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Abstract: Rising energy prices and an increasing share of volatile energy supply from renewable
energy are leading to greater interest in detailed modeling of energy consumption in manufacturing.
Nevertheless, energy measurements and energy load profiling at the machine level as well as
the application of energy-related data for production scheduling is challenging. To provide detailed
information for applications like scheduling models, degrees of freedom to adapt to energy consumption
must be considered even at the component level. Since metering hardware and energy load profiles are
often not available for machine components, the methodical application of energy load disaggregation
can contribute to these topics. The paper introduces a concept for incorporating event-based load
disaggregation to create energy load profiles for production machines. It also explores and discusses
potential applications for simulation and scheduling in manufacturing environments.
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1 Introduction

Nowadays, there is an increasing demand for resource efficiency, where especially energy
efficiency and the usage of renewable energy becomes more important in the manufacturing
domain. The significance of these topics for future developments is also stated in the
concept of the European Green Deal [Co19]. On the other side, current developments in the
manufacturing domain can contribute to these challenges. Industry 4.0 offers possibilities
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to consider topics of resource efficiency like the integration of energy consumption in
production facilities, especially for planning and operation purposes [KWH13].

Transparency about energy consumption and energy load-related patterns in modular
production environments to build energy load profiles requires above all a flexible metering
concept. The metering is more often provided in an aggregated way and not in detail,
for example for the components level [Mo21]. Energy load profiles at machine level are
important, although the interpretation of energy data is challenging at this level due to
a wide range of measurement data which must be considered for further processing in a
methodical way [Te18]. Cyber-Physical Production Systems can contribute to realizing
energy-flexible operation of production machines, using simulation models, controllers for
energy-flexible operation and automation data models [Gr22].

This paper focuses on the analysis and interpretation of already metered energy data
of production machines, which are often based on several components to be activated
and controlled to fulfill the purpose of the production steps of the machine. While those
components have their own individual energy profiles, the metering and analysis of energy
data on this detailed level of granularity is difficult, since related metering hardware
must be provided. Energy load disaggregation can help to determine the appliances in
operation and their individual energy consumption, as has already been demonstrated in
the household sector in early contributions [Ha85]. Nevertheless, the application of energy
load disaggregation on real-world production machines and data classification of the energy
load patterns for further usage, for example to set up or improve scheduling models, can be
individual to a certain degree.

The proposed concept of this contribution shows how a methodical usage of energy load
disaggregation can be used for classification of load profiles at the component level of
machines, which could then be integrated and used for further applications, for example
simulation and scheduling components. Therefore, the method of an applied energy load
disaggregation is shown, considering the data of component-related load profiles of an
industrial machine. The load profiles are used to classify the flexibility of energy consumers
for integration into a digital twin at the machine level. The possibilities of this classification
in combination with load profile simulations for individual parametrization and model
design, as well as model detailing of scheduler components are discussed.

This paper is structured as follows: The current state of the art of modular production
systems and the importance of energy measurements and energy load profiling on the
machine level is shown in Section 2. In Section 3, the concept for the integration of energy
data is presented, focusing on the load disaggregation method and a subsequent simulation
setup for scheduling application. Section 4 presents the results of the application of the
concept to a real-world cleaning machine use case and provides a discussion on how the
results of the load disaggregation can be used for further research and development. Section
5 summarizes the presented topics of the contribution.
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2 State of the Art
2.1 Energy Load Profiles in Production Environments

The optimization of energy load demands of machines is of importance, especially consider-
ing the objectives of load minimization, load flexibilization and load smoothing [ASM16].
Metering data for energy consumption are mainly used with the aim of reducing energy
costs or to improve the environmental impact, but the interpretation of this data is difficult on
the level of production machines due to the mass of metering data which is not considered
in a methodical and dedicated way [Te18]. Due to modularization and decentralization,
continuous metering for data acquisition and situational monitoring of energy consumption
as well as corresponding modeling for forecasting and scheduling purposes is challenging.
Energy related knowledge is often not considered in centralized production systems, for
example electrical energy consumption in relation with different operation modes or detailed
process parameters [IA17].

