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Abstract 
The pervasive integration of artifcial intelligence (AI) into daily 
life has led to a growing interest in AI agents that can learn con-
tinuously. Interactive Machine Learning (IML) has emerged as a 
promising approach to meet this need, essentially involving human 
experts in the model training process, often through iterative user 
feedback. However, repeated feedback requests can lead to frus-
tration and reduced trust in the system. Hence, there is increasing 
interest in refning how these systems interact with users to ensure 
efciency without compromising user experience. Our research 
investigates the potential of eye tracking data as an implicit feed-
back mechanism to detect user disagreement with AI-generated 
captions in image captioning systems. We conducted a study with 
30 participants using a simulated captioning interface and gath-
ered their eye movement data as they assessed caption accuracy. 
The goal of the study was to determine whether eye tracking data 
can predict user agreement or disagreement efectively, thereby 
strengthening IML frameworks. Our fndings reveal that, while eye 
tracking shows promise as a valuable feedback source, ensuring 
consistent and reliable model performance across diverse users 
remains a challenge. 

CCS Concepts 
• Human-centered computing → User studies; User models; • 
Computing methodologies → Supervised learning by classifca-
tion. 
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1 Introduction 
As the use of Artifcial Intelligence (AI) increases in various aspects 
of daily life, there is also a growing demand for AI-based systems 
to operate autonomously while considering user preferences and 
feedback. A promising concept to meet this demand is interactive 
Machine Learning (IML). This approach allows users, including non-
experts, to dynamically and incrementally steer and train models 
by integrating human feedback into machine learning processes 
[1]. Much like IML, many AI systems across diferent felds rely 
on explicit feedback to learn user preferences and adapt system 
behavior. However, frequent requests for explicit feedback can 
quickly become a source of frustration for users [7], reducing their 
trust in the AI system and negatively impacting their perception of 
its accuracy [13]. 

Existing literature has proposed strategies to improve interaction 
within IML systems [9, 12, 32]. Specifcally, works such as Dudley 
and Kristensson [9] argue for minimizing the frequency of user-AI 
interactions, suggesting that feedback should only be requested 
when it is critical to the model’s learning process. Motivated by this 
perspective, we explore using implicit signals, such as eye tracking, 
to capture user feedback implicitly. Eye tracking is an unobtrusive 
method of capturing a user’s gaze and can provide insight into the 
user’s cognitive processing and focus of attention. These implicit 
signals could help identify instances of perceived agreement or
disagreement with the output of an AI system, providing valuable 
feedback for system improvement and potentially helping decide 
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when to trigger explicit feedback requests. This approach could 
reduce user efort and make interactions with AI systems more 
user-friendly. 

Our work focuses on an image captioning scenario, where AI 
systems generate textual descriptions (captions) for images. Despite 
recent advancements, these models can generate incorrect captions, 
leading to disagreement with the AI system’s output. We aim to 
predict these occurrences using implicit signals. Therefore, we 
conducted a user study with thirty participants who interacted 
with a simulated image captioning system while we captured their 
eye movements and video-recorded their faces. Participants were 
instructed to evaluate captions (half of which were intentionally 
fawed) using images and captions sourced from the FOIL-COCO 
dataset [28]. By observing participants’ reactions to correct and 
intentionally incorrect captions, we aimed to identify markers of 
disagreement. Specifcally, the contributions of this work are as 
follows: 

(1) A dataset with 30 participants’ interactions with image-
caption pairs, recording eye tracking and pupil dilation data, 
along with their binary ratings indicating agreement or dis-
agreement with the generated captions. 

(2) A cross-user experiment implementing a Leave-One-User-
Out 10-fold cross-validation approach to examine the poten-
tial for generalizability in disagreement detection models 
across diferent users. 

(3) A within-user experiment aimed at investigating the ef-
fectiveness of personalized model adaptations, assessing 
whether customized models can enhance the performance 
of disagreement detection in a user-specifc context. 

2 Background & Related Work 
Central to our research is the notion of user disagreement, which 
we defne as instances where the system’s output during a specifc 
task does not align with a user’s expectation. These instances can 
serve as potential feedback signals or triggers to request further 
feedback in machine learning systems. To enhance our understand-
ing of disagreement, we draw on relevant research from afective 
computing and try to fnd a connection to afective states. 

Existing literature has shown that human gaze and facial expres-
sions can be used for afect recognition [16, 33] and serve as sources 
for implicit user feedback [2, 3, 27]. For instance, Lallé et al. [15] 
utilize gaze data to predict states of confusion. According to D’Mello 
and Graesser [10], confusion “is hypothesized to occur when there 
is a mismatch between incoming information and prior knowledge 
[...], thereby initiating cognitive disequilibrium” (p. 292). Thus, we 
hypothesize that signs of confusