𝑐 − 𝛽𝑖 + 1], the representational Markov chain 𝑋 (𝑡) = (𝑋1 (𝑡), 𝑋2 (𝑡)) of the changing
queue sizes was irreducible and a factor of the underlying costs. Formulations for the steady-state distribution
deriving from theoretical comparisons between selected queue descriptors (𝐾𝑖 , 𝛽𝑖 , 𝑐) under specific quantities of
the system utilization (𝜌 = 𝜆

2𝜇 , 𝜌 ≠ 1, 𝜌 ≠ 1
2 ) were defined and for each comparison, expressions that represented

the state changes (as a factor of 𝛽1, 𝛽2 and 𝑐) obtained. The distinction line of the three cases compared was based
on the magnitude of 𝐾1 − 𝐾2 (to determined whether a new client had to join or jockeying to either server1 or
server2); That is, 𝛽2 − 𝛽1 − 1 < 𝐾1 − 𝐾2 < 𝛽2 − 𝛽1, 𝛽2 − 𝛽1 < 𝐾1 − 𝐾2 < 𝛽2 − 𝛽1 + 1 and 𝐾1 − 𝐾2 = 𝛽2 − 𝛽1 such
that all possible states reachable for each of the three cases were defined. For each comparison case, balance
equations which characterized for the influence of leaving or entering the queue in a given state and under what
circumstances a specific state was reachable formed the basis for the proof for equilibrium probabilities (𝜋𝑖, 𝑗 ) of
the system. The solutions for these balance equations evolved from them being re-written as difference equations
in relation to the state sequence 𝑠𝑖 , 𝑖 ∈ Z+. It was shown from induction principles how 𝜋 (𝑖, 𝑗) could be derived
for from relations between 𝜋 (1, 0) and 𝜋 (0, 0).
The discussion about admission control in queueing systems was taken further by [113] building on earlier

findings from [42]. Here, new arrivals to a two service (M/M/2) line queuing systems were managed using an
admission controller that distributed tasks to either lines based on Bernoulli computed probabilities. The customers
in the queue were charged a cost for staying in the system and since the customers kept getting knowledge about
the status of the queue, jockeying from from a line to the tail-end of another was also associated to a cost. The
study was interested in the behavior of a tenant who from the time of entering the queue continuously received
updates about the status of the system and had the option to use this knowledge to make the decision whether to
stay in the current line or to move. With close similarities to [47], the authors provided limit policies that guided
the behaviour of customers joining a service line or moving from one line to another while ensuring that the
least costs were accumulated over time in service. And the optimal policy therefore was one that prioritized
reducing the expected cumulative costs. The work proved that there existed limits on a current user’s position
in the a service line and on the number of customers in the alternative line, above or below which the user
could make the decision to move to another service line or stay put. It was also hypothesized and justified
therein that there existed a maximum queue length that would lead to a new arrival having preference for a
specific service line. To model for the continuous-time Markov process, a vector denoting the queue status
(𝑥 = (𝑞1, 𝑞2, 𝑙) ∈ 𝑆 ; 𝑞𝑖 as service lines 𝑖 = 1, 2) at a time 𝑡 was defined. Then for any of the service lines in a
state 𝑞1𝑞2𝑙 ∈ 𝑆 with a customer at a given position taking a set of actions 𝑎, 𝑎 ∈ 𝐴(𝐴 = {0, 1}), functions for the
total anticipated reduction in costs (𝑉𝑛 for server 1, 𝑉

′
𝑛 for and server2) after a finite number of times 𝑛, were

defined by 𝑉𝑛 (𝑞1, 𝑞2, 𝑙) = min𝑎∈𝐴𝑉𝑛 [(𝑞1, 𝑞2, 𝑙), 𝑎]) and 𝑉
′
𝑛 (𝑞1, 𝑞2, 𝑙) = min𝑎∈𝐴𝑉

′
𝑛 [(𝑞1, 𝑞2, 𝑙), 𝑎]). The derivations

followed from two theorems (one for the jockeying behavior and another for the control of new arrivals) that
sought to ascertain whether the optimal rule-sets (that dictate customer behavior) monotonically increased or
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decreased with limits on the queue characteristics. In the case of the jockeying policy, the proof adopted defined
inequalities (given the state of the queues) for which the cost functions held true for the optimal rule-set to
maintain monotonicity over a finite period of time. It was therefore shown that, there existed a limit 𝑞 ∗ (𝑞1, 𝑙)
on the current queue length and the number of customers ahead of a current customer such that if the number
of customers in the alternative queue was less than this limit, then it was okay for a customer to jockey and
this limit was non-decreasing in 𝑙 . Also, for the sizes of any two servers, if the number of customers ahead 𝑙
of the current customer was greater than the limit 𝑙 ∗ (𝑞1, 𝑞2), it made sense to jockey and this limit decreased
monotonically in 𝑞2. The proof for an optimal rule-set that dictated the behavior of new arrivals on the other
hand followed from the theorem that, given prior knowledge about the queue status, there was a limit 𝜖 (𝑞1) on
the length of a given queue for which if the size of the alternative queue (𝑞2) was greater than this limit, then a
new customer should join 𝑞1 and the limit was monotonically non-decreasing in 𝑞1. And that these two theorems
held sufficient for conditions when no discount was given on the overall costing in infinite time.
For jockeying control, [147]’s work concentrated on obtaining analytic expressions that evaluated for the

number of jockeys made from one service station to another before getting served given that each jockey
accumulated a cost. New arrivals (as a Poisson distribution) were pushed to the shorter station or either station
with equal probability and the jockeying for a tail-end customer from the more occupied station to the end of the
less occupied station was permitted when the difference between the length of any of 𝑘 ≥ 2 servers (each serving
customers at IID processing times) equalled a threshold 𝑑 . The solution involved splitting the transition state space
based on queue length statistics like customers ahead (𝑓 ) or behind (𝑏) a given customer ((𝑓 , 𝑏) =⇒ 𝑏 ≥ 𝑓 ≥ 1)
in the service line and whether the next move by that customer was a jockey or a forward in the same queue.
The proof that was adopted from generating function theory, sought to provide mappings for a customer’s state
or position in the queue to the possible number of jockeys (𝑌𝑓 ,𝑏 ) that the customer would make before being
processed. The evaluation of the generating function therefore was characterized by the iterative formulation of
the relationships (Φ𝑓 ,𝑏 (𝑠) 0 ≤ 𝑠 ≤ 0) between these state actions. This required initial statistical computation
for the chance (𝑃𝑓 ( 𝑗 |𝑏), 1 ≤ 𝑓 ≤ min𝑏, 𝑗 ) that the customer’s next state ((𝑓 − 1, 𝑓 )) followed a jockey to the
alternative queue or a forward move in the same queue to end up in state (𝑓 − 1, 𝑓 ) 𝑓 ≤ min 𝑗, 𝑏.

The expression for the chance that a customer would move to the alternative station (in state (𝑓 − 1, 𝑗), 𝑓 ≤ 𝑗 ≤
𝑏 − 1 or 𝑗 ≤ 𝑏) were premised on the prevailing conditions in the current queue. That is, provided that 𝑏 > 𝑓 − 1
and that the variation between the number of clients behind the current customer that left that station versus the
number that wanted to join any of the queues was 𝑏 − 𝑗 . From the total probability [147, Equation 1] principles,
the formulation of the relations (given the probabilities of being in a state) evolved into Eq. (4) which defined for
the generator function (Φ𝑌 (𝑆)). This function mapped the expected number of jockeys (𝑌𝑓 ,𝑏 ) from one queue to
another before the customer was serviced and it was a prediction dependent on the 𝑓 (the number of people
ahead of the current customer being served) and the arrival rate.

