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Abstract. With an increased flexibility in the production new schedul-
ing techniques are necessary to accommodate this change. Though there
have already been published many scheduling algorithms fostering this
demand for flexibility, there is no common ground on a benchmark data
set to compare these approaches against each other. Therefore, this paper
aims at the generation of a benchmark data set for the flexible job shop
problem (FJSP) with setup and transportation times on which different
scheduling algorithms can be evaluated. The data set is specified by sev-
eral key parameters from which FJSP are created. The use and advantage
of LOS is exemplified by its application on a Reinforcement Learning on-
line scheduling algorithm and dispatching rules. Furthermore, backward
compatibility is established with the former FJSP notation.
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1 Introduction

Industry 4.0 increases the flexibility of the production in the shop floor. Hence,
new approaches for scheduling are required to accommodate for the accompa-
nying changes introduced in Industry 4.0. On the hardware side the flexibility is
often enabled by the use of modular production systems. In this connection, the
resulting scheduling problem is formally defined by the flexible job shop problem
(FJSP) with setup and transportation times. Though there have already been
published many scheduling algorithms fostering this demand for an increased
flexibility, there is no common ground on a benchmark data set to compare
these approaches against each other.
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Towards this end, the data sets which are used are either not published and
explained in detail, small scale or only have few instances. This makes a broad
adaptability difficult. Hence, a comparison between the algorithms as well as
the evaluation of its advantages and disadvantages is not possible. Therefore, we
present a benchmark data set for the FJSP with setup and transportation times
on which different scheduling algorithms can be evaluated.

The data set is specified by several key parameters from which FJSPs are
created. A new notation is introduced for better extensibility and readability
reasons. The use and advantage of LOS is exemplified by its application on a
Reinforcement Learning online scheduling algorithm and dispatching rules. Fur-
thermore, backward compatibility is established with the former FJSP notation.
As example the existing FJSP data set published by [i2] is converted to our
notation. This allows the comparison of the results between previous and newly
published algorithms using either of these notations.

The remainder of this paper is organized as follows. An introduction to the
FJSP with setup and transportation times as well as an overview for existing
scheduling data sets is given in Eection 2. Afterwards the method for the creation
of the FJSP data set is introduced in Eection 3. At last a RL scheduling algorithm
and dispatching rules are applied on the data sets. The results are demonstrated
in Eecfion 4 and discussed in Eection 3.

2 State-of-the-art

2.1 Flexible Job Shop Problem

(4] gives an overview of the taxonomy of scheduling problems. To handle a high
degree of flexibility in the shop floor we focus on online scheduling for FJSP with
setup and transportation times.

Given are n jobs J = {j1, jo, ..., jn} €ach one being composed of k operations
O; = {0}, 0%, ...,0% }. The operations must be processed in a given order defined
by precedence constraints. Every operation must be processed on one of m ma-
chines M = {my,ma,...,m;, }. A machine can only process one operation at a
time. While an operation 0;'4 in the general job shop problem (JSP) must be pro-
cessed on one specific machine, the FJSP relaxes this condition and an operation
can be process by a specified subset M;; C M of all machines. The processing
time of an operation 0§ on machine 1 is given by péj . Between the processing
of two different jobs on a machine, a setup time might occur. The setup time
is denoted by s;” with ! being the machine id and ¢ and j being the operation
indexes. Furthermore, ¢;; denotes the transportation time of a job between the
machines [ and k.

2.2 Benchmarks

A collection of FJSP instances is provided by [12]. This collection contains in
total 313 selected benchmark instances from [6], [9], [7] and [8]. The FJSP in-
stances date from the years 1993-1997. All instances use the standard FJSP
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notation syntax. In the first line the number of jobs and the number of machines
is specified. It is followed by a line for each job. Each job specification starts with
the number of operations of the job. It is followed by a sequence for each opera-
tion specifying the number of machines which are able to process the operation
and the machine ids and the processing times of them.

[6] defined the following parameters:

— number of jobs

number of machines

minimum and maximum number of operations per job
— maximum number of equivalent machines per operation
— minimum and maximum processing time per operation

The data set was then generated randomly using a uniform distribution to select
the parameters within the given limit.

In [9] selected job shop instances from [8] and [il] were adapted to the prob-
lem of job shop scheduling with multi-purpose machines. It differs to the FJSP
therein that the processing time of an operation on a machine is not dependent
of the machine which has been chosen for processing the operation. The data set
consists of four subsets: sdata, edata, rdata and vdata. The original instances
from []] and [] build the sdata set. Here |M;;| = 1 holds. In the three remaining
data sets M;; is enlarged and limited by the average and maximal cardinality

of M;j, i.e. avg |M;;| and max |M;;|. Hereby, the edata represents the instances
i,j ¥
where only few operations can be processed by different machines. In the rdata

most operations can be assigned to a few number of different machines and in the
vdata each operation can be assigned to many different machines. The employed
parameter selection for the data is depicted in Mablel.

