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Abstract. Hyperparameter optimization plays a pivotal role in en-
hancing the predictive performance and generalization capabilities
of ML models. However, in many applications, we do not only
care about predictive performance but also about additional objec-
tives such as inference time, memory, or energy consumption. In
such multi-objective scenarios, determining the importance of hy-
perparameters poses a significant challenge due to the complex in-
terplay between the conflicting objectives. In this paper, we pro-
pose the first method for assessing the importance of hyperparam-
eters in multi-objective hyperparameter optimization. Our approach
leverages surrogate-based hyperparameter importance measures, i.e.,
fANOVA and ablation paths, to provide insights into the impact
of hyperparameters on the optimization objectives. Specifically, we
compute the a-priori scalarization of the objectives and determine
the importance of the hyperparameters for different objective trade-
offs. Through extensive empirical evaluations on diverse benchmark
datasets with three different objective pairs, each combined with ac-
curacy, namely time, demographic parity loss, and energy consump-
tion, we demonstrate the effectiveness and robustness of our pro-
posed method. Our findings not only offer valuable guidance for hy-
perparameter tuning in multi-objective optimization tasks but also
contribute to advancing the understanding of hyperparameter impor-
tance in complex optimization scenarios.

1 Introduction

The selection of appropriate hyperparameter configurations signif-
icantly impacts a model’s ability to capture underlying patterns in
the data and produce accurate predictions. Optimizing hyperparame-
ters is one of the main focus areas of Automated Machine Learning
(AutoML) [22, 7]. Given a use case and a model, it is usually un-
known which hyperparameters are worth tuning to achieve a good
performance. Providing insights into this (e.g., [34, 42, 31]) is valu-
able since it allows the design of better configuration spaces and
gives a better understanding of the learning dynamics of Machine
Learning (ML) algorithms. HyperParameter Importance (HPI) of-
fers a systematic method to gain insights into the influence of hy-
perparameters on the model’s performance. Understanding and opti-
mizing hyperparameters are crucial steps in building effective ML
models. They allow us to fine-tune our algorithms, improve per-
formance, and achieve better generalization. So far, most efforts in
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Figure 1: Overview of the MO-fANOVA method. On the left, the
importance of each hyperparameter for Objective 1 is shown. On the
right, our extension for the importance of each hyperparameter for
different weightings of the objectives is displayed exemplarily.

hyperparameter optimization (HPO) have been focused on single-
objective optimization, mainly targeting the predictive performance
of models. Recently, there has been a trend towards multi-objective
HPO [18, 3, 13, 15, 6, 23], which allows the consideration of several
objectives, including fairness, memory consumption, training time,
inference time, and energy consumption. In a Multi-Objective Opti-
mization (MOO) scenario, where we optimize conflicting objectives
simultaneously, it becomes more challenging to approximate the un-
known Pareto front and to discern the relative significance of individ-
ual hyperparameters. The configurations on the Pareto front are the
set of non-dominated solutions.

Conventional methods for assessing HPI in single-objective
scenarios rely on univariate sensitivity analysis techniques, like
variance-based methods [21] or partial dependence plots [30]. For
instance, techniques like fANOVA have been widely used to decom-
pose the variance of model performance into contributions from in-
dividual hyperparameters [21]. While effective for single-objective
optimization, these methods may not capture the intricate interac-
tions among multiple objectives in multi-objective settings. So far,
no methods have assessed the importance of hyperparameters within
the context of MOO.

In this paper, we propose a novel method called weighted multi-
objective HyperParameter Importance (MO-HPI). Although our ap-
proach is, in principle, usable with any surrogate-based HPI measure,
we specifically focus on two widely-used methods, fANOVA [21]
and ablation path analysis [14, 4]. Our methodology involves train-
ing surrogate models, e.g., random forests, with the hyperparameter
configuration data and the respective objective results. For better vi-
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Figure 2: Overview of the MO-ablation path analysis. On the left, an
exemplary Pareto front is displayed, with several ablation paths go-
ing from the default configuration to different configurations on the
Pareto front. Every path is associated with a weighting of the ob-
jectives and thus gives a different value for the difference in perfor-
mance per hyperparameter. We convert this to the plot on the right,
where the total performance for different weightings is displayed as
a stacked plot of hyperparameter contributions.

sualiziability and interpretability, we focus on bi-objective scenarios,
but in principle, our approach can be used for any number of ob-
jectives. We use weighted sums of the objectives as target variables,
allowing us to effectively capture the change in importance from one
objective to another. Figure 1 shows the concept of MO-fANOVA,
and Figure 2 the idea for the MO-ablation path analysis.