Modular and flexible production environments are an important basis for the realization of
manufacturing in decentralized manufacturing structures, in which machines can furthermore
encapsulate their production capabilities and implement them with the skill-based approach
[Be22]. Standardized interfaces at the machine level play an important role in modular
structured production environments, since they can encapsulate the related functionality
[Ko18]. Based on such modular and skill-based manufacturing environments, in which
production modules encapsulate their manufacturing capabilities, the measurement of energy
consumption can be realized on a more detailed level using the corresponding interfaces
in combination with related metering hardware for production machines [Mo21]. Data
acquisition, for example especially for energy consumption, is thus possible and realizable
for production machines, where the skill-based approach offers potential to consider the
individual components and processes of a machine and to provide transparency over energy
consumption even at this level of granularity.

In this paper, the importance of energy measurements and detailed modeled energy load
profiles are considered and placed in the context of modular production environments.

2.2 Energy Data Analysis using Load Disaggregation

In their recent publication, Leherbauer et al. argue that viewing the energy consumption of
a machine as a single sensed entity misses the ability to extrapolate the energy profile in
the face of changing machine parameters and is only suitable for batch manufacturing with
recurring products [LH23]. The approach neglects the system’s composition of multiple
consumers (e.g. motors, heaters, etc.) whose aggregated individual load profiles form the
machine’s measured load. Disaggregating the machine’s load profile into the subsystems’
profiles allows reliable and explainable inference of the aggregated load while the process
is re-parametrized.
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Load disaggregation, often synonymously used with Nonintrusive load monitoring (NILM)
as originally characterized by Hart describes the problem of deducing which appliances
in a household are running as well as their individual energy consumption [Ha85]. It was
introduced to avoid monitoring the consumption of the appliances individually. Since then,
it has developed into a field with growing research activities [LWM24] at least in part due
to the rise of smart grids and smart homes. The majority of publications still study the
application of NILM on residential data [TMJ23]. Due to the increasing legislative pressure
for increased energy efficiency, like the European Green Deal [Co19], and rising energy
prices, there is a growing interest to apply these techniques in the manufacturing sector for
granular energy monitoring as well [Go15].

With a growing number of approaches, algorithms and datasets from 40 years of research
in NILM, it is imperative to specify the investigated problem as well as possible to find a
suitable approach. Kaselimi et al. give an indication by differentiating between classification
(determine the state of the appliances, e.g. on or off) and regression problems (determine the
appliance’s load profile) [Ka22]. They also distinguish between supervised and unsupervised
approaches, while [LWM24] also recognize semi-supervised approaches, depending on
the availability of labeled data in single- or multi-target model building. Liu et al. also
distinguish further between state-based and event-based NILM approaches, where the
former try to focus on identifying the consumers’ state and the latter on transitions between
states [LWM24]. Nevertheless, their reviews do not feature a generalized approach to NILM.

Complementary, Schirmer et al. present a generalized data-driven architecture for NILM
consisting of the 6 steps of smart metering of the aggregated signal, pre-processing,
framing, feature extraction, disaggregation, and post-processing [SM22]. Depending on the
availability and quality of data, the steps of pre-processing and framing can be skipped. They
also propose a classification of NILM approaches in machine learning, pattern matching
and source separation approaches and give an overview of the performance of different
algorithms of each class.

This work does not primarily add to this list of algorithms, although it presents its own
approach. It assumes that information about machine state in an industrial setting exists,
but is not available in the common definition of the load disaggregation problem. It rather
focuses on continuing the efforts of Leherbauer et al. [LH23]. They identified that further
research is necessary to describe methods to automatically parametrize the discrete event
simulations with real data for flexible load scheduling. This paper recognizes the state of
the art in NILM approaches and algorithms and leverages a simple, novel probabilistic,
unsupervised, event-based classification approach to disaggregate a machine’s loads. This,
in combination with the machine’s task execution schedule, can be used to recognize the
relationship between the machine’s profile and its process parameters. Thus, our work fills
the gap identified by Leherbauer et al. [LH23].
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3 Concept for Energy Load Analysis using Load Disaggregation and
Application for Simulation and Scheduling

In this section, the concept for energy load analysis using load disaggregation for production
machines is presented and described from a methodical perspective. Additionally, possible
applications of the load analysis for simulation and scheduling are shown. The individual
components of the architecture are explained in more detail in the subsequent sections.

3.1 Concept and Components

Figure 1 illustrates how energy load data can be used in a digital representation of a real
factory, which provides data management for energy load profiles and services for simulation
and scheduling. The utilization of these components follows the approach of [Mo20], where
energy consumption data is the basis for a combined usage of energy load forecasts and
production planning. One possible application is using the energy load profiles for various
simulation models to mimic real energy consumption as closely as possible. The aim of
this model is to optimize the energy consumption of the real factory through multi-criteria
production scheduling.

Fig. 1: Concept for Energy Load Analysis and Application based on the Load Disaggregation method

Based on measured energy data, energy load profiles can be updated and combined with the
energy load disaggregation at the component level of a machine. This means that changes
of machine behavior, for example based on different component parametrization or changed
hardware components due to maintenance and repairs, can be considered and updated in the
related simulation and scheduling components.

Energy Load Profile Analysis and Application 1083



In the proposed concept, energy measurement data is collected and used for parametrization
of the simulation and scheduling models. In this process, the load disaggregation employs a
decomposition method to determine the consumption of individual components. The load
profiles on machine and component level is then used in combination with the scheduler
component, to predict energy consumption for a given schedule. A machine learning model
could be used for these predictions. This model thus calculates the power consumption in
combination with the scheduling model, realizing energy-aware scheduling for the real-world
factory. This energy consumption serves as a constraint to exclude solutions that would
overload the power grid, and the model also sets target values for production scheduling.
The production schedule determined by the scheduler component is then executed by the
real factory.

3.2 Method for Applied Load Disaggregation

Disaggregating the total energy consumption of a production plant enables a transparent
allocation of the consumed energy per individual subsystem at every timestep of a process.
In the initial context of NILM in residential energy monitoring, this association is typically
achieved by recognizing complex patterns and profiles of distinguishable consumers (e.g.
washing machine, dishwasher, etc.). In this setting, the observable data is usually limited to
the aggregated load measured through a smart meter.

In industrial settings, access to the machine’s control is usually possible. This is helpful
when breaking down the profile of an industrial machine composed of multiple consuming
subsystems: It enables access to more detailed information about machine states and the
times of state transitions. With this key information, discontinuities in the load profile can
in most cases be assigned simply due to their temporal correspondence with events in the
machine control. For these discontinuities, the term event will be used in the following in
accordance to its use in [Ha92].

The approach presented in this paper relies on the existence of rudimentary state information
from the machine control (e.g., is a consumer turned on or off), thus following the assumption
from [Go15], and additionally makes the following assumptions:

1. The number of consumers is known. This is implicitly covered by the information
provided through the machine control.

2. The states between events can be approximated by steady (polynomial) functions.

3. The height of load jump during an event correlates to the following course of the load
profile and is presumed to lie close in time to a state transition. This assumption is of
a probabilistic nature and supported by the observations of [ABB21] and [Go15] on
controlled loads and start-up peaks. These are especially related to electromechanical
consumers (e.g. electrical motors) which have to overcome initial friction and inertia
when set in motion.
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Utilizing these assumptions, the approach presented is structured into the following three
steps:

1. Event detection: The total load profile is analyzed and all transitions between steady
states are registered.

2. Event classification: The detected events are correlated to the different consumers,
either via the information about on and off states from the machine control or based
on the probabilistic assumptions described above.

3. Steady state regression: The classified events are connected via steady functions. The
regression problem is hereby formulated as a multi-objective optimization problem to
minimize the difference between the reconstructed and the ground truth aggregated
load profile.

3.3 Energy Load Profile Simulation and Scheduling Application

The following section explains how a parameterized event simulation can be used to avoid
voltage peaks. Leherbauer et al. show a hybrid approach in which energy-aware scheduling
is proposed, based on a discrete event-simulation which is then optimized by a hybrid
optimizer [LH23]. In their approach, the discrete event simulation has to be carried out in
each step of the optimization to determine whether a solution is permissible or not. In the
current contribution, load disaggregation is additionally used for the classification of the
flexibility of machine components or processes. Since load disaggregation can contribute to
the transparency of energy load patterns, it provides a detailed analysis on which components
are static or flexible.

