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Abstract. Surgery monitoring in Mixed Reality (MR) environments has
recently received substantial focus due to its importance in image-based
decisions, skill assessment, and robot-assisted surgery. Tracking hands
and articulated surgical instruments is crucial for the success of these
applications. Due to the lack of annotated datasets and the complex-
ity of the task, only a few works have addressed this problem. In this
work, we present SurgeoNet, a real-time neural network pipeline to ac-
curately detect and track surgical instruments from a stereo VR view.
Our multi-stage approach is inspired by state-of-the-art neural-network
architectural design, like YOLO and Transformers. We demonstrate the
generalization capabilities of SurgeoNet in challenging real-world sce-
narios, achieved solely through training on synthetic data. The approach
can be easily extended to any new set of articulated surgical instruments.
SurgeoNet’s code and data are publicly available5.

Keywords: Mixed Reality · Computer Vision · Deep Learning · Object
Detection · 3D Pose Estimation · Transformer

1 Introduction

Recent advancements in virtual and augmented reality technology have enabled
highly immersive gaming, interactive simulation, and virtual experiences, among
others. The use of mixed reality in the medical field is gaining attention, espe-
cially in the simulation of medical scenarios for the training of medical personnel
outside the laboratory. To ensure a highly immersive experience, attention goes
into realistic user interactions with virtual objects. This includes realistic object
modeling and pose tracking at low latency. The vast majority of the existing

5 https://github.com/ATAboukhadra/SurgeoNet
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approaches in the field of object-tracking, mainly focus on large rigid objects
of everyday use, such as books, cans, and cups [5,6,1]. The problem of track-
ing semi-rigid objects is understudied and has only recently gained attention
[4,26,4,11]. Especially in the case of tracking surgical instruments, to the best of
our knowledge, there exists little to no advance, due to its intrinsic difficulties
[21,8]. Surgical semi-rigid instruments, including thin scissors of various types
and forceps or clamps, have strong similarities in shape and appearance. On top
of it, hand interaction reduces their visibility, causing typical Computer Vision
solutions to struggle to identify or classify them. General neural-network-based
solutions require tons of finely labeled data for training to succeed at the task.
However, such data is hard to obtain automatically.

In this work, we introduce SurgeoNet, a real-time solution to the problem of
surgical instrument tracking from a stereo (VR) view, that does not rely on a
realistic dataset. Instead, our approach builds on top of synthetically generated
samples of surgical instruments.

We design our pipeline to infer real-time 7D surgical instruments’ pose (3D
translation, + 3D rotation + 1D articulation angle) from stereo view and demon-
strate its capabilities in detecting, classifying, and tracking instruments in real
settings as seen from VR glasses. Our method consists of two main components:
the first is designed for object detection, classification, and 2D keypoint estima-
tion. The second and final part of the pipeline combines the keypoints obtained
from left and right stereo-view to infer the corresponding pose. Our method is
robust to occlusions due to hand interactions and accurately classifies surgical
instruments, despite their strong similarities. Thanks to its real-time computa-
tional performances, our method is suitable for virtual and augmented reality
applications, enabling realistic and highly immersive interactions with realis-
tic virtual medical tools. The method is easily extendable to a different subset
of rigid or semi-rigid medical instruments, currently with at most 1 degree of
freedom, and the introduction of new objects in the set is straightforward.

In summary, this work presents SurgeoNet, a new method to accurately re-
construct 7D poses of articulated surgical instruments from stereo view, with
the following key features:

1. Real-time performance, thus suitable for mixed-reality applications;
2. Reliable classification of surgical instruments of similar shape and appear-

ance under occlusions;
3. Temporally consistent, jitter-free, tracking.
4. High generalization capabilities to unseen (real) sequences, despite relying

solely on a synthetic dataset.