Φ𝑌 (𝑆) =
2 − 𝜌
2 + 𝜌

[
2 + 𝜌

2
+ 2𝐵0 (𝑆) +

4
𝜌
𝐵1 (𝑆)

]
(4)

where 𝐵0 and 𝐵1 were linear expressions that denoted aggregations of state relations and service line utilization over
n customers in a queue. And 0 ≤ 𝑠 ≤ 1.
Additionally, a generating function (Ψ𝐾 (𝜃 )) that yielded the random distribution of how many customers 𝐾

ahead of the current customer left the queue was defined. This followed the analysis of the process representative
of either actions (joining or leaving) over time, therein referred to as a "difference random walk" (DRW).

The authors in [113] aggregated static and dynamic controls from individual controllers like routing, admission,
service and jockeying to ascertain a best fit (hedge point) solution for equilibrium conditions. New arrivals
did not get to choose which queue they joined but went through an admission controller [42] which managed
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the allocation to service lines each operating at varying exponentially distributed processing times. Over time,
the costs accumulated due to holding, processing or jockeying influenced the required measure for a selected
rule-set given the existence of a costing threshold. The jockeying control was triggered on service completion in
one service line and workload here was either accepted, rejected or migrated. An admission rule (𝑢 such that
𝑢 = {𝑢0, 𝑢1, 𝑢2, . . .} ∈ 𝑈 U as the collection of all possible admission rules) as a set of functions, on the other hand
matched a given state (𝑥 ) to possible actions based on the requirements of the decision and the associated forecast
cost discount (𝐽𝑢 (𝑥)). Therefore, the optimal admission rule (value function 𝑉 (𝑥) = max

𝑢∈𝑈
𝐽𝑢 (𝑥)) was one that

maximized this discount. Behind every action was an operator, therefore a function that mapped the transition
to the next state as a conditional probability based on the admission rule and the current state was defined. To
prove the presence of an optimal control rule-set required verification of each operator to be characteristic of the
specific structural (sub-modularity and concavity convergence) properties. The emergent resolution involved
repetitively trying different operations (using the Bellman operator 𝑇 ) against initial value function 𝑉0 in infinite
time such that the optimal value function set 𝑉𝑠 included only those functions that obeyed the properties for all
states. To evaluate for the value function that maximized the discounted costs, the structure of each function
𝑉 ∈ 𝑉𝑠 was validated to ascertain whether the magnitude of the expected discounted costs (related to taking an
action that led to the next state) were non-decreasing or otherwise. The optimal policy adopted a form therefore,
that was determined by switching functions (𝑆1, 𝑆2, 𝐿𝑖 and𝐺𝑖 where 𝑖 = 1, 2, 3, 4) which depended on the operation
in a given state. Some functions managed assignments of new arrivals to queues and which paths they took while
some functions managed completed services and migrations from one queue to another. This approach led to
the division of the state space along a decision making (hedging) point. The numerical evaluation included two
symmetric servers (charging equal holding and jockeying costs as well as operating at equal service rates and
arrival rates) and for the resultant stochastic process, the evaluation for the best approximation of the optimal
value function 𝑉 (𝑥) was shown. This followed a couple of repetitive application of the operator 𝑇 to the value
function using value iteration techniques and results showing the optimal behaviour of the value function with
regards to the decision controls for server actions (admission, routing, jockeying, stopping etc) were documented.

[89] is built on earlier findings [75, 127], but with specific interest in the boundary asymptotic formation of the
probability distributions of the queue sizes in an𝑀/𝑀/2 system (one special buffer and the other normal). The
growth in size of normal line was continuously monitored after an exponential time interval such that workload
was transferred (𝐿 − 𝐾 where L was the length of the normal line) when the size of the line exceeded a preset
threshold 𝐾). For the continuous Markov chain {(𝐿1 (𝑡), 𝐿2 (𝑡)), 𝑡 ≥ 0} (L being the lengths of each service line),
steady-state conditions of the queue sizes were first derived for as 𝜆𝑞 < 𝜇2 and 𝜆 < 𝜇1 + 𝜇2 (where 𝜆 < 𝜇1, 𝜆 < 𝜇2
were arrival rates and 𝑞 the probability that new arrivals joined the special line). The proof developed from adoption
of the Foster-Lyapunov[56][123] condition for stability to show that the process states were revisited in finite
time (positive recurrence). For uniformity, transitions probability matrix 𝑃 = 𝐼 +𝑄 (where Q represented that rates
at which the queue varied in size and 𝐼 an Identity matrix) was subsequently divided into sub-matrices based on
levels. By exploiting the special structural properties of the irreducible sub-matrix (𝐷 (𝜎) = 𝐴 + 𝐵𝜎 +𝐶𝜎2 - where
𝜎 defined by Eq. (5) was the decay rate; A,B and C as sub-matrices depicting state space splits), the authors showed
that the boundary limits of the probability distribution of the normal queue size decreased at some constant
ratio sequentially (geometrically). That is, the number of customers in the normal line increased based on some
geometric limits (tail asymptotes) in infinite time vis-a-vis the number of customers in the special line staying
constant. A further split of the sub-matrix 𝐷 along the boundaries evolved into the formulation for the proof.
The characterization followed from the evaluations for convergence norms −→𝜎 , 0 < 𝜎 < 1, verification for the
existence of the 1

𝜎
− 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 measures and vectors of the sub-matrices [89, Lemmas 4.1-4.2].

𝜎 =
(𝜆𝑝 + 𝜇1 + 𝜂) −

√︁
(𝜆𝑝 + 𝜇1 + 𝜂)2 − 4𝜆𝑝𝜇1

2𝜇1
(5)
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where 𝑝 was the probability of joining the main queue, 𝜂 was a distribution of the server polling intervals. Especially,
when 𝜆𝑞 < 𝜇2 and 𝜆 < 𝜇1 + 𝜇2, it was shown that the boundary limits for joint stationary distribution 𝜋𝑖, 𝑗
as approximated from the decay rate decreased geometrically and the decay rate varied with the individual
queue sizes. Numerical analysis of the these formulations were performed, experimenting with different queue
parameter settings for the arrival or processing rates in each queue. At different monitoring intervals, results
were compared under changing values of the arrival rate and it was observable that the increase in the decaying
rate was linearly proportionally to the rate at which customers joined the queue. It was interesting to also observe
how the decaying rate responded to increasing quantities of the processing rates and the results surprisingly
suggested that the decaying rate decreased linearly with respect to an increase in the service rates of the queues.
As a guide for efficient use of energy when allocating jobs in a multi-server processor sharing setup, [153]

proposed a an alternative energy-efficient heuristic and evaluated its performance as better than the popular
slowest-server-first (SSF) policies. Assuming a heterogeneous infrastructure with finite buffer sizes, insensitivity
to job sizes or relationships between system descriptors, the findings aimed at improving the energy efficiency
when apportioning workload while maximizing the throughput. The jobs streams followed a Poisson distribution
at rate 𝜆 to land on any of 𝑗 ≤ 𝑛 servers for processing at exponentially distributed rates. Each server consumed
energy (𝜀) at a rate 𝜀 (𝜇) = 𝜇3 that was monotonically decreasing with the service rate. The baseline heuristic
was the insensitive jockeying policy, where jockeyed jobs displaced existing jobs backward or forward and
position allocations were defined with equal probability to the departures to characterize for the server state space
evolution. The energy efficiency of the servers was then collectively calculated as the ratio of the summed long-run
mean throughput 𝑇 and the expected consumed power 𝐸 as 𝑇

𝐸
. The proposed energy-efficient (EE) rule-set on

the other hand allocated tasks to the first �̂� ≤ 𝑛 set of busy servers such that the tasks were routed to the least
occupied or empty buffers. Then the next 𝑠

𝑏
(𝑏 as the defined finite size of a particular queue and state space 𝑠 ∈ 𝑆

denoting the number of jobs in the queue) servers were selected for task processing if all instances in the �̂� set
were occupied. It was revealed that this server cascading (in states �̂� < 𝑠 ≤ �̂�𝑏, 𝑠 ∈ 𝑆) yielded relatively lower
task processing times to minimize the overall load and balance server utilization. Formulation for comparative
analysis of the two heuristics followed from the theoretical propositions that showed conditions for �̂�, 𝑏, 𝜂 and 𝜇 𝑗
(�̂� ≥ 1) under which the energy-efficient policy was more optimal than the SSF policy. Qualitative measures were
then defined by the relative error between the two rule-sets which was computed as Δ𝐸𝑆𝑆𝐹

𝐸𝐸�̂�
= Δ

(
𝑇𝐸𝐸�̂�
𝐸𝐸𝐸�̂�

,
𝑇𝑆𝑆𝐹
𝐸𝑆𝑆𝐹

)
Numerical evaluations of this error under selected quantities of 𝜂 and 𝜇 in a series of experiments were performed
to find optimal �̂� that maximized the servers’ energy use (𝑇

𝐸
) in the entire set. It was shown that, a certain measure

of �̂�∗ provided a ceiling such that the mean aggregated processing rates should not exceed the mean arrival rates
and under preset configurations of 𝑏, 𝑎𝑖 (where 𝑎𝑖 was a measure of how two cascaded server groups differed in
processing capacity), the EE policy was more optimal energy-wise that the SSF. However, this efficiency decreased
with server utilization or traffic intensity, that is, EE was only more optimal under limited traffic conditions.
Under similar settings though, no significant improvements were recorded in the throughput of the EE ruleset.

3.2 Nash Equilibrium based Models
Nash-equilibrium rules for an 𝑀/𝑀/2 system with threshold jockeying permitted were studied by [76] to
understand the value of prior purchased queue status information to a customer. The experiments were inspired
by the notion that such information underpinned optimal usage of the service line to consequently minimize
waiting times and that for new arrivals, preference for which queue to join was influenced by the precedent
customer having bought similar information (externalities). Analogous to a cost benefit model, the authors
deployed Nash-equilibrium strategies that put a value on the purchased status information by evaluating how
much benefit a client got from it. The expected benefit 𝑔(𝑝) meant knowing how much less time the consumer
would be waiting to get serviced given the charges for that information. Two strategies arose here 𝑝, 0 ≤ 𝑝 ≤ 1
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which denoted the probability whether the information was purchased or not respectively. That is, a pure and a
mixed strategy. But the strategies (𝑔(𝑝) = 𝐶,𝑔(𝑝) ≤ 𝐶,𝑔(𝑝) ≥ 𝐶) were a factor of the relation between the benefit
of the acquired information 𝑔(𝑝) and the costs 𝐶 . Basically, on arrival a customer purchased a probability value
that abstracted the potential benefits given the current state of the queue. It was also relevant for the investigation
to ascertain whether this information from prior clients impacted the subsequent client positively or negatively.
Following a partitioning of the state space, the authors used the matrix-geometric method [133] here to obtain
the stationary probabilities 𝜋𝑖, 𝑗 (i or j being sizes of either queues) of each queue size given the jockeying threshold
𝑁 = 3(3 ≤ 𝑁 ≤ ∞). The stationary probabilities were evaluated from the eigenvalues/eigenvectors and spectral
properties of the rate matrix 𝑅. For each assumed position a customer took, a function 𝑔(𝑝) for ascertaining the
benefit (expected waiting time) at that position under a given Nash-Equilibrium strategy was formulated from
difference equations. The numerical results showed comparisons between the benefit from purchases depending
on the jockeying threshold 𝑁 and the service line utilisation 𝜌 = 𝜆

2𝜇 (where 𝜆, 𝜇 were the arrival and service rate
respectively). The study conclusively expressed for the magnitude of influence (be it negative or positive) of the
actions of prior customers on new arriving customers when they purchased knowledge and when 𝑁 = 3. The
effect was considered positive if the acquired knowledge helped the consumers optimally use the service line
and negative if the customer ended up waiting longer than expected. Evaluations for the average sojourn time
under varying measures in system occupancy 𝑁 revealed that as 𝑁 grew larger than 4, the benefits of purchasing
knowledge were negligible.

3.3 Fluid Theory based Models
Studies in the applications of consumer behavioural control would further penetrate in queuing systems to
realise distribution of load in [47]’s findings where they ventured into expressing for the steady and non-steady
conditions of service lines using fluid modelling. Exponentially distributed batches of clients chose between a
low-cost and high-cost service line in an𝑀/𝑀/2 setup with an embedded controller that moved the clients from
either service lines at fixed or variable costs depending on the bulk of client transfers involved. The authors
here extended [105]’s earlier work to derive for the class of policies that optimised the average long-run costs
accumulated with client transfers, without factoring in the deviations (jockeying threshold) in the sizes of the
service lines. A policy or rule-set 𝜋 ∈ Π basically encapsulated the magnitude of bulks transfers to move, how
long any of the clients to migrate had been waiting plus any other queue status knowledge relevant for the
Markov chain. Besides the holding costs ℎ𝑖𝑛𝑖 (at server i), the decision D (given a service completion or new
admission to the service line) to transfer was associated with fixed 𝐾 and varying costs𝑚𝑗 . Eq. (6) characterized
for the average predicted cost of a client starting in a state 𝑥 given rule-set 𝜋 as 𝑔𝜋∗ (𝑥), the optimal rule-set 𝜋∗

was conditioned on 𝑔𝜋∗ (𝑥) ≤ 𝑔𝜋 (𝑥) for all states.

𝑔𝜋 (𝑥) = lim
𝑛→∞

𝑠𝑢𝑝

E𝜋𝑥

{∑𝑛
𝑖=0 [𝑘 (𝑋𝑖 , 𝑌𝑖 ) +

∫ 𝜌𝑖+1
𝜌𝑖

𝑐 (𝑋𝑖 , 𝑌𝑖 )𝛿𝑡]
}

E𝜋𝑥 {𝜌𝑛}
(6)

where 𝑋𝑖 was the state at the 𝑖𝑡ℎ decision step and E𝑛𝑥 the expectation (given policy 𝜋) of taking action 𝑌𝑖 would
accumulate 𝑘 (.) as the overall cost at a cost rate 𝑐 (.).

The fluid model was said to be in equilibrium when all incoming clients had been processed (�̄� (𝑡) = 0, 𝑡 ≥ 𝑡0)
by the system (service rate greater than the arrival rate) and otherwise (�̄� (𝛿) ≠ 0; 𝛿 > 0) if at a certain time-frame
𝛿 > 0 the queues were still occupied. The control rule-set therefore ensured that transfer of workload within the
system led to non-busy service lines in the shortest time possible while keeping the accumulated costs as low as
possible (that is, moving workload to the costly service line was only if it was aimed to making sure that the line
was not idle). The derivation (based on the sample path argument) emanated from the comparison of processes
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that mimicked clients joining the queues, guided by two policies (𝜋 - from high cost queue to low cost queue
and 𝜋 ′ otherwise) but each dedicated to moving clients from ℎ1 to ℎ2 and vice-versa. Function definitions that
expressed for the differences in costs were formulated for each rule-set under varying queue sizes to maintain
some level of uniform distribution when moving around clients while making sure that 𝜋 ′

< 𝜋 . These expressions
formed the basis for determining the optimal rule-set that ensured transfer of workload from either queue only
when not occupied (non-idling policy), single client transfers or bulk transfers under symmetry conditions of the
queue. The performance of the rule-sets was numerically analysed in a setup of six asymmetric queues (varied
costs and arrival times) while maintaining a consistent service rate 𝜇 and each queue was polled randomly for
workload to transfer after a set time 𝑇 . The results suggested direct proportionality between the overall costs
under given optimal rule-sets. It was also observed that there existed relationships between the polling time 𝑇
and the performance or system load.