Considering the flexibility of machine components, the aspects of parameter-flexible or
time-flexible processes are of interest for a scheduling component model. Load patterns
which are parameter-flexible vary depending on the parameters used and can have a higher or
lower load for the execution of a production step. Time-flexible processes can, for example,
be started with a time delay or paused during their execution. How a scheduling model can
consider such degrees of freedom are shown as Mixed-Integer Programming (MIP) in the
contribution of [Yf22]. To exclude solutions where the power consumption exceeds a certain
threshold, machine learning models can be used and combined, for example with a discrete
event simulation. The discrete event simulation can thus be used to provide an energy load
forecast, to identify load peaks which are caused by single component parametrization, or
to generate further training data.

Two types of training data would be possible for this. One approach would be to obtain the
total load profile for a production schedule. Another would be to only obtain the statement
whether the threshold value has been exceeded. This data is then used to train a model that
can predict either the total profile or only whether the threshold value has been exceeded
because of overlapping load peaks. The main aim is to provide a detailed energy model of
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the energy consumption behavior of production machines and their degrees of freedom in
relation to their energy consumption with their corresponding load patterns. This energy
model could then be integrated into scheduling models, which are for example formalized
as MILP. An example of such a MILP model is presented in [Yf22], in which the flexibility
of a production machine is modelled with four intensities, where each results in a different
energy consumption and production time. Although the aim of these models is to come as
close as possible to reality, there is usually still a degree of incompleteness, which is often
not updated and tracked on the model side. The energy consumption of various machines
has already been predicted using various machine learning models [Di20], [BKY23]:

1. neural networks

2. gaussian process regression

3. support vector machines

4. search trees

These models have already shown that load profiles can be reliably predicted. These models
can also be integrated into MIP models. This has already been successfully demonstrated
by [Tj20] and [An20].

4 Results and Discussion

In this section, the presented concept is applied to a real-world cleaning machine use case.
The results of the load disaggregation method are presented. A discussion is provided on
how transparency of energy load profiles can be used for further applications. Additionally,
identified potential for further developments and research is described.

4.1 Cleaning Machine Use Case

A validation of the described concept is conducted using the BvL Ocean RC 7507 rotating
chamber cleaning and degreasing machine (see Fig. 2). The machine is equipped with
a Siemens Simatic control SIMATIC S7-1500 and possesses several different process
parameters including required and optional processing steps and is therefore an ideal
research subject for the validation of the concept.

The parts cleaning process involves three primary steps: cleaning, rinsing (which may be
optional), and drying. The duration and repetition of these steps can vary depending on the
specific cleaning requirements. Additional intermediate steps, such as dripping or pauses in
the process, may also be incorporated based on the particular needs of the cleaning task
[Du06].
7 BVL Cleaning, https://www.bvl-cleaning.com/en/cleaning-systems/ocean/oceanrc, 07.22.2024
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Fig. 2: BvL Ocean RC 750 [IEW23]

The objective of the cleaning is to remove soils from parts’ surfaces [De03]. The cleaning
is accomplished by a cleaning fluid containing an aqueous cleaning agent in a specific
concentration. To be effective in removing soils, the cleaning agent requires a certain
temperature range. During spray cleaning, the cleaning fluid is sprayed at high pressure
through spray nozzles onto the surface of the part to remove the soil mechanically. Additional
movement of the cleaning basket or the nozzle frame (e.g. rotation) further supports the
cleaning process by mechanical action. Rinsing is sometimes necessary to rinse the parts
from the cleaning fluid saturated with soil so that it does not leave excess residue on the
surface of the part. Finally, a drying step is required to remove the cleaning or rinsing liquid
from the surface of the part to prevent corrosion or to enable subsequent critical production
processes [IEW23]. This paper focuses on single-tank cleaning machines, where only the
cleaning and drying steps are carried out, and the rinsing step is omitted. Since chamber
cleaning machines work in batches, they have to be loaded with soiled parts before the
cleaning process and then unloaded, which adds another process step to the machine process
[IEW23].

The consecutive process steps are summarized in Table 1. Other unspecified events, such
as pauses between the process steps, are classified as Other. This results in a cyclical load
profile corresponding to the process steps. One exception is the tank heating, which reacts
independently of the process step.

Process step Description
Clean Remove soil from the surface of the parts (spray cleaning)
Dry Remove cleaning fluid from the surface of the parts (hot air)
Load Loading/unloading parts in the treatment chamber
Other Unspecified events

Tab. 1: Process steps of the chamber cleaning machines [IEW23]
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The main components of a chamber cleaning machine are shown in Figure 3. Single-tank
chamber machines (1) possess a treatment chamber (2) and a media tank (3). The treatment
chamber holds the cleaning basket, which is loaded with soiled parts (10) before the cleaning
process. To improve the mechanical cleaning, the cleaning basket is equipped with an
electric motor (8), which causes a relative movement between the parts and the spray
nozzles (9). The spray nozzle system is supplied with cleaning fluid from the media tank
during the cleaning process by an electrically driven spray pump (5). An electric tank
heater (4) is installed in the media tank, which maintains the temperature range required for
cleaning. After cleaning, the parts are dried with convective heat using hot air blown in by
the electrically driven drying fan (6), which feeds ambient air through the electric drying air
heater (7) into the treatment chamber [IEW23].

Chamber cleaning machine
Treatment chamber
Media tank
Tank heater
Spray pump
Drying fan
Drying air heater
Basket motor
Spray nozzles
Parts

1
2
3
4
5
6
7
8
9

10

Fig. 3: Schematic of the chamber cleaning machine [IEW23]

For the sake of completeness: The exhaust fan draws the moist air out of the chamber after
the washing process so that it does not end up in the production hall.

Table 2 shows the controllable parameters and their respective ranges.

Consumer Parameters Range
Tank heater Cleaning fluid temperature )fluid 40 - 60 °C
Spray pump Washing time Cwashing 60 - 240 s
Hot-air dryer Drying air temperature )drying 100 - 400 °C
Hot-air dryer Drying time Cdrying 60 - 270 s

Tab. 2: Controllable parameters of the BvL OceanRC 750 cleaning machine.

The machine has the following electrical consumers:

• Tank heater

• Hot-air dryer (Drying air heater and drying fan)

• Washing pump

• Exhaust fan

• Rotational drive
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4.2 Load Disaggregation Results

The following sections detail the steps of load disaggregation, as briefly described in Section
3.2. The approach is demonstrated on the cleaning machine described in Section 4.1.

4.2.1 Event Detection

The main objective of the event detection is to localize occurrences of changing states (turn
on/off, or a different mode). It is thereby assumed that such a state transition influences
the course of the power consumption noticeably. As such, transition events are noticed
as discontinuities that separate the steady states. This paper uses the algorithm described
by Hart [Ha85] as implemented in the nilmtk software package8, which relies on edge
detection approaches developed in image processing. But as Hart already noticed, numerous
signal processing approaches like filtering, differentiating and peak detection could be used
to detect events [Ha92]. More advanced methods emphasize the robustness of detection
methods, e.g. in the detection of near simultaneous events [Ya23]. Figure 4 shows the results
of the detection algorithm applied on the cleaning machine’s load profile, which reliably
detected all events in the profile. The power value of the event is the mean of the following
steady state.

Fig. 4: Detected events using Hart’s algorithm [Ha92] on smoothed aggregated load profile of cleaning
machine.

4.2.2 Event Classification

Allocating the events to the different consumers is a difficult challenge, as it most likely
involves some form of heuristic and is therefore mostly built on assumptions and likelihoods
8 Github, https://github.com/nilmtk/nilmtk, 07.22.2024
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about the energy consumption patterns. As such, the availability of additional information
on the transition of consumers’ states automatically introduces a higher grade of certainty,
improving the event classification.

Blind approaches that estimate the events’ allocation without this additional information
typically utilize clustering methods like k-nearest neighbors (knn) or other heuristic
algorithms, like Hidden Markov Models in modified versions [TMJ23]. In our approach,
the state transitions are directly read from the PLC code and can be allocated to the
contemporaneous events they cause in the load profile in an event pairing step.

Nevertheless, heuristics need to be applied in the case where events occur simultaneously
(e.g. in the case consumers are synchronized) or the load profile is not constant during a
state (e.g. with start-up peaks). In this case, we utilize a knn approach due to its effective
simplicity. It relies on the 3rd assumption from Section 3.2. For that, the mean load of
the individual consumer between the state switch %̄ is interpolated linearly and compared
relative to the absolute of the events’ height %diff (C4). The power dimension 3% (C4) of the
classifier is calculated with the following equation:

3% (C4) =
����1 � %̄

%diff (C4)

���� (1)

In the time dimension 3) (C4), the distance between the event and the switch-on event )on is
put in relative to the difference between the switch-off time )off and the switch-on time:

3) (C4) =
C4 � )on
)off � )on

(2)

The distance to the neighbors 3knn is calculated in a weighted space, as in the considered
example it becomes evident that the power dimension has a stronger correlation to the target:

3knn = F)3) + F%3) (3)

For the presented cleaning machine use-case, the weights are chosen to be 0.1 for F) and 1
for F% .

These calculations are derived purely empirically, and future research needs to be conducted
to systematically back up the underlying assumption and the classificator parameters based
on it.
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4.2.3 Steady State Regression

When all events have been classified as belonging to one of the machine’s subsystems,
the load line can be reconstructed according to the 2nd assumption from Section 3.2. For
the sections in between neighboring events of the same consumer the term steady state is
used according to [Ha92]. The reconstruction is formulated as an optimization problem to
minimize the mean squared error (MSE) between the estimated ?̂(C) and the measured total
aggregated load profile ?(C) over the total process time ) .

The construction of the load line itself is formulated as a 1D interpolation problem and
approximated via a quadratic Lagrange polynomial. The start and end events of a steady
state represent two of the support points. The third one is chosen as the middle between
the two events, and its height is determined numerically during the optimization process
to minimize the MSE of the total load. As such, the reconstruction problem is a hybrid
between regression and interpolation.

min
)’
C=0

(?(C) � ?̂(C))2 (4)

?̂(C) is hereby the sum of a set of active consumers #:

?̂(C) =
’
=2#

?̂= (C) (5)

?̂= (C) is the piecewise function with a set of " steady states in between two events )m,on
and )m,off described by Lagrange polynoms !< (C):

?̂= (C) =
(
!< (C) if C 2 [)<,on,)<,off]
0 else

(6)

The Lagrange polynomial consists of a set of base polynomials ; 9 (C) for all the nodes 9

!< (C) =
2’
9=0

?̂=, 9 (C); 9 (C) (7)

?̂=, 9=1 is the missing support point and determined numerically in the optimization process.
For the optimization process regarding this use-case ?̂=, 9=1 can additionally be constrained
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to lie between ?̂=, 9=0 and ?̂=, 9=2. This assumption, which is valid for this use-case, cannot
be generalized for all machinery, and could be evaluated against future systematic research
in generalized load patterns.

The presented load disaggregation approach is in theory scalable to any more complex
machinery, since the approach relies on the deterministic mapping of events and states
through the machine code. Problematic for this approach is the analysis of very noisy data,
as typically associated with small consumers. This is due to the rigid boundaries of the
event detection algorithm, which complicate the distinction between an event and random
noise. This could also impact the performance of the approach as each steady state needs to
be fitted. More robust approaches like [Ya23] tackle this issue but increasing the complexity
of the event detection algorithm.

Further tests also need to be conducted on different machines and strongly differing load
profiles. Especially, clocked processes with highly variable consumer profiles and more
simultaneous events could be challenging to the approach due to the heavy reliance on the
probabilistic event classification approach.

4.3 Discussion for Further Integration for Simulation and Scheduling

The methodical application of the load disaggregation on the cleaning machine example
shows how metering data can be analyzed, considering several machine processes with
regard to their components. The event detection and classification is important for the load
processing procedure, but is also usable for further applications like scheduling. The results
of the event detection can be used furthermore for the aggregated machine load profiles,
providing a classification of load flexible components and processes. Figure 5 shows the
disaggregation of the cleaning machine’s load profile into the subsystems’ consumption,
including their associated events.

The disaggregation additionally allows to classify the consumers automatically as constant,
controlled constant or variable and, more importantly, as process dependent or non-dependent
according to [Go15]. This is done by running the process with the same parameters repeatedly
and comparing the timestamps and the height of the individual events. If these vary, the
subsystem can be labeled as non-dependent. The classification of constant, controlled
constant or variable can be achieved by following the definition by [Go15]. For usage in a
scheduler component, especially the aspects of process dependability and flexibility are of
importance and are therefore considered in the classification.