To analyze MO-HPI and demonstrate that it is reasonable in the
context of ML, we pose the following research question: How to

convert surrogate-based HPI methods to meaningfully measure

the importance of hyperparameters within multi-objective op-

timization? We further frame the following subquestions: Are the
results intuitively correct? How do the proposed methods compare?
Can we gain new insights into the impact of hyperparameters on the
optimization process that previous methods could not provide?

To answer our research questions and validate the efficacy of our
proposed method, we conduct three empirical evaluations on the
well-known benchmark datasets MNIST [9], Adult Census Income
[2] and CIFAR10 [25]. To show that the approach can be applied to
diverse objectives, we consider three pairs of objectives, each com-
bined with accuracy: training time, demographic parity loss, and en-
ergy consumption, and discuss the results accordingly.

By advancing the understanding of HPI in complex optimization
scenarios, our method offers a valuable technique that can aid re-
searchers and practitioners in tackling challenging MOO problems
more effectively.

2 Related Work

Several techniques are available for evaluating the importance of hy-
perparameters. Surrogate models, such as Gaussian process mod-
els [35] or random forests [8], have been employed to approximate
the relationship between hyperparameters and performance. They
can predict the performance of a given hyperparameter configura-
tion based on an empirical dataset of configurations and their per-
formances. Breiman [8] introduced how random forests can attribute
importance by observing performance changes when removing at-
tributes. Forward selection [20] uses this idea by selecting the hy-
perparameters that most affect the surrogate’s performance by start-
ing from no hyperparameters and iteratively adding the most impact-
ful ones. Local Parameter Importance [5] studies the performance
changes of a configuration along each hyperparameter by consider-
ing the variance in performance when changing the hyperparameter.
Recent works [1, 37] use Shapley values [41] to measure the HPI in

Bayesian optimization inspired by the fact that Shapley values can
quantify the hyperparameter attributions for the acquisition function.

Another method is ablation path analysis [14, 4], which com-
pares the default and optimized configuration to measure hyperpa-
rameter contributions. It creates an ablation path from the default
configuration to a target configuration by changing the hyperparam-
eter with the largest increase in performance in each iteration. We
note that these ablation paths do not follow traditional ablation stud-
ies in which only a single hyperparameter is changed, and all others
are fixed; however, this allows a full path through the configuration
space from the default configuration to a target configuration. While
there is only one path in a single-objective scenario, potentially, there
are many in the MOO setting (cf. Figure 2).

fANOVA [21] identifies the importance of individual hyperparam-
eters and interactions among them. For each hyperparameter, it mea-
sures how it contributes to the variance in performance. This is done,
e.g., by training a random forest as a surrogate model and subse-
quently decomposing the variance of each tree into contributions
to each subset of hyperparameters. Based on these methods, sev-
eral works have been published. For example, van Rijn and Hutter
[42], Probst et al. [34] and Moussa et al. [31] considered HPI across
datasets. PED-ANOVA [44] improved fANOVA using Pearson di-
vergence to work better on arbitrary subspaces of the search space,
e.g., the subspace of the top-performing configurations. This paper
contributes to this body of work by extending the methodology to
MOO.

3 Weighted HPI for Multiple Objectives

Our main idea is simple and intriguing, given the insight that we
are interested in the HPI for different objective tradeoffs. The main
challenge lies in (i) how to map this to different HPI methods, (ii)
how to compute this efficiently, (iii) how to visualize this, and (iv)
how to interpret this. Challenges (i)-(iii) are described in this sec-
tion, and (iv) follows as part of the following experiment and dis-
cussion sections. Overall, our work employs a framework for assess-
ing the influence of hyperparameters on multiple objectives using
any surrogate-based HPI analysis methods, allowing it to be efficient
in computing analyses. Given a performance meta-dataset obtained
by a MO-HPO optimizer, we train surrogate models to predict the
objectives on unevaluated configurations; this is then used to cal-
culate the HPI. The steps will be explained in more detail in the
following section. While we discuss our approaches for two com-
peting objectives, the approach can be straightforwardly extended
to more objectives. The implementation is available on GitHub at
https://github.com/automl/hpi_for_mo_automl.

In the following, we use the following notation. (O1, O2) denote
two objective values. (Õ1, Õ2) are the normalized versions of them.
We use �W to denote a vector of weights weighting the objectives.
If we sum the weighted objectives, we obtain Yw. All the evaluated
configurations are collected in Λ, where λ ∈ Λ denotes one evaluated
configuration. hps are hyperparameter names and hpmin is the most
important one. To get the predicted (weighted) objective values r of
any configuration, we train two surrogate models Sobj , each trained
with Λ and Oobj for the ablation path analysis, weighted after predic-
tion. For fANOVA, we train one surrogate model per weighting Sw

with Λ and Yw (weighted before training).
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3.1 Data Preparation.

The performance meta-dataset contains model configurations with
their performance on several objectives. That means a table where
each row contains hyperparameter configurations with the respective
performance of all measured objectives. First, each objective is nor-
malized using the min-max normalization across all evaluated con-
figurations. Normalization is done to scale objectives, such as time,
so that all objectives live on the same scale and thus are compara-
ble in their magnitude. Next, the configuration data is converted to
numerical values to deal with categorical data and NaN values. NaN
values could occur because of hierarchical structures based on condi-
tional hyperparameters, i.e., hyperparameters that are only part of the
configuration if a certain value of another hyperparameter is chosen.

3.2 Weighting Scheme

Each configuration on the Pareto front implicitly refers to one
weighted tradeoff of the objectives. Only Pareto-efficient objective
pairs (o1, o2) are considered to retrieve the corresponding weight-
ing. Subsequently, the normalized objective pairs are scaled to sum
up to 1 by adding each pair up and dividing each of the two values
by that sum to be used as weighting (õ1 = o1

o1+o2
).

3.3 Multi-Objective fANOVA

Algorithm 1 Multi-Objective fANOVA
Input: evaluated and encoded configurations λ ∈ Λ, corre-

sponding evaluated objective values (O1, O2)

1: (Õ1, Õ2) ← normalized objective values
2: �W ← is_pareto_efficient((Õ1, Õ2))
3: for each �w in �W do

4: Yw ← w1 · Õ1 + w2 · Õ2

5: Sw ← surrogate model trained with (Λ, Yw)
6: Calculate fANOVA importances with Sw, e.g. following [21]
7: end for

A single target variable (Y) is created for each weighting (w1, w2)
derived from the evaluated configurations λ ∈ Λ on the Pareto front
by summing the weighted objectives values (O1, O2):

Yw = w1 ·O1 + w2 ·O2 (1)

Given the weighting and the prepared data, MO-fANOVA can be
calculated. Algorithm 1 shows the procedure in detail. A probabilis-
tic surrogate model is trained for each weighting. The model takes the
encoded configurations as input and the weighted normalized sum
of the objectives as the target variable. After that, the fANOVA im-
portance is calculated using the trained model for the corresponding
weighting. See Figure 1 for an exemplary depiction of the outcome.

3.4 Multi-Objective Ablation Path Analysis

As shown by Biedenkapp et al. [4], ablation paths, i.e., the path of
flipping the value of a hyperparameter from a given default config-
uration to a target configuration, can be efficiently approximated by
using a surrogate model trained on meta-data collected by algorithm
configuration or HPO. However, the standard procedure of comput-
ing these ablation paths by a greedy scheme [14] only considers a
single objective.

Algorithm 2 Multi-Objective Ablation Path Analysis
Input: evaluated and encoded configurations λ ∈ Λ, corre-

sponding evaluated objective values (O1, O2), hyperparameters hps
1: �W ← is_pareto_efficient((O1, O2))
2: for each obj in (O1, O2) do � Not normalized
3: Sobj ← surrogate model trained with Λ, Oobj

4: end for

5: for each �w in �W do

6: λbest ← argmin
Λ

(w1 ·O1 + w2 ·O2)

7: rprevious ← w1 · S̃1(λdefault) + w2 · S̃2(λdefault))
8: rmin ← rprevious

9: λprevious ← λdefault

10: λcurrent ← λprevious

11: while rmin ≤ rprevious do � As long as we find improvements
12: for hp in hps do

13: λcurrent[hp] ← λbest[hp]
14: r ← w1 · S̃1(λcurrent) + w2 · S̃2(λcurrent))
15: if r < rmin then

16: hpmin ← hp � Most important hyperparameter
17: rmin ← rtotal

18: end if

19: λcurrent ← λprevious

20: end for

21: Add hpmin with rmin to ablation path
22: λprevious[hpmin] = λbest[hpmin]
23: Remove hpmin from hps
24: end while

25: end for

We propose to extend the ablation path analysis for multiple ob-
jectives as follows; see also Algorithm 2. For both objectives, a sur-
rogate model is trained with the encoded configuration data and the
objectives before normalization (Line 2). For each weighting, the ab-
lation path is calculated (starting from line 5). The incumbent λbest

is the corresponding configuration to the minimum of the scalarized
target variable Yw of Equation 1 (Line 6). Starting from the default
configuration, each hyperparameter value is changed individually to
the value of the incumbent configuration, and the performance is es-
timated with the trained surrogate models (Lines 12-20). The results
of the models are normalized with the same normalization as the re-
spective objective values, weighted, and summed up as performance
(Line 14). The hyperparameter value leading to the highest difference
in performance (toward the optimization objective) will be changed
in the configuration (Lines 15-18 and line 22). The ablation is re-
peated with the altered configuration λcurrent and the remaining hy-
perparameters until the incumbent configuration is reached (Line 11).
The difference in performance is recorded for each weighting.

4 Experiments

Using our multi-objective HyperParameter Importance (MO-HPI)
approach, we evaluated three HPO problems with different data,
models, and objectives. The overview can be seen in Table 1. We
chose rather simple benchmarks and models so that the results of the
MO-HPI approach are easier to validate by common knowledge.

4.1 General Setup

The basic setup was the same for all experiments. We used SMAC
[19, 27] as one of the state-of-the-art HPO tools [12] to perform HPO.
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Figure 3: Results for the time experiment. The Pareto front is on the left (error vs. training time in seconds), with the red dot being the default
performance. The MO-fANOVA results are in the middle, and the MO-ablation path analysis is on the right. The x-axis corresponds to the
weighting of the minimum error objective.

Table 1: Overview of the experiments

Name Dataset Model Objective 1 Objective 2

time MNIST MLP 1-Accuracy Training Time
fairness Adult Census MLP 1-Accuracy Demographic Parity Loss
energy CIFAR10 ResNet 1-Accuracy Energy Consumption

The multi-objective algorithm ParEGO [24] with Random Online
Aggressive Racing (ROAR) [19] and 1000 trials was used for opti-
mization. ROAR randomly selects a configuration from the hyperpa-
rameter space and only keeps track of the top 10 non-dominated con-
figurations. We note that our primary goal was not to achieve the best
possible multi-objective performance but to use a sufficient amount
of performance data generated by an HPO tool. Since Moosbauer et
al. [30] showed that post hoc analysis of HPO runs can be biased by
too strong exploitation, we focus here on unbiased randomly gener-
ated data. For both HPI methods, we trained random forests with 100
trees as surrogate models. Note that reproducing our experiments will
lead to slightly different results for the time and energy experiment,
as those variables depend on factors such as the hardware.

4.2 Experiment: Time

Table 2: Hyperparameter Space for Multi-Layer Perceptron

Hyperparameter Range Scale Default

n_layer 1-5 linear 3
n_neurons (same
for all layers) 8-256 log 132

activation logistic, tanh, relu - tanh
initial_lr 0.0001-0.1 log 0.01
alpha 0.0001-1.0 log 0.1
beta_1 0.1-1.0 log 0.5
beta_2 0.1-1.0 log 0.5
epsilon 1e-10-1e-06 log 1e-8

The first experiment used the MNIST dataset with Multi-layer
Perceptron (MLP) classifiers based on Sci-kit learn’s implementa-
tion [33]. The objective “training time” was measured by the wall-
clock time the classifier used for training. The error was measured by
1 minus the accuracy on the test set. The MLPs were configured with

50 maximum epochs and Adam as the DL optimizer. SMAC tuned
the MLPs hyperparameter w.r.t. the configuration space in Table 2.
Figure 3 shows the Pareto front (left), the MO-fANOVA (middle),
and the MO-ablation path analysis (right) results for the time exper-
iment. The Pareto front shows the set of non-dominated solutions.
The red point represents the default configuration. Note that for the
x-axis, only the weighting for the error objective is displayed. Since
the total weighting always sums to 1, the opposite weighting applies
to the respective other objective — in this case, training time, so w2

= 1 − w1. MO-fANOVA thus displays the HPI from a low weight-
ing of the error, so a high weighting of the time objective, to a high
weighting of the error and a low weighting of time. For example,
the number of neurons starts at an importance of around 0.4 when
only considering the time objective and decreases the more the error
objective is weighed in. The ablation path analysis plot is stacked,
with each segment representing the performance increase attributed
to tuning a specific hyperparameter for each weighting. The blue part
shows the performance of the default configuration. Note that the y-
axis only starts at 0.9, which means the default configuration already
does quite well without tuning the hyperparameters.

4.3 Experiment: Fairness

The second experiment used the Adults Census Income dataset [2],
which contains several variables about US citizens with the binary
target variable annual income higher or lower than 50’000$. We only
used the numeric and binary nominal variables of the dataset. It con-
tains the sensitive variables “sex” and “race”. We calculated the fair-
ness loss as the second objective for the experiment based on the
“race” variable prediction using demographic parity (DP). It is cal-
culated by the absolute difference of the mean proportions of positive
predictions y in each group, where the groups are defined by a sensi-
tive variable s.

DPLoss =

∣
∣
∣
∣

∑n
i=1 yi(si = 0)

n
−

∑n
i=1 yi(si = 1)

n

∣
∣
∣
∣

(2)

The MLPs were set up the same as in the time experiment. Figure 4
shows the Pareto front, the MO-fANOVA, and the MO-ablation path
analysis results for the fairness experiment. While the optimization
found several fair configurations, an error remained, with a top ac-
curacy of around 83%. The plots can be interpreted the same way as
described in section 4.2.
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Figure 4: Results for the fairness experiment. The Pareto front is on the left (error vs. demographic parity loss), with the red dot being the
default performance. The MO-fANOVA results are in the middle, and the MO-ablation path analysis is on the right. The x-axis corresponds to
the weighting of the minimum error objective.

4.4 Experiment: Energy Consumption

Our last experiment used the Torchvision implementation of ResNets
[17] with the first and the last layer set to a size of 3. The models were
trained with AdamW and a cosine annealing learning rate scheduler
with 200 maximum iterations. They were trained for 50 epochs with
early stopping, which monitored the test accuracy with a patience of
6 epochs. The CIFAR10 dataset was always normalized with mean
and standard deviation. Optionally, the data was augmented with a
random crop of size 32 and a random horizontal flip. The objective
“inference energy”, so for predicting the test set, was estimated with
CodeCarbon [26, 29]1. The configuration space is displayed in Ta-
ble 3. Figure 5 shows the Pareto front, the MO-fANOVA, and the
MO-ablation path analysis results for the energy experiment. The
plots can be interpreted the same way as described in section 4.2.

Table 3: Hyperparameter Space for ResNet

Hyperparameter Belongs to Range Scale Default

layer1 Model 1-30 linear 15
layer2 Model 1-30 linear 15
zero_init_residual Model true or false - true
augment Dataset true or false - false
learning rate Optimizer 0.0001 - 0.1 log 0.01
weight_decay Optimizer 0.00001 - 0.1 log 0.001
eps Optimizer 1e-10-1e-06 log 1e-8

5 Discussion

Our research aimed to investigate whether surrogate-based Hy-

perParameter Importance (HPI) methods could be converted to

meaningfully measure HPI within MOO. We introduced the con-
cept of weighting the objectives based on configurations along the
Pareto front and applied it to two HPI methods: fANOVA and abla-
tion path analysis. Subsequently, we conducted three MO-HPO ex-
periments with diverse datasets, models, and objectives to assess the
usefulness of the two MO-HPI approaches. In the following, we dis-
cuss our research questions related to the experimental results from
the last section.