In [44]’s studies, fluid theory was the basis for formulating steady-state expressions for a cluster of cascading
servers that continuously co-operated to share task executions. Specific classes of customers with IID arrival times
were allocated positions in specific queues. But these class specific queues served (IID processing times) customers
from other classes only when they were idle. Two variations were presented therein; one of the class of X-models
as a setup with two servers (each representing a class of customers) and the other, coined the term "tree-cascade
system" that included three servers (classes). It was argued that to compute the steady-state conditions for such a
networked system, one needed to prove the stability of the underlying fluid limit model, which required that the
system was in equilibrium if the emergent Markov process 𝑋 had a non-repeating consistent statistical value [39].
It was theorized (from [43]) therefore that, assuming two service line scenarios, where one had a lower processing
rate (𝑟1, 𝑟2 ≥ 1 or 𝑟1, 𝑟2 < 1) than the other (given 𝑟1 =

𝜇1
𝜇2,1

and 𝑟2 =
𝜇2
𝜇1,2

), then stability for fluid limit based models
could only exist under specific conditions of comparative variations in the arrival (𝜆) and service rate (𝜇). These
conditions were specified by Eq. (7), such that the aggregations over the quantities 𝑄 (0),𝑈 (0),𝑉 (0) of the queue
network equations at a time 𝑡 ≥ 0 equalled unit, 𝑄 (𝑡) = 0, 𝑡 ≥ 𝑡1.{

(𝐴1) 𝜆1 − 𝜇1 + 𝜆2−𝜇2
𝑟2

< 0,
(𝐴2) 𝜆1−𝜇1

𝑟1
+ 𝜆2 − 𝜇2 < 0.

(7)

where𝑈 (𝑡) = the time before a new arrival seeks to join the server, 𝑉 (𝑡) = time left to service end for customers and
𝑄 (𝑡) = size of the buffer at any time.

The proof for the stability of the X-model then derived from the adoption of the Lyapunov function 𝑓 (𝑡)
[123] which related the sizes of the queues (𝑄 (1), 𝑄 (2)) over time 𝑡 ≥ 0 and it was necessary to show that
𝑓 (𝑡) ≤ −𝐶 (constant C>0) under varying comparisons of the arrival (𝜆𝑖 ) and service rates (𝜇1, 𝑖 = 1, 2). The studies
were extended to the tree-cascade setup under work-conserving rules where jockeying was allowed to any of
the servers that were free although the third station was dedicated to supporting the other two stations. The
corresponding Markov process 𝑋 (renewal arrivals and jockeying when one queue was empty) was similar to the
one for the two server setup except with higher dimensionality in the state space and with slight differences
in the system equations that expressed for the interactions amongst the service stations. The stability of the
fluid model in this setup was also premised on ratios of processing times (𝑟1,3 ≤ 𝑟1,2, 𝑟2,3) and the rate at which
customers sought to join a given buffer. Similarly, adopting the Lyapunov function 𝑓 (𝑡) [123] and because the
function was inherent of similar differentials at any time 𝑡 with the server sizes, the proof for the equilibrium
conditions gathered from evaluation of the inequality 𝑓 (𝑡) ≤ −𝐶 < 0;𝐶 := min{𝐶1,𝐶2,𝐶3} to hold under varying
sizes of the queues (𝑄𝑖 (𝑡), 𝑖 = 1, 2, 3). It was shown how the fluid limits on the servers’ occupancy hold stable in
infinite time, hence that with such server conditions the Markov process revisited specific states in finite time
(positive Harris recurrent).
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4 ANALYTIC MODELS

4.1 Matrix-geometric models
Pioneer modeling of the shortest queue problem using matrix geometric approaches by [133] was foundational
to [64]’s findings that expressed for the stationary probability vectors of queuing systems. The study simulated
an𝑀/𝑀/2 airport setup with planes that accessed runways (as queues) following a Poisson distribution at rate 𝜆
and exponentially distributed service times 𝜇 for each runway. The continuous-time Markov chain representation
of the state transitions for all the dynamics within such a system took the form of an infinitesimal generator
matrix Q (Eq. (8)) with sub-matrices (𝐴0, 𝐴1, 𝐴2 and 𝐵0) that inherently encoded state transitions.

𝑄 =


𝐵0 𝐴0 0 0 0 ....

𝐴2 𝐴1 𝐴0 0 ....

0 𝐴2 𝐴1 𝐴0 0 ....

0 0 𝐴2 𝐴1 𝐴0 0.....
.


(8)

Ideally, it was suggested that completing a service in either queue and a jockey to a shorter queue summed
to a total transition rate of 2𝜇. And this also altered the dimensions of the sub-matrices that composed the
generator matrix Q. For that, a non-negative rate matrix 𝑅 that represented the rates at which states changed
was defined and subsequent evaluations led to the solution for the stationary probability vectors 𝜋 = (𝜋1, .....𝜋𝑛)
being formulated. It was then shown how the proof for the necessary steady state conditions of the stochastic
process existed only if 𝜆 < 2𝜇. This was premised on the proposition ([64], proposition 1) that the underlying
process to such dynamics inherently possessed conditions or there was a probability that certain queue states
(𝑖, 𝑗 ) in the process were revisited in finite time (positive recurrence [133]). And the stationary probability vectors
were verified to exist under the steady conditions 𝜆 < 2𝜇. The author provided results from some numerical
experiments with variations in parameter settings for how busy the queue was 𝜌 and 𝑛(𝑛 = 5, 𝑛 = 10, 𝑛 = 15 . . .).
It was conclusively suggested that as the threshold 𝑛 increased (10 < 𝑛 > ∞), differences in stationary probability
vectors became negligible. The experiments also provided computations for some queue statistics like the means
of individual queue lengths, mean waiting time and reaffirmed findings that systems with jockeying permitted
performed better than those where the behaviour was prohibited.
Using the matrix-geometric approach to evaluate for stationary probability vectors for the stochastic chain

of events was extended to an M/M/C queue by [93]. It was shown that from manipulating the structure of the
generator matrix emanated a more reliable approach for ascertaining the stationary probability vectors. This
followed the author’s counter arguments about the methods used when partitioning the state space by [51],
hence suggestions for an alternative solution. The setup assumed multiple servers with an infinite number of
tenants that arrived following a Poisson distribution 𝜆 and each server processed tenants at rates 𝜇 that were
exponentially distributed. New arrivals joined the shortest queue but if queues were equal in length they joined
either queues with the same probability while jockeying was allowed only when the difference in queue sizes
was two (jockeying threshold 𝑛 = 2). The representation of such a QBD process was an infinitesimal generator
matrix 𝑄 composed of sub-matrices to denote the state transitions of the queue lengths but introduced slight
modifications to the structure of the stationary probability vectors. It was proposed that the boundary conditions
required a special extension of the vectors, hence a new expression for the rate matrix. The proof applied previous
theorems (theorem 3 [65]) such that the iterative evaluations culminated into an expression for the rate matrix R.
Extensions were also done to [146]’s work, introducing the argument that because the structure of the infinitesimal
generator matrix exhibited likelihood of boundaries state being revisited, there was need for new evaluations of
the average size L of the queue. Premised on the existence of an absorbing state 𝜃 (a state when a new arrival got
processed immediately) as part of the state space of the underlying QBD, expressions for the stationary waiting
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time probabilities were also derived. The re-partitioning of the representative infinitesimal generator matrix
followed by the relevant proofs morphed into formulations for𝑊 (.) as the Laplance Transform 𝑤 (𝑠) and the
corresponding closed-form solution for the average time taken before being processed. The authors additionally
showed how application of randomization methods could yield for the characterization of the stationary waiting
time probabilities𝑊 (𝑡) for QBD processes. The proof assumed that given a statistical initial state denoted as
a vector 𝑧 there existed an 𝑛𝑡ℎ transition step of the stochastic process such that the queue was idle (state 𝜃 ).
The numerical analysis initialized a few system parameters to compute for some properties of rate matrix, the
average queue occupancy 𝐿 and Little’s Law as the basis for the arithmetic computation of other descriptors.
As they attracted more recognition, matrix-geometric techniques to formulate solutions for steady state