The classification of the cleaning machine’s subsystems as a result is shown in Table 3.

Considering the aspects of a skill-based manufacturing approach as shown in the Capabilities,
Skills and Services Model (CSS-Model), as presented in [Di22], there is potential for further
usage of manufacturing skills to consider the load patterns of the subprocesses of the
machine. A subprocess of the cleaning machine could then be encapsulated as a skill,

1092 Mario Klostermeier et al.



Fig. 5: Disaggregation of typical cleaning machine load profile

subsystem process dependence class
Tank heater non-dependent constant
Hot-air dryer (Drying air heater and drying fan) dependent variable
Washing pump dependent controlled constant
Exhaust fan non-dependent controlled constant
Rotational drive non-dependent controlled constant

Tab. 3: Classification of the cleaning machine’s subsystems according to [Go15]

which follows the principle of subsidiarity as presented in [Be22]. The consideration of the
concept of the skill-interface furthermore allows the connection to an interconnected factory
control architecture, as suggested in [Be22]. This furthermore allows the integration into a
planning framework for automatic flexible scheduling and energy-aware decision-making
for rescheduling purposes, as presented in [MWR24]. The usage of skills could then follow
the concept of standardized interfaces at the machine level as stated in [Ko18].

In general, further development can focus on the integration of detailed load profiles into
skills, representing the subprocesses of machines. A focus could be on the integration
and usage of such load profiles in combination with the principle of a feasibility check
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as part of implemented skills, as shown in [Vo21]. In this context, the integration of the
energy behavior for machine parameter-dependent simulations could be used, for example
to check the feasibility of a parameter configuration for a planned skill execution, if limits
in energy consumption must be considered or possible load peaks should be identified in
advance. This principle could furthermore be considered in combination with scheduling
models, in which the expected load patterns for a given machine parametrization can be
simulated in advance and then considered in an aggregated way at the machine level during
the scheduling process.

Future research possibilities could be identified in the combination of the load disaggregation
method with the possibilities of energy measurement. Flexible infrastructure in manufactur-
ing enables the usage of metering hardware and services for analysis and monitoring on a
modular level, as presented in [Mo21]. If metering can be provided at the machine level, the
load disaggregation method of this contribution can be applied to identify load patterns,
which are of interest for simulation and integration of scheduling models. Since the effects
of parametrization for machines are difficult to predict on the level of multiple components,
future developments can focus on a continuous model validation with a combined approach
of a discrete event simulation to create data for load forecasts and measured energy data
from several machine parametrizations.

Further research potential lies in the modular configuration of the production environment
using skills, since the decentralized structure can be combined with an agent-based control
concept as shown in [Ru20]. Energy agents, which are responsible for energy-related
metering hardware, could provide a higher degree of automated data acquisition and
processing to create and use energy load profiles, as it is presented in [Mo23]. The
integration of the load disaggregation method into energy agents, which are responsible for
energy load profiling on the level of production skills, could then contribute to the concept
of a continuous update and validation of load profiles for further usage, like scheduling.

Since the Asset Administration Shell (AAS) [Ba22] is increasingly developing into the de
facto standard for the interoperable communication in I4.0, the standardized description of
energy data in an AAS conform is a relevant topic for standardization. The load disaggregation
analysis could be integrated into such an interface, considering the standardized description
of the utilized machinery for further automated data processing.

The connection to dataspaces furthermore enables the utilization of services as the disag-
gregation analysis within the company or even beyond company boundaries in a service
ecosystem [Be24]. A uniform description of the energy data and the machine components
using the AAS supports the interoperability and the seamless sharing of data here as well.

5 Conclusion
This contribution presented an approach for energy profile analysis for production machines
using load disaggregation for further applications. The concept considers the integration of
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the load profile analysis into standardized machine interfaces. Thus, the result of the analysis
can be used for scheduling and component-related load profiles for simulation in production
orchestration and optimization. The application of energy load profiles which are provided
on a detailed level using load disaggregation was shown. It can contribute to metering
concepts in which the metering hardware is provided mainly on the level of production
modules. The results of an applied load disaggregation on a real-world production machine
were presented, and further development possibilities and potential for further research were
presented and discussed.
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