1 https://github.com/mlco2/codecarbon

5.1 Are the results intuitively correct?

The results show the effectiveness of our method. All three experi-
ments provide plots that make sense from the ML perspective, and
thus, we conjecture that the results are intuitively correct. This can
be seen in Figure 3 for the ablation and 5 for fANOVA, where hy-
perparameters related to network size (such as layer size and number
of layers) strongly influence training time and energy consumption,
consistent with the understanding that larger neural networks require
more energy and time. A similar observation can be made for the
learning rate. Its impact on the error is to be expected, given its well-
known importance for achieving high accuracy. Additionally, in the
second experiment, the learning rate plays a role in fairness (cf. Fig-
ure 4). The same is valid for data augmentation in the energy ex-
periment, as is shown in Figure 5, it has a high importance, and it
is known to heavily influence performance [43]. However, some un-
expected results, like the high importance of beta_1 in the fairness
experiment, are not intuitively explainable and warrant further ex-
ploration. We note that recent results showed that improved fairness
can be strongly related to hyperparameters [11]. Overall, we there-
fore claim that the results are intuitively correct, which answers our
first research question positively.

5.2 How do the proposed methods compare?

When comparing the two methods, i.e., MO-fANOVA and MO-
ablation path analysis, some interesting observations can be made.
In the time experiment, the activation function is less important when
measured by the ablation path analysis than by fANOVA, but epsilon
gains more importance for the error objective in the ablation path
analysis. Another surprising observation is that in the fairness ex-
periment, beta_1 is deemed important by both measures, but for the
fANOVA measure, it has a strong influence on the error side, and
for the ablation path analysis, it has a stronger influence on the fair-
ness. Another difference is the high importance of the learning rate in
Figure 4 for fANOVA. At the same time, there is not much contribu-
tion of the learning rate visible for the ablation path analysis. In the
energy experiment, in the ablation path analysis, data augmentation
rated high, and the learning rate has minimal relevance in comparison
to fANOVA.

The difference in the results of the methods is mostly due to their
distinct nature. It is well known that the ablation paths struggle with
correctly attributing importance in case of interactions of hyperpa-
rameters [14]. Since the value of two or more hyperparameters has
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Figure 5: Results for the energy experiment. The Pareto front is on the left (error vs. inference energy consumption), with the red dot being the
default performance. The MO-fANOVA results are in the middle and the MO-ablation path analysis is on the right. The x-axis corresponds to
the weighting of the minimum error objective.

to be changed before an effect on the performance can be observed,
the importance is only attributed to the last changed hyperparameter.
Consequently, the performance differences upon changing the other
hyperparameters might be lower than they actually are. In the single
objective scenario, this is partially mitigated by also displaying the
order of changes, which is not possible with our visualization.

Furthermore, the ablation results strongly depend on the chosen
default configuration as a reference point. If the default configura-
tion is already fairly close to one of the extreme ends of the Pareto
front, there are little performance gains that can be attributed to the
hyperparameters. Some hyperparameters might even seem unimpor-
tant because they are already set to the optimal value concerning the
dominating objective. Therefore, it is important to always interpret
the ablation path in view of the default configuration. Since fANOVA
for main effects studies the variance for each hyperparameter inde-
pendent of the others, it is more stable in that sense. Our method also
allows us to study the importance of higher-order interaction effects
with fANOVA, as in the single-objective case. To avoid cluttering our
plots and results, we have omitted this here.

Lastly, it is important to note that ablation paths are considered a
local HPI analysis since their path through the configuration space
potentially only covers a small part of it and can be seen as a local
interpretation of the incumbent configuration given a default config-
uration. In contrast, fANOVA covers the entire configuration space
and thus provides more high-level insights, which, on the other hand,
might not be important for specific performance improvements w.r.t.
the default configuration. Overall, it is helpful to use both methods,
as they provide diverse insights.

5.3 Can we gain new insights that previous methods
could not provide?

We could simply run HPI studies on each objective independently
and compare their results. We argue that by considering different
tradeoffs of the objectives – as typically done in MOO – we gain
valuable insights from our methods that were not possible previously.

Considering the tradeoffs between the objectives, we can make
the following observations. In the fANOVA plot of the time exper-
iment (cf. Figure 3), most hyperparameters significantly impacting
only one of the objectives intersect at approximately an equal weight-
ing of the objectives. This suggests that the MO-fANOVA in this case
contains as much information as calculating fANOVA independently.
Nevertheless, even in Figure 3, it is not a trivial linear trend of the

importance values of the hyperparameters over different objective
tradeoffs. In Figure 4 for the fairness experiment, the intersections
are still at around the same position but are not in the center of the
plot. For the energy experiment (cf. Figure 5), the intersections are
even at different x-positions (i.e., objective weightings).