condition in a "join the shorter" queue M/M/C setup with threshold jockeying permitted were also the subject
of a documentation by [4]. To evaluate for the queue size equilibrium probabilities would then necessitate the
partitioning of the state space using the transition rate matrix. In contrast to earlier suggestions [64] [194] that a
solution for the steady state could not be achieved when the number of queues C exceeded 2, it was proven by
the author that the solution lay within the state transition space sub-division method used. It was argued therein
that, although as earlier presumed by studies that ergodic conditions could be derived from the sub-division
of these state spaces, solutions then did not evaluate for the rate matrix hence the need for revisiting the state
space splitting approach. For the proof therefore, sets of sub-levels were defined to map to sets of states and
splitting was based on these sub-levels. The splitting was a factor of whether a sub-level’s behavior was regular
(𝑙 = 𝑇,𝑇 +1, . . .) or otherwise (1, . . . ,𝑇 − 1), l being a collection of state and T the jockeying threshold. The authors
showed that the condition for ergodicity was only possible when the system utilisation 𝜌 < 1. Then by applying
an earlier theorem [133](1.7.1) to the resultant Markovian generator matrix Q, statistical equilibrium was possible.
After categorizing based on sub-levels, the generator matrix Q took a different form that was irreducible but this
was solved with the same theorem [133](1.7.1). The stationary vectors were similarly split along categories with
respect to the sub-levels to obtain a mapping from stationary probability vectors to sub-levels using the Eqs. (9)
and (10).

𝑝𝑙 = 𝑃𝑇𝑅
𝑙−𝑇 , (𝑙 < 𝑇 ) (9)

𝐷0 + 𝑅𝐷1 + 𝑅2𝐷2 = 0 (10)
where 𝐷0,𝐷1 and 𝐷2 denoted square sub-matrices constituting states at all sub-levels ≥ 𝑇 and 𝑝𝑙 or 𝑝𝑇 as stable
probability vectors corresponding to the level 𝑙 (bound on 𝑇 ) that resulted from the split of the stable probability
vector 𝑝

Because one of the sub-matrices in the generator Q took different dimensions due to the constituent states in
the sub-level set, it was shown how given this difference in structure, a solution for the rate matrix (R) could be
expressed. The evaluation derived its reference from suggestions by [146] that by ascertaining the maximum
eigenvalue of rate matrix, one could easily express for the solution of R using Eq. (11).

𝑅 =

(
0
𝑤

)
(11)

where 𝑤 = −𝑣 (𝐷1 + 𝜌𝑐𝐷2)−1, (𝑤 = 𝑤0, ....,𝑤𝑚−1), m being number of states at a given level that defined the
dimension of the square sub-matrices. c was the number of queues available

Contrary to the mostly homogeneous setups studied, [6] analysed the behaviour of two heterogeneous queues
(𝑀/𝑀/2) each with a different service rate to derive expressions for sizes of the queues under stable conditions.
New customers joined the shorter of either queues (or based on a probability if the sizes of the two queues were
equal) and it was allowed to switch from a longer to shorter one given some jockeying threshold 𝑇 . The authors
proved that when the size of the larger line exceeded the jockeying threshold 𝑇 , because of the unique formation
at the boundaries, the formulation of the solution was the product of the stationary probabilities of each service
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line. Hence that given the appropriate sub-division of the state space, the matrix-geometric method yielded the
same solution. The proof built on the authors’ earlier findings [5, 7] where it was shown that with no jockeying
allowed between the queues, the equilibrium probabilities (𝑝𝑚,𝑛 ,𝑚,𝑛 as queue sizes) of the queue sizes conformed
to product-form solutions in infinite time. Therefore, numerical evaluations under set parameter configurations
were done to validate whether the same was true when jockeying was permitted. It was found that the evaluation
held true only for a defined portion Q (𝑚𝑎𝑥 (𝑚,𝑛) > 𝑇 and (𝑇,𝑇 )) of states. Then observing the rates of change
in state of the stochastic process for only this portion of states conclusively categorized the process as irreducible.
This necessitated the analysis of this portion of states as a separate process (with distribution 𝑞𝑚,𝑛) with a relation
to the main process denoted by 𝑝𝑚,𝑛 = 𝑞𝑚,𝑛𝑃 (𝑄) (where 𝑃 (𝑄) was the probability that the portion 𝑄 included
the main process). The product-form solution was derived from the notion of defining a set of metrics that were
a factor of the arrival rate, the service rate of the shorter queue and the queue admission probability (specifically
in case the two queues were of the same size) for which 𝑙 > 𝑇 (𝑙 as the length of the longer line). The general
purpose principle was the basis for the derivation of equations that resolved for these metrics and this system of
equations characterized the steady-state and ergodicity conditions for the portion of states 𝑄 . The work sought
to also draw comparisons between the product-form solution and the one ascertained using the matrix-geometric
technique. For the geometric solution, the generator matrix emanated from sub-division of the steady-state
probability vector into sub-levels that grouped states depending on the size 𝑙 of the longer queue (𝑙 < 𝑇 and
𝑙 ≥ 𝑇 ) and associating each of these sub-levels to a steady-state probability vector −→𝑝𝑙 . Since some of sub-matrices
(𝐴0, 𝐴1, 𝐴2) in the generator matrix𝐺 were irreducible, using existing theorems for ergodicity conditions [133]
(Theorem 1.7.1, 1.7.11), −→𝑝 𝑙 when 𝑙 > 𝑇 was ascertained from −→

𝑝 𝑙 =
−→
𝑝 𝑇𝑅

𝑙−𝑇 (by taking the unique structural
properties of 𝐴0 to compute for 𝑅 from 𝐴0 + 𝑅𝐴1 + 𝑅2𝐴2 = 0 given knowledge of 𝑅’s maximum eigenvalue). The
the matrix-geometric formulation was found to bear similarities to the product-form solution.
More work on a finite capacity𝑀/𝑀/2 queuing system was done by [172] where, customers had the chance

to change from one queue to another. The arrivals were simulated to imitate a Poisson distribution with rate
𝜆, choosing the shorter of the two service lines each operating with exponentially distributed service rates (𝜇1
and 𝜇2). If none of the service lines was shorter than the other, preference for one would follow probabilities (𝛼
or 𝛽 , 𝛼 + 𝛽 = 1) while instantaneous jockeying was possible when one of the service line was empty. For the
transitions in queue lengths sizes that formed a Markovian chain, the author defined a sequence of difference
equations that characterized the probability (𝑃𝑖, 𝑗 ) of queues (i,j) being in equilibrium state. The compressed form
of the difference equations (𝐴𝑘−1𝑃𝑘−1 + 𝐵𝑘𝑃𝑘 +𝐶𝑘+1𝑃𝑘+1 = 0, 𝑘 = 2, 3, 4, ...., 𝐿 − 1 and 𝐴𝐿−1𝑃𝐿−1 + 𝐵𝐿𝑃𝐿 = 0, 𝑘 = 𝐿)
were first re-arranged to compose for a matrix block (𝐴1𝑃1 + 𝐵2𝑃2 +𝐶3𝑃3 = 0) of sub-matrices (𝐴, 𝐵 and 𝐶) that
generalized the system dynamics and traffic intensities. Then the evaluations for the sub-matrices (𝐴, 𝐵,𝐶) were
computed from the definition of column vectors that encoded state transition probabilities over all positions in
both queues. Theoretically, the proof required that the sub-matrix 𝐵𝑘 was invertible and this meant computing the
inverse of the sub-matrix and its determinants. There existed an inverse of this sub-matrix only if its determinant
did not evaluate to 0 for all values of the traffic intensity 𝜌 . Based on 𝑃+

𝑘
being the theoretical solution for stability

conditions,𝐴𝐿−1𝑃𝐿−1 +𝐵𝐿𝑃𝐿 = 0, 𝑘 = 𝐿 expressed for this solution as the probability that the system was occupied
to maximum capacity (𝑃𝐿 = −𝑅𝐿𝐴𝐿−1𝑃𝐿−1, 𝑘 = 𝐿) given that 𝑅𝐿 = 𝐵−1

𝐿
. Iteration of computations for 𝑅 evolved

into solutions for the differential equations expressed in terms of 𝑃0,0 (probability that both queues were idle).
The proof by induction on 𝑘 was required to further verify the relation 𝑔𝑘 = 𝜌𝑘−2𝑔2 for 𝑘 = 2, 3, ..., 2𝐿 (given
𝑔𝑘 = 𝑃𝑟 (𝑁 = 𝑘); 𝑁 = 𝑁1 + 𝑁2 and 𝑁𝑖 , 𝑖 = 1, 2 were the number of customers in either queue) that formulated
for the equilibrium probabilities as the M/M/2 system capacity was doubled (2L) or as 𝐿 =⇒ ∞. A numerical
analysis included setting the arrival and service rates to different values and comparisons made with earlier
results from the Conolly’s model[37]. Performance evaluations for the effect of the system utilization on the
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equilibrium probability 𝑔𝑛 under different queue setups were illustrated to show how the author’s model was
quantitatively better.
Bulk workload migration received further attention in a setup of two 𝑀/𝑀/1 queuing servers when [80]

considered the variation in the sizes of the two service lines (𝑞1, 𝑞2) hitting a preset threshold 𝐿 as the trigger
for moving some workload 𝐾 (0 < 𝐾 < 𝐿) to the shorter queue. New Poisson distributed arrivals (at rate 𝜆𝑖 )
joined service queues that run at exponentially distributed processing rates (𝜇𝑖 ; 𝑖 = 1, 2) to yield a QBD process
((𝑞1 (𝑡), 𝑞2 (𝑡)), 𝑡 ≥ 0) with state space (𝑛1, 𝑛2) : 𝑛1 ≥ 0, |𝑛1 − 𝑛2 | < 𝐿 (𝑛𝑖 , 𝑖 = 1, 2 as the number of customers in a
given queue) Then based on the inherent recurrence (the probability that the system will revisit an earlier state
in finite time) properties of such processes, it was theorized and proven [80, 101] that steady-state conditions
could only exist under specific conditions of the traffic intensity (𝜌 < 1). The derivation adopted findings from
[56] where a state mapping 𝑓 (𝑛1, 𝑛2) (Lyapunov function) related the state of each queue; this mapping was
then the basis for the computation of the mean drift as an aggregation of the process generator matrices 𝑄 in
state space followed by a proof for necessity. Although the structure of the stochastic process made it hard to
analyse, the fact that the process constituted special properties (𝑞1 − 𝑞2 |> 𝐿 − 1) allowed for the sub-division
of the state space {(𝑞1 (𝑡), (𝑞2 (𝑡)), 𝑡 ≥ 0} to re-organise into a valid QBD to which matrix-geometric techniques
could be applied for a solution to the equilibrium probabilities. This state space was re-organised based on the
system occupancy 𝑞(𝑡) = 𝑞1 + 𝑞2 and the deviation between the sizes of the queues ( 𝑗 (𝑡) = 𝑞1 − 𝑞2) at any
time 𝑡 . This iteration was done until the resultant stochastic process (𝑋 (𝑡), 𝐽 (𝑡), 𝑡 ≥ 0) (with its corresponding
generator matrix 𝑄2) was irreducible and not dependent on the number of customers (system occupancy). The
equilibrium probabilities for this process were then formulated for using matrix-geometric methods based on
earlier solutions (𝐴0 + 𝑅𝐴1 + 𝑅2𝐴2 = 0) [133],[110] that entailed resolving for the eigenvalues (with the largest
modulus - Perron-Frobesius eigenvalue) of the rate matrices 𝑅 at the different levels (𝐿) under the assumption
that the process was constituent of recurrence properties. And these probabilities formed the basis for proof
for stability conditions for system descriptors like likelihood that a queue was idle, number of serviced units,
estimates on the number of consumers in a queue under steady conditions, how often workload was transferred
(𝑇𝑅,1−>2,𝑇𝑅,2−>1) within the system, etc. Expressions for the rate at which the distribution of system occupancy
diminished were formulated and it was shown that this decay rate was neither affected by the workload transfer
threshold 𝐿 nor the number of workload migrations 𝐾 under varying inequalities of the traffic intensity 𝜌 . Then
based on theoretical assumptions on the structural (like spectral radius) properties of the non-negative matrices
like 𝑅, an expression for the rate matrix and eigenvectors for the corresponding eigenvalues were also derived.
The analytic solution was validated by numerical evaluations that involved experimentation with variations in
queue design parameters. For example, the case of the first queue with 𝜆1 = 1, 𝜆2 = 2, 𝜇1 + 𝜇2 = 1 = 4, 𝐿 = 5, 𝐾 = 3,
it was observed that as the service rate increased, the rate at which customers were transferred to the second
queue decreased and vice-versa. This revealed the inherent convexity properties of the relationship between
the service and transfer rates. It was conclusively suggested that, choosing the right processing rate for each
queue was requisite for even load distribution (𝜌1 ≈ 𝜌2) so as to keep transfers within the system at reasonable
minimum quantities and that the parameter that exerted much influence on these decisions was the deviation
in queue utilization (traffic intensity). This was given the fact that the transfer rates exhibited monotonicity
properties in the processing rate.

5 BEHAVIORAL MODELS

5.1 Modeling based on the Value of Information
Time critical applications whose output depends highly on freshness of information in a MEC 5G network
environment motivated [73] to study the impatience of customers who could either renege or balk (with some
semblance to jockeying) from an 𝐺/𝐺/1/∞ FCFS queue system. The customers had the option to continuously
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Fig. 2. An schematic depiction of the impatient customer that had the option to either process a task on a MEC server or locally depending on the latency
critical requirements of the underlying application

weigh the risk related to either process jobs locally (on their devices) or forward them to a cloud server as depicted
in Figure 2. Depending on the latency requirements of the requesting application, the approach referenced
information like expected cloud server response times 𝜏𝑐 in terms of the task forwarding overhead (𝜏𝑠 ), the
predicted waiting time (𝜏𝑤,𝑘 ) of a user landing in position 𝑘 at joining time 𝑡 > 0 etc to influence the decision
as to which platform the computations of the task at hand took place. A utility model was first developed for
the latency-critical tasks where customers got rewards from the tasks that were successfully processed and the
reward (𝑢) decreased to null with the total delay Δ𝑡 . This delay varied depending on the choice for platform and
the user got access to this kind of information for a given task beforehand. While at the MEC server, the user
then had the ability to assess the risk (𝑃𝑜 ) associated with continuing with the cloud-based processing given the
ever changing network/compute resource delays so as to make decisions that maximized the expected reward
and minimize the risks. It was shown in this case that a user that submitted a task to a queue in the cloud did
not retrieve the task from the queue when provided with reliable and flawless channel information. The proof
followed from the fact ([73], Lemmas 1-2) that there existed a time, given the task forwarding overhead to be
incurred, that the risk 𝑃𝑜 associated to the predicted cloud delay was less than that associated with remaining
local delay. This implied that the customer could not leave the queue immediately after joining it (𝑡1) and because
the predicted remaining latency diminished as more customers that were infront in the queue got processed,
it was argued that the customer could not also retrieve the task at time 𝑡2. It was also necessary to understand
customers’ reaction when availed with flawed information about the state of the channels under the hypothesis
that may be the customers could develop their own knowledge from experience and use this knowledge to make
the necessary choices for a compute platform. The error arising from this knowledge validations and estimation
for the rates was computed. And it was argued that the margin of this error directly affected the predictions
for the risk associated with preferences for processing platform such that customers would end up either being
reluctant or hasty. A numerical study of the impatient customer’s regretting behaviour under correct or partially
correct system status information to evaluate the predicted loss in reward, learning gain etc using a risk analysis
algorithm was performed. The results provided interesting insights into the influence of queue status knowledge
on a customer’s decision for preference of a processing platform and on the overall system performance in terms
of the response times under changing conditions.
Extended analysis of the value of information and its applicability in balancing the load within distributed

compute systems was the subject of [141]’s work. Here, the state of a node’s knowledge about prevailing queue
setup was fundamental for admitting tasks to the queues and transferring them around to alternative queues. The
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nodes cooperated on task executions by migrating excess load (total system load minus load on node) to other
nodes. Eq. (12) (the case of 𝑛 ≥ 3 for example) was definitive of the excess load partitioning and distribution to
𝑛 − 1 nodes. And transfer of this excess load depended on the size of the partition such that the least loaded node
received the bigger partition.