Table 1. Parameter assignment for the FJSP instances by [d]

avg | M;;|
i\j

edata| 1.15 |[2,ifm<6
3, otherwise

rdata 2 3

vdata| 0.5 m 0.8 m

max | M;;]
K2V}

For the generated FJSP in [i7] the number of machines and jobs is fixed. Fur-
thermore the limits for the number of operations per job is given. The processing
time is defined by the average processing time given as range and its maximal
deviation from it. The parameters were selected randomly between the given
limits using a uniform distribution. A probability P is set for each instance. P
is the probability of a machine [ being in M;;. In the case M;; would be empty
a machine [ is selected randomly and M;; = {I}.
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The data set of [3] extends the MT10 instance of [8] and the instances LA24
and LA40 of [0]. These instances have been replicated in the following way:

— the machine requiring the greatest cumulative processing time (CPT) is repli-
cated once

— the machine requiring the greatest CPT is replicated twice

— the machine requiring the greatest CPT is replicated three times

— the machines requiring the greatest and second-greatest CPTs are replicated
once each

— the machines requiring the greatest, second-greatest, and third-greatest CPTs
are replicated once each

— the machine with the greatest number of critical operations is replicated once

— the machines with the greatest and second-greatest number of critical oper-
ations are replicated once each

Since the FJSP is a generalization of the JSP, every flexible job shop schedul-
ing algorithm can also be applied to a JSP. A large data set of JSPs is contained
in the OR-library [@]. It includes JSP by [i6], [i], [&], [i0], [2], [15] and [i]. Since
the OR-library’s JSP instance are rather small, [6] created a large scale set of
JSP. In their first approach they hereby extended the benchmark set of [I5].

3 Method

To foster scalability of the FJSP instances and the inclusion of further parameters
like the deadline of a job or the energy consumption of a machine processing
an operation, we want to shift the view point of the notation away from the
product to the resource and process. We follow the understanding of skills and
tasks and its relation to product, process and resources explained in [I3]. While
the term skill here relates to the resources and processes, tasks are related to
the products. Hence, instead of defining the processing time for an operation,
we define the processing time of a skill. Furthermore, we define the setup time
of a machine between skills and a job as sequence of skills. In this way, we can
scale the number of jobs upwards while limiting the skills without a blow-up of
the instance specification.

For the generation of our benchmark data set we used approaches from [5]
and [9]. We defined the following parameters:

— maximal and minimal number of machines

— maximal and minimal number of jobs

— number of skills

— maximal and minimal number of skills per job

— average number of machines per skill, i.e avg |M,;]|

i,J

— maximal number of machines per skill, i.e max | M,;]|

0,J

— maximal and minimal processing time
— maximal and minimal setup time
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— scaling factor for transportation times

Based in these parameters the instance is constructed. For the transportation
times the machines are arranged in a square matrix. The distance between two
machines is then defined by the manhattan distance between the machines mul-
tiplied by the scaling factor for the transportation times. The skills of a machine
are selected following the approach of [d]. Using a triangular distribution with
lower limit 1, upper limit max |M;;| and mode avg |M;;| the number of machines
1,7 i.j
per skill is defined. Afterwards the selected number of machines are sampled

randomly from the set of machines. The processing time of the machine for the
skill is randomly sampled from the uniform distribution between the given lim-
its. The changeover times are selected randomly using a uniform distribution
within the given limits. For the definition of the jobs we select the number of
jobs, for each job the number of skills and for each skill the skill itself uniformly
at random.

As described earlier we shifted the notation to a resource and process based
notation. Thus, we discontinued with the standard FJSP notation. Instead, we
used a yaml based syntax for the LOS data set instances. This also allows easier
extensibility and readability. Each FJSP is described by a map with the keys
distances, skills, changeovers and jobs. The values are represented as (nested)
lists. To ensure the comparison with benchmarks specified by the standard FJSP
notation, we established backwards compatibility with it. By setting the setup
and transportation times to 0 and mapping every operation in the former nota-
tion to a different skill in our yaml notation, the comparison to previous used
benchmarks can be established.

4 Results

We applied the dispatching rules of Mable and an scheduling algorithm using
Reinforcement Learning (RL) on the benchmark data set of [12] as well as on the
LOS data set. Since the setup and transportation times are 0 for the instances
in [12], the dispatching rules SST and SST + SPT are not applied in this case.
[Figure 1] - [Figure J show the results of the scheduling algorithms illustrated as
box plot created by 21 FJSP instances of [3], 10 of [5], 18 of [@], 264 of [d] and
100 of the LOS data set.

Table 2. Overview of dispatching rules

Abbreviation‘ Dispatching Rule
SIRO Setup in Random Order B
SST Shortest Setup Time min p;’
SPT Shortest Processing Time mir_l_sijl + tik

SPT + SST |Shortest Processing + Setup time|minp;,” + s551 + tix
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Fig. 1. Evaluation of dispatching rules Fig.2. Evaluation of dispatching rules
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Fig. 3. Evaluation of dispatching rules Fig.4. Evaluation of dispatching rules
and an RL scheduling algorithm on the and an RL scheduling algorithm on the
data set by [[] data set by [9]

For the results of the data set of [I2] (Figure 1 - Figure 4) the results do not
vary much between the different algorithms. The boxes as well as the whiskers
overlap most of the time. The largest difference of the mean respectively the
median occurs in the data set of [[7]. Here the median differs between the RL al-
gorithm and the SPT dispatching rule by 1063, the mean respectively by 1922.5.
While RL performs the best in the data set of [3], SPT has the best performance
in the data sets of [[7] and [9]. In [5] RL and SPT perform nearly the same.

For the evaluation of the LOS data set, we created over 8000 FJSP instances
with the parameter assignment depicted in Mable—3. [Figure J shows the results
evaluated on 100 FJSP instances of the RL scheduling algorithm and the dis-
patching rules. In contrast to the Figures I-@ not all boxes for the different
scheduling algorithms overlap anymore. The mean performance of the algorithm
increases in the order RL, SST+SPT, SPT, SST, SIRO with values 3007.3,
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Table 3. Parameter assignment for the LOS data set

maximal and minimal number of machines 25
maximal and minimal number of jobs 100
number of skills 25

maximal and minimal number of skills per job | 5-8
average number of machines per skill: avg |M;;| | 12.5
4,5

maximal number of machines per skill: max |M;;|| 20
4.

maximal and minimal processing time 10-100
maximal and minimal setup time 10-50
scaling factor for transportation times 20
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Fig. 5. Evaluation of a RL scheduling algorithm and multiple dispatching rules on the
LOS benchmark with parameter selection according to [abhle—3

3308.8, 3466.35, 4262.19, 4287.16. While the dispatching rules SIRO and SST
have a rather larger box and long whiskers, the RL algorithm as well as the
dispatching rules SPT and SST+4SPT have a smaller box with shorter whiskers.

5 Discussion

The boxes and whiskers of the different scheduling approaches all overlap in the
data sets of [B] and [5]. Hence, there is no advantage between the scheduling algo-
rithms visible. The results are only slightly better for the data sets of [7] and [4].
Here one can see an advantage of the dispatching rules STRO and SPT in contrast
to the RL algorithm. These observation suggest, that the RL algorithm is not
able to generalize well. One possible reason is that there are too few instances
for training of the RL algorithm. Since there is also no advantage between the
dispatching rules in [Figure 1 and [Figure 4 and only a slight advantage in
and [Figure 4, this also suggests that the data sets only have few potential for
online scheduling. Since they were created in the 90s before the fourth industrial
revolution started, they were invented for offline scheduling rather than online
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scheduling. At that time manufacturing systems were rather static and fixed.
Thus, offline scheduling techniques where production plans can be computed in
advance are generally in favor, since they can achieve more optimal results. With
Industry 4.0 dependencies within and among manufacturing systems increased.
Hence, flexibility and agility became more important and with this the necessity
for online scheduling approaches. This makes these ancient data sets insufficient
and outdated for the current research.

For this reason, a new FJSP data set for online scheduling is necessary. By
adjusting the values of e.g. the transportation times, setup times or the process-
ing times, we can vary the impact of these factors. This affects the performance
of the scheduling algorithm. Hence, we can see a real advantage of the RL al-
gorithm as well as the SST+SPT and SPT dispatching rules over the SIRO
and SST dispatching rule in the FJSP as one would expect. This is evident by
a visible shift in the boxes and the whiskers, as well as their absolute length.
The later is indicating a lower variance in the scheduling results, making the
schedules more robust.

The FJSP instance is variably adjustable by its parameter selection. In this
way we can scale up the instances itself and examine scheduling algorithms on
large scale instances. On the other hand it is also possible to generated numerous
amounts of instances for the given parameters. Thus we can generate a large
data set with sufficient training instances for e.g. Reinforcement Learning based
algorithms to train on. Due to the explicit characterization of the used data set
by its parameters (cp. Mable—3) the FJSP instances can be recreated. Hence, a
comparison of different scheduling algorithms is possible.

6 Conclusion and Future Work

We present a method for the creation of a benchmark data set for FJSP with
setup and transportation times. Furthermore, we ensure backwards compatibility
to former FJSP data sets. We present results for different dispatching rules on
the data set showing its potential for optimization using online scheduling. While
the data set was invented for online scheduling, it is not limited to it and can
also be used for offline scheduling. Through the potential of the data set for
offline scheduling needs to be investigated in further studies. Besides that, future
research might focus on the extension of the data set to holonic manufacturing
systems and how the holons can be represented in the data set and considered
during generation.
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