In addition, it is evident that certain hyperparameters lose impor-
tance rapidly (e.g., zero_init_residual in Figure 5 for the ablation path
analysis), while others remain important for longer before they be-
come irrelevant (e.g., beta_1 in Figure 4 for the ablation path analy-
sis). Moreover, some hyperparameters would not be tuned when only
looking at the objectives independently. For instance, in the ablation
path analysis in Figure 4 (right), the initial learning rate only con-
tributes significantly to the performance for certain tradeoffs but not
to one of the extrema of the Pareto front.

Furthermore, it is interesting to observe that certain hyperparam-
eters consistently retain importance, for instance, in Figure 4, for
fANOVA, both the initial learning rate and the number of neurons
remain influential. Conversely, some hyperparameters remain unim-
portant across all weightings. This consistency provides clarity re-
garding whether these hyperparameters require tuning. Finally, the
stacked visualization makes it possible to easily see the relative con-
tribution of a hyperparameter for different points on the Pareto front,
which make up the weighting. Therefore, we conclude that there is
more information in the plots that consider different objective trade-
offs compared to analyzing the objectives independently.

5.4 Limitations and Future Work

As is always the problem with post-hoc analysis, although our results
are reasonable, the absence of ground truth data prevents us from
guaranteeing their correctness. Nevertheless, we believe that there
is sufficient empirical evidence allowing us to conjecture that our
method is correct. Although several approaches for studying (single-
objective) results of HPO are already presented [21, 4, 30, 44, 1, 37],
a systematic set of criteria as proposed for interpretable ML [32] is
still missing in the context of interpretable AutoML.

In our experiments, we have not explored MOO scenarios with
more than two objectives because visualization and interpretability
would become complex. Nonetheless, our approach can be extended
to more objectives. Consider that the weighting scheme is calculated
by dividing each coordinate value of a point on an n-dimensional
Pareto front with the total sum of all values of that point, with each
objective previously normalized between 0 and 1. For both methods,
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the target Y can now be calculated as the weighted sum of objec-
tives with which the surrogate models can be trained. Plotting the
results for three objectives in a 3D plot would be possible, but not
trivially beyond that. We note that many-objective optimization (i.e.,
more than three objectives) could be relevant in practice but lead to
a large fraction of the configurations being on the Pareto front. To
the best of our knowledge, there are no reasonable approaches for
many-objective HPO to date.

In future work, MO-AutoML could incorporate the proposed
method to actively choose the most important hyperparameters to
tune. This could be done in the MO setting by calculating the in-
tegrals of the MO-HPI over the different tradeoffs. This provides a
way to quantify the importance one-dimensionally without having to
decide on a tradeoff. This will lead to more efficient AutoML that
learns to actively consider the HPI for different tasks, datasets, and
models. Moreover, it is already known that post-hoc analysis with
partial dependence plots of HPO runs can be skewed because HPO
approaches, such as Bayesian optimization [40], tradeoff exploita-
tion and exploration and thus bias the sampled configurations ac-
cordingly [30]. So far, it is not known how this affects approaches
such as fANOVA and ablation paths, but it is reasonable to assume
that they are similarly negatively affected. Therefore, future work has
to include how this will affect our approach and new approaches for
how to fix skewed results under biased data. In addition, our methods
should be integrated into interactive tools, such as DeepCave [38] or
IOHprofiler [10]. Another functionality could be enabling users to
select configurations on the Pareto front and convert them into ob-
jective weightings.

6 Conclusion

In multi-objective hyperparameter optimization, assessing the im-
portance of hyperparameters is challenging due to conflicting objec-
tives. Our proposed method leverages surrogate-based hyperparame-
ter importance measures, specifically fANOVA and ablation paths,
in conjunction with a-priori scalarization across various objective
tradeoffs. While we focus on those two HPI methods, our approach
can also work with other HPI methods, such as Partial Dependence
Plots [30], symbolic regression [39], variants of fANOVA [44], or
maybe even with visualization methods such as parallel coordinate
plots [16] or configuration footprints [5, 36]. Empirical evaluations
demonstrate the effectiveness and interpretability of our method. We
believe our proposed approach will enhance the analysis of multi-
objective AutoML results and thus contribute to a human-centered
AutoML paradigm [28].
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