𝑝𝑖 𝑗 =


1

𝑛−2

(
1 −

𝜆−1
𝑑𝑖
𝑄𝑖 (𝑡−𝜂 𝑗𝑖 )∑

𝑙≠𝑗 𝜆
−1
𝑑𝑙
𝑄𝑙 (𝑡−𝜂 𝑗𝑙 )

)
,

∑
𝑙≠𝑗 𝑄𝑙 (𝑡 − 𝜂 𝑗𝑙 ) > 0

𝜆𝑑𝑖∑
𝑘≠𝑗𝜆𝑑𝑘

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(12)

where 𝜂 𝑗𝑙 was the expected lag when node 𝑙 and node 𝑗 communicated, 𝜆𝑑𝑖 was the rate at which a countable number
of tasks departed the queue 𝑖 . Also 𝜆𝑑𝑘 denoted the departure rate at preset values of the 𝑘𝑡ℎ load balancing instant.
And 𝑄𝑙 (𝑡 − 𝜂 𝑗𝑙 ) was node 𝑗 ’s assumption about the number of tasks running on node 𝑙 which depended on the
communication lag not exceeding time 𝑡 .
The state of the knowledge local to nodes then required prior broadcasting of buffer sizes by all nodes

within the cluster. And the load balancing algorithm resident on each node was executed before accepting any
collaboration in the task processing. Using the regeneration approach, a random variable 𝜏 was defined (Eq. (??))
as a regeneration time to denote events such as the time a task was completed. That, the recurrence of similar
events should characterize for stochastic behavior similar to previous events though under different environment
settings. Two load balancing policies were evaluated, i.e. centralized one-shot and dynamic load balancing. For
the centralized one-shots rule-set, the proof evolved from adoption of principles of conditional expectation
and regeneration-event decomposition to express for the average overall completion time (AOCT) using the
resultant difference equations. The centralized one-shots rule-set was extended for distributed environments
as a sender-initiated dynamic load balancing (DLB) algorithm that morphed to meet the dynamic processing
speeds and delay of the infrastructure. Also, each node embedded an optimal load-balancing instant and gain
measure (unlike in the one-shot policy where all nodes received the same) such that load was redistributed to
achieve system wide reduction in completion time based on the up-to-date status information. Therefore, the
DLB heuristic’s objective functions sought to minimize the overall processing time with respect to the knowledge
states, load balancing instant and gain measures. For the one-shot centralized policy, experiments (two servers) to
optimize the overall time to complete (AOCT) tasks showed that load balancing actions taken when 𝑡𝑏 increased
beyond one second evolved into the slower node carrying more load. Hence the larger measures in the AOCT
due to delayed updates to the knowledge state coupled with keeping the faster server idle for some time. The
performance of the DLB policy on the other hand was evaluated in terms of the time it took to complete a
given task (ACTT as a combination of processing, queueing and transfer time) within a defined time frame. In
conclusion, analysis of the two qualitative measures system processing rate (SPR) and mean task completion
time (ACTT) for both policies under difference configurations in parameter 𝐾 led to the generalization that in
either policies, improvements in SPR were recorded under lower measures in 𝐾 (but more transfer activity in
higher measures of 𝑘 or excessive load migration delays that led to higher ACTT) for the static load balancing
policy (one-short) while the DLB policy yielded lower queueing transfer delays to reduce the ACTT. Further
benchmarking of the proposed policies relative to classical DLB policies like Shortest-Expected-Delay (SED) and
Never-Queue (NQ) revealed measurable improvements in the ACTT with the DLB over NQ and SED.
In a shift from centralized to decentralized control in multi-tenancy MEC environments, [97]’s pioneering

work in behavioral modeling of impatience in queueing systems sought to understand the benefits switching
queues brings to the impatient tenant. It is argued that the state space curse in stochastic models of jockeying
coupled with the centralized control of the behavior might not be practical given the dynamics inherent in next
generation communication systems. That for decentralized management, the rationale to move workload from
one queue to another should be made by the individual tenants after assessing the up-to-date availed information
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about the expected waiting time. The Monte Carlo findings assumed a setup of network slices arranged as queues
(𝑀/𝑀/𝐶 , 𝐶 = 2), such that arrivals that obeyed a Poisson distribution (with rate 𝜆) joined the shorter of the two
heterogeneous buffer lines given prior knowledge about their lengths. Tasks were processed at exponentially
distributed service times and at each completion of a given task in either queue, tenants evaluated whether to stay
in their current position(s) 𝑘 or to jockey to the alternative buffer line. The jockeying here disregarded whether
jockeying was to the shorter queue but the rational was premised on the expected waiting time that the jockeyed
task would take. However, the position of the jockey in the alternate queue was a factor of what portion of the
new arrivals 𝛽 ≤ 𝜆 would prefer the same queue as the jockey and to obscure this competitiveness, the jockey’s
final position followed a shuffle operation with the portion 𝛽 of new arrivals. The work assumed at least a single
departure 𝑁 ≥ 1 occurred such that if 𝛽 ≤ 𝜆 sought to join the preferred queue at that point in time, switching
buffers was only if the expected waiting time in the preferred queue (at position 𝜏 ) was less than when the tenant
stayed put (at position 𝑘). (13) was definitive of these sojourn time-position dependencies.

𝐹
−→
𝑖 𝑗

𝑇𝑤 |𝜏 (𝑡𝑤 |𝜏) =


𝑇𝑤 | 𝑃

𝛽

𝑄𝑖,𝑗
(𝑡 + 1) if 𝛽, 𝑁 ≥ 1

𝑇𝑤 | 𝑃 (𝑁 ≥ 1) if 𝛽 = 0
𝑇𝑤 if 𝛽, 𝑛 = 0

(13)

where 𝑇𝑤 was the expected waiting time and 𝑃𝛽
𝑄𝑖,𝑗

(𝑡 + 1) denoted the probability that 𝛽 new arrivals joined the
preferred queue at 𝑡 + 1 when the jockey decision was to be taken.
Formulations for the number of times that tenants switched from one queue to another then followed from

the adoption of principles of conditional probability theory (Baye’s theorem) to resolve for the dependencies
between the expected waiting time, departures and new arrivals. It was shown therein that, from the Monte
Carlo simulations, the sensitivity of the impatient tenant to perturbations in the system descriptors could first be
assessed to extract correlations or dependencies that could guide the rationale to jockey. The results from the
numerical evaluations of the model were a further revelation about the positive impact of switching buffers such
that, the tenants that jockeyed more than once ended up waiting less until service in comparison to tenants that
did not jockey at all.

5.2 Artificial Neural Networks modeling
The application of jockeying in Facility location problems (FLP) problems was investigated in [31] studied
a cooperative multi-layered setup of queues where jobs were distributed to empty service lines within the
hierarchical layers based on certain rules that considered job priorities. Jockeying had mostly been discouraged
given the presumable associated costs and complexity that the behavior presented forthwith. The authors were
interested in dynamically distributing the facilities in each layer effectively so as to meet the emerging demand
in small and large systems. A job was processed through each layer by those facilities in closest proximity
to the job’s location and the optimal solution was determining the set of facilities that could partake in the
servicing of the job request. The demand for service queues followed a Poisson distribution, the service rates
at each facility were exponentially distributed and each facility in a given layer participated in the processing
of a jockeyed applicant. Starting with a solution for small-scale systems, expressions that characterized for the
objective functions (reduce jockeying plus mean waiting times and keeping all facilities busy) were formulated.
The applicability of the augmented 𝜖-constraint method when evaluating for global solutions (Pareto-Optimal)
to multi-objective non-linear models was restricted to small scale scenarios. While for medium to large scale
service systems, an Non-Dominated Sorting Genetic Algorithm (NSGA)-II was deployed and a technique called
non-dominated sorting used to rank each entity. This evolutionary algorithm included a sequence of operators in
an iterative process that evaluated each chromosome for eligibility to participate in parenting the next generation
of off-springs. The Taguchi scheme was found relevant for the adjustment of input parameters used for the
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initialization of the population given the effect these parameters had on the genetic algorithms. The characteristic
behaviour of each entity in the population and system components like layers or facilities was abstracted as
chromosomes to which constraints (𝑔(𝑥) where x was a chromosome) and cost functions were pegged. This
aided the evaluations for how worth a chromosome was for parenting the next generation by associating the
chromosome to penalties defined by 𝑝 (𝑥) = 𝑈 ∗𝑀𝑎𝑥{0, 𝑔 (𝑥 )

𝑏
− 1} such that 𝑈 was a constant, 𝑔(𝑥) the constraint

and 𝑝 (𝑥) the punishment on chromosome x
The final mating population evolved from the iterative application of conventional genetic algorithm operations

(like selection, cross-over, mutation and offspring evaluation) until the fitness function quantitatively yielded no
better results for a series of selection runs. The authors concluded the investigations with a numerical analysis of
the model by setting up a manufacturing system and results were documented when jockeying was permitted
from one facility to another within the the layers versus when applicants were processed by a single facility.
The performance measurements confirmed that not only did allowing switching from one facility to another
reduce the waiting and idle time of the facilities but the behaviour also ensured that the job transfer overhead
was minimized given that only facilities within the proximity of a potential jockey were those considered to
participate in a job’s sub-processing.

6 DISCUSSION, CONCLUSION AND FUTURE WORK

6.1 Discussion and Conclusion
In the context of resource allocation inMECor 5G and Beyond communication systems, where it has been proposed
that application requirements will be mapped categorically to specific network slice configurations, jockeying is
one those queuing theory concept that could accelerate flexibility for multi-vendor resource sharing [57]. And
because different vendors will provide varying costings for the services they provide, giving the consumer the
ability to select from the pool of available resources will mitigate the expected impact of diminishing availability
while ensuring optimal usage of the communication channels. From these preferences of one queue over another
emerge new problems that relate to modeling for the dynamics introduced by the tenants’ impatience. It is
common practice to generalize these dynamics as stochastic processes in nature with definitive assumptions that
bound the measures in buffer descriptors. One of the main assumptions adopted in most Markovian models is
that the new arrivals benefit from prior access to some information [18, 134] and the strategy is to join the shorter
queue [6, 147]. It has been however argued that this strategy might not be optimal given the existential differences
in queue capacities and workload [179]. However, technical mechanisms for providing tenants with access to
this buffer status information have inspired proposals for broadcasting of or subscription to this information in
dedicated or shared communication channels [73].
The second dominant assumption about the service discipline queues is the FCFS. However, practitioners

argue that mission critical implementations like rescue (where tasks urgently need to be prioritized by jockeying)
render the FCFS approach less viable given the strict latency constraints in such operations [104, 106].

Another assumption is modeling the setups as homogeneous queueing systems which is a limitation to there
applicability in communication systems. Yet, heterogeneity in these kind of systems is limited by the use of preset
difference in buffer size based jockeying thresholds as the criteria for the task migration behavior. Moreover,
limiting the jockeying to occur from the shorter buffer to the longer one raises concerns about such thresholds as
the optimal trigger for switching buffers. To achieve some balance, some MEC setups embed traffic classification
routines [163] to prioritize packet flows but limited information exposed to the flows still keeps the behavioral
control mechanisms centralized, which further limits optimizing the impatience behavior. So literally, best
engineering practice would require decentralizing the decision making process [157] such that the rational
consumer has access to up-to-date queue descriptor information like waiting time [97] or billing, subscription
costs metrics from the Network Slice Selection Function (NSSF) in the network core, etc. Earlier attempts that close
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this information gap propose techniques like active queue management [35, 83, 100] or information signaling in
value of information setups [76, 191]. Other studies incorporate neural modeling as input to guide the queue
selection process and jockeying behaviour [145, 170].

6.2 Future Work
Decentralized control versus centralized control: The irrationality of the impatient consumer in distributed compute
environments has rendered less viable canonical statistical approaches which assume centralized control of
the routing in communication networks. The diverse state space introduced by the underlying uncertainty
and complexity of these approaches has inspired recent efforts towards decentralized control (i.e. moving this
control to the consumer), a technique referred to as behavioral modeling [157]. Proponents for this methodology
suggest that emphasis be placed on the rationality of the impatient tenant for autonomous and proactive decision
making in dynamic systems like next generation networks. This autonomy should however be underpinned by
access to up-to-date information about the system [15, 97, 161]; Technically, broadcasting this information versus
subscription to it (as an incentive for premium lines) in a kind of publish-subscribe mechanism becomes the
question [73, 173]. For example, in new paradigms like network slicing as a service (SlaaS) [72], the performance
metrics from network core’s virtual network functions (like NSSF) are expected to be a source of vital knowledge
to guide the slice admission or switching heuristics. However, disseminating up-to-date information in congested
environments introduces extra communication overhead. This implies, to achieve leverage under such impatience
manifestations, it is important to evaluate what value broadcasting queue status information [15, 84, 161] brings.
Therefore, future work should provide extensive evaluation of the bulk of overhead introduced by this information
exchange or task offloading [141] and the resultant effect on system performance.

Worth more studying too is the effect of setting low quantities of the jockeying threshold as this could evolve
into a Ping-Pong scenario where impatient tenants continuously switch from one queue to another. This kind of
jockeying behavior can be hard to differentiate from security breaches like denial of service attacks. A trusted
and authenticated tenant could also be the source of corrupted queue status information for it’s selfish benefit.

When designing the buffer preference policies especially for task migration in distributed systems, the time it
takes to move a task (inter-transfer time ) is dependent on the task size, underlying infrastructure conditions, the
number of network hops that exist between any two or more collaborating devices [61, 121]. The effect of such
dynamics on the routing decisions appears an open area for research studies.

The Value of Information: Trending in most scientific domains is the adoption of artificial neural networks for
the computational modeling of complex phenomena [118]. Their learning prowess has motivated studies that
instead of statistically quantifying for selected queueing descriptors, these data-driven methods make deductive
inferences that underpin automation processes [14, 145]. For example, in routing and scheduling algorithms
as packet transmission rules for congestion control in edge compute systems [49, 54]. Besides their predictive
capabilities, neural networks also define for ways to obviate the high dimensionality curse suffered by stochastic
models and have been deployed as viable sources of valuable queue status information to guide queue operations.
Hence, the neural networks as a source of valuable information in behavioral modeling then becomes a worthwhile
subject.

In conclusion, the selfish drive for maximizing profit or minimizing time to task completion arouses exhaustive
scrutiny of the behavior of these impatient tenants. That is, how fair the adopted jockeying policies are to other
buffer occupants. For organizations, prioritization versus fairness (fairness takes into account both the arrival
time, how long the job has been queued and the time the job takes to process) [149, 150] considerations are
important such that workload can be distributed depending on the application use case. There is therefore need
for further evaluation of metrics like RAQFM (Resource Allocation Queueing Fairness Measure) or Credit Based
Shaper (CBS) [20] which provide measurable statistics about the fairness of the servers when processing jobs
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of varying sizes under different buffer sharing policies [148]. Lastly, to counteract unnecessary impatience in
these systems, stochastic optimization techniques could provide definitive limits on the number of times tasks
are jockeyed such that under certain system conditions agents are full aware of the level of risk associated to the
jockeying behavior.
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