2 Related Work

In our review of related works, we subdivide our problem into three fields: sur-
gical instrument pose estimation, stereo-based object pose estimation, and ar-
ticulated object pose estimation.
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Multiple works studied the surgical instruments’ pose estimation problem [21,8].
Rodrigues et al. [17] published a survey of all datasets of surgical instruments.
Most of those datasets, however, only contain 2D annotations i.e. instrument
labels, bounding boxes, 2D keypoints, or at best, segmentation masks. An ex-
ample of recent surgical instruments datasets that contain 2D labels and key-
points is PWISeg [18]. Hein et al. [8] proposed a clinical dataset that includes
synthetic and real monocular RGB images for hands interacting with a surgi-
cal drill along with the 6D annotations of the instrument. They also propose a
pipeline for hand-object pose estimation, however, it’s only focused on a single
fully-rigid object i.e. drill. In their experiments, they compare the performance of
PVNet [14] and HandObjectNet [7]. HMD-EgoPose [3] uses an EfficientNet [19]
as a backbone to predict the drill pose in the Hein et al. dataset. In addition,
the authors deploy their method on a Microsoft HoloLens 2 AR headset. In our
experiments section, we finetune our network on the Hein et al. real dataset and
report pose estimation errors.

POV-Surgery [21] is another work that provides a synthetic dataset that con-
siders temporal dependencies. It includes hands wearing stained surgical gloves
and interacting with surgical instruments. The authors provide a finetuned hand
pose estimation model to handle those special-looking hands. POV-Surgery fo-
cuses only on a small set of completely rigid surgical instruments.

Given our interest in stereo-based vision, we also study the stereo-RGB meth-
ods for object pose estimation. StereOBJ-1M [12] is a large-scale dataset that
contains stereo RGB frames of 18 objects and their 3D pose annotations. Key-
Pose [13] is one of the famous methods meant for stereo-based pose estimation
and was evaluated on the StereOBJ-1M dataset. KeyPose is a neural network
that predicts 3D keypoints of rigid transparent objects from stereo input. One
of the key ideas in KeyPose is that they use early fusion in their CNN-based
network. This means that features from left and right views are merged earlier
in the pipeline which improves performance.

Recently, more attention has been given to articulated object pose estima-
tion [26,4,11]. The ARCTIC dataset [4] provides a real RGB dataset with full
annotations of hands dexterously manipulating articulated objects. However, the
set of objects provided in those datasets doesn’t include surgical instruments and
only focuses on everyday objects with varying textures and shapes.

3 Method

Given a sequence of calibrated stereo pairs of RGB images, captured from typ-
ical VR glasses, mimicking a user’s eyes, SurgeoNet estimates the 7D pose of
the visible surgical instruments in the camera coordinate system. We propose a
neural network pipeline consisting of three stages: 1. Object detection and key-
points estimation. 2. Tracking and temporal smoothing of keypoints and labels.
3. 7D Pose Estimation from keypoints and labels. Figure 1 shows our selected
architecture. In this section, we describe each network component as well as the
synthetic dataset generation process in detail.
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Fig. 1: SurgeoNet Architecture.

Object Detection and Keypoints Estimation The first component of the
pipeline detects the surgical instruments present in the views and estimates the
corresponding keypoints K̂2D,c. This stage is implemented using an enhanced
version of the YOLO [16] architecture, namely YOLOv8 [9]. YOLOv8 contains
advanced backbone and nick architectures for improved feature extraction. All
YOLO’s predictions with a confidence value below 0.7 are discarded.

Tracking and temporal smoothing of keypoints and labels We use Byte-
Track [22], a state-of-the-art tracker, to assign a tracking ID to the detected
bounding boxes, taking into account their historical positions. ByteTrack is a
MOT algorithm that improves over previous MOT algorithms by associating
almost all detections instead of only the high-scoring ones which improves the
tracking in case of occlusions. ByteTrack predicts the new location of tracks from
previous frames using Kalman Fitlers. It then uses similarity metrics like IoU
and Re-ID to associate new bounding boxes to the tracks. This way it can keep
unique IDs for the tracks. Those IDs are used later to apply temporal smoothing
to keypoints and reduce jitter. For this task we use 1€ Filter [2]. Temporally
smoothed keypoints and bounding boxes from the left and right stereo view are
finally matched considering the epipolar lines.

7D Pose Estimation from keypoints and labels Taking inspiration from
previous work [23,24], we designed a Transformer [20] network that transforms
the stereo 2D keypoints denoted as K̂2D,c of an object to its 7D Pose denoted

as P̂7D that contains 3D rotation, 3D translation, and 1 articulation value for
articulated-like objects as scissors. Given that attention layers are permutation
invariant i.e. the order of keypoints given to it doesn’t change its output. There-
fore, we added a one-hot vector to each keypoint vector to describe its relative
position to other keypoints. Furthermore, to improve the transformer’s ability
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to comprehend which kind of object the keypoints describe, we also append a
one-hot encoding that describes the label of the object.

The network consists of stacked multi-headed attention layers. the outputs of
this network are two-fold: 1. 3D keypoints that correspond to the triangulation
of the stereo keypoints K̂3D. 2. The 7D object pose P̂7D that contains 3 trans-
lation values, 6 rotation values as described in [25] that solves the problem of
rotation continuity, and 1 value for articulation angle. To train the network, we
use the synthetic dataset described in Section 3.1. After getting P̂7D from the
Transformer, it is used in Twld to transform mesh vertices Vo. The loss function
used to train this network is:

Lp = ∥P̂7D−P7D∥2+∥Twld(Vo, P̂7D)−Twld(Vo,P7D)∥2+∥K̂3D−Twld(Ko,P7D)∥2
(1)

3.1 Synthetic Data

Mesh Modeling and Keypoint Selection To generate synthetic samples
of a surgical instrument, we require a 3D model of that object. This can be
acquired from open-source collections or semi-automatic 3D scanning. To enable
modeling of the articulation angle for some semi-rigid instruments, e.g. scissors,
we manually separate the meshes into their rigid geometric components, e.g. the
left and right blades. Figure 2a shows the selected set of surgical instruments.
Out of those 3D models, we choose a set of keypoints that will be used later for
building and training our deep neural network approach.

Synthetic RGB Dataset To train a network for surgical instrument detection
and keypoint estimation from RGB images, we use PyTorch3D [15] to synthe-
size RGB images of objects in random poses. During the synthesis process, we
select a random subset of the surgical instruments’ meshes and randomize their
7D pose. The corresponding rendered meshes are then projected into random
backgrounds. The annotations of that image are the random 7D transformation,
the 12 keypoints along with the object classes and their bounding boxes. The
resulting total number of generated samples is around 10K images. Figure 2b
shows samples of rendered images with plotted annotations.

Synthetic Transformer Dataset To train the Transformer network shown in
Figure 1, we follow a similar approach to the synthetic RGB dataset in which
we randomize a pose and apply it to a mesh. Instead of rendering the mesh on
a random background, we project it to both left and right camera coordinates
to get the stereo 2D keypoints of that pose. The final dataset has around 100k
samples of stereo 2D keypoints and their corresponding 7D poses.

4 Experiments

The main qualitative results of our approach are summarized in Figure 3. In
the following sections, we quantitatively evaluate the different components of
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(a) (b)

Fig. 2: a) A rendered synthetic image of the studied set of surgical instruments. b)
Synthetic images generated using PyTorch3D that include medical instruments
in random poses with their annotations on background images from the HO-3D
dataset[5].

our pipeline.We first compare the quality and performance of different YOLOv8
architectures with varying image resolutions. We additionally show the impact of
the amount of training data on the first stage and its confusion scores regarding
the studied set of objects. Finally, we conduct an ablation study on the design
of the Transformer network and compare it to an alternative optimization-based
approach.

4.1 YOLOv8 Evaluation on Surgical Instruments

Network and Resolution There exist multiple YOLOv8 models that differ
in the number of parameters and speed. To evaluate those models on our task,
we finetune them on the synthetic train dataset for 200 epochs. We then run
an evaluation on the test set to measure both the bounding box and keypoint
mean Average Precision (mAP) at 50-95 IoU thresholds. Runtime performance
measured in Stereo Frames per Second (S-FPS) is calculated by running inference
on a sequence of stereo RGB images captured using the Varjo and calculating
the average over the sequence. We use the TensorRT format and run inference
on an NVIDIA GeForce RTX 3090. The results are summarized in Figure 4a.

In this work, we focus on YOLOv8m with 640 resolution and YOLOv8s with
1152 resolution as they both provide real-time performance while maintaining
high accuracy.

Required amount of training samples To evaluate the impact of the
number of synthetic samples required for training the instruments’ detection
stage, we train two more networks on 10% and 50% of the total 8k training
synthetic images. The results are summarized in Figure 4b.

YOLOv8 Confusion Matrix We test the classification performance of
YOLO on surgical instruments and its ability to distinguish between similar
objects e.g. scissors-like objects. We record a sequence for each object in our
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Fig. 3: The results of SurgeoNet on real unseen images.

(a) (b)

Fig. 4: YOLOv8 Ablation Study: a) The impact of the YOLOv8 architecture
and image resolution on the accuracy (Box and Keypoint mAP5@50-95) and
runtime performance (S-FPS). b) The impact of the amount of training data on
YOLOv8’s performance.
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dataset using a VR headset resulting in 13 sequences. Afterward, we run inference
on all frames knowing the ground truth class of each frame, and compare it to
YOLO’s predictions. Figure 5 shows the normalized confusion matrix. Except
for the surgical forceps, which only differ in size, the remaining instruments are
correctly classified despite their strong similarities.

Fig. 5: Confusion matrix of YOLOv8 for the 13 surgical instruments.

4.2 Ablation Study on the Stereo Transformer

In this section, we show the importance of input and output formats used to
design the transformer along with its hyperparameters. We show the importance
of using stereo 2D keypoints instead of using only monocular 2D keypoints.
Furthermore, we observe the increased performance that results from using a
one-hot encoding to describe each keypoint class i.e. positional embedding for
keypoints. Finally, we adopt the 6D rotation representation [25] instead of 3
axis angles. Table 1 summarizes the results of training Transformer networks on
the different I/O modalities for 100 epochs and testing them on the synthetic
dataset described in Section 3.1. We use the Mean Per Vertex Position Error
(MPVPE) in mm to describe the quality of the pose. To study the architecture of
the Transformer, we experiment with two hyperparameters, namely, the number
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of multi-headed attention layers and hidden dimension representation size. No
significant impact was observed by tuning the hyperparameters and the best
combination for the number of layers and hidden dimension size is 5 and 128
respectively.

Transformer vs Fitting The final experiment is to compare the Trans-
former to the optimization-based keypoint fitting on two recorded real sequences.

We use an Adam optimizer [10] to optimize the 7D pose P̂7D. During op-
timization, Twld transforms the predefined set of 3D keypoints of the object
Ko from their original position using the optimized pose P̂7D. After that, Tcam
projects the mesh to the pixel coordinates of both stereo frames using the camera
matrix Mc. Finally, the loss is computed as the difference between the projected
keypoints and K̂2D,c predicted by YOLO.

Lr =
1

2

∑
c

∥Tcam(Twld(Ko, P̂7D),Mc))− K̂2D,c∥2 (2)

In the first frame of the sequence, we initialize the pose of the objects in the
scene with 500 iterations of optimization. In the subsequent frames, we use the
pose of the previous frame as an initialization and limit the number of itera-
tions to 100. We also apply early stopping on the optimization process whenever
the reprojection error as described in Equation 2 becomes less than 4 pixels to
improve runtime while maintaining good qualitative output. From the results
shown in Table 2, we can infer that the optimization process can sometimes be
more accurate than the Transformer. However, optimization heavily relies on the
number of iterations needed to converge which makes it very slow compared to
the Transformer, and hence, not suitable for real-time applications.

Table 1: Ablation Study on the I/O
Transformer Modality
Mono Stereo Kp Cls. 6D Rot. MPVPE (mm)

✓ ✗ ✗ ✗ 64.0
✗ ✓ ✗ ✗ 28.9
✗ ✓ ✓ ✗ 23.0
✗ ✓ ✓ ✓ 11.8

Table 2: Comparison between
the Transformer method and the
optimization-based fitting method.

Transformer Optimization
Obj. Cls. Err. FPS Err. FPS

1 16.9 209 13.8 1
13 11.8 202 21.6 1

4.3 State-of-the-art Comparison

To compare our method as a surgical instrument pose estimator, we train and
evaluate the network on the Hein et al. [8] surgical drill dataset. In addition, we
evaluate our method as a stereo-based object pose estimator on the StereOBJ-
1M [12] benchmark dataset.
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Hein et al. [8] (Drill) is a dataset containing real and synthetic monocular
256x256 frames of a surgical drill being used in an operation room. In this work,
we only focus on the real dataset for training and testing. The total number of
real frames is 3, 746 and we follow the same fivefold cross-validation evaluation
setup mentioned by the authors. To train the network, we sample 12 keypoints
from the drill mesh and train a YOLOv8-m and the Transformer with the addi-
tional drill class.

Given the rigidity of the object, the ADD metric (Average Distance of Model
Points) is used for evaluation:

ADD =
1

|M |
∑
x∈M

∥(Rx+ t)− (R̂x+ t̂)∥ (3)

where M are the mesh 3D points, R and t represent the ground truth pose,
and R̂ and t̂ represent the predicted pose. The results in Table 3 suggest that
the Transformer can find an accurate pose if given correct 2D keypoints from a
single view. However, when given the YOLO predictions, the network produces
lower accurate poses in comparison to previous methods.

Table 3: Average ADD error across fivefold cross-validation test sets.
Model Tool ADD (mm)

HandObjectNet [7] 13.8
PVNet [14] 39.7

HMD-EgoPose [3] 17.2
Ours (w/ perfect keypoints) 11.4
Ours (w/ YOLO keypoints) 44.3

StereOBJ-1M [12] contains stereo RGB frames with a resolution of 1440x1440
along with 6-DoF annotations for all rigid objects in the scene, and predefined
meshes and keypoints. The total number of objects in the dataset is 18. The
dataset consists of 394, 612 stereo frames, of which 274, 613 are used for training.
To train our network, we scale the resolution of the images and keypoints to
640x640 and train a YOLOv8-m model and a Transformer for 20 epochs each.

To evaluate our method, we use the ADD-S Accuracy metric proposed by
the dataset authors, defined:

ADD-S =
1

|M |
∑

x1∈M

min
x2∈M

∥(Rx1 + t)− (R̂x2 + t̂)∥ (4)

with the same definition of variables used in Section 4.3. The ADD-S accuracy
considers a pose correct if the ADD-S distance is less than 10% of the object’s di-
ameter. Table 4 summarizes our results on the StereOBJ-1M benchmark dataset.
The detailed results can be found on the challenge website6. Despite being the
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lowest on average accuracy, SurgeoNet shows competitive results on multiple ob-
jects compared to State-of-the-art achieving best scores on some of them. This
shows improvements on multiple objects as seen in the last row of Table 4. Fig-
ure 6 shows qualitative results on the StereOBJ-1M test set. The results suggest
that our method is robust in cluttered scenes and with transparent objects.

Table 4: Average ADD-S Accuracy and ADD-S Accuracy on a selected subset
of objects (abbreviated with object initials) from the StereOBJ-1M benchmark
dataset.

Model Average M NNP P100 SC STR200 TR1.5 TR50 WS

PVNet [14] 42.48 18.72 51.78 0.65 69.11 62.52 52.05 75.04 72.63
KeyPose [13] 39.42 39.22 51.72 1.77 39.12 67.04 60.10 72.05 71.78

Ours 36.46 29.22 52.01 6.81 51.40 59.21 72.50 87.12 62.52

Fig. 6: The results of SurgeoNet on StereOBJ-1M test set.

5 Conclusion

In this work, we presented SurgeoNet, a new real-time neural-network pipeline
to accurately reconstruct temporally-consistent 7D poses of articulated surgical
instruments from stereo VR-view. The approach builds on top of state-of-the-
art architectures, including YOLO and Transformers. Thanks to its real-time
performances, the approach is suitable for mixed-reality applications, especially
in medical scenarios involving hand-object interactions with surgical tools. We
demonstrated the method’s robustness in the classification of thin articulated

6 https://eval.ai/web/challenges/challenge-page/1645/leaderboard/3943

https://eval.ai/web/challenges/challenge-page/1645/leaderboard/3943
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surgical instruments of similar shape and appearance in challenging settings
with occlusions. As shown in the evaluation, SurgeoNet demonstrated strong
generalization capabilities to real sequences, despite being trained exclusively on
cheap synthetic dataset.

Future work includes handling hand-object interactions to fine-tune the pre-
dicted pose. In addition, long-term temporal information from sequential frames
will be used to improve the model’s performance.

Acknowledgements: This work was partially funded by the Federal Min-
istry of Education and Research of the Federal Republic of Germany (BMBF),
under grant agreements: GreifbAR [Grant Nr 16SV8732], and DECODE [Grant
Nr 01IW21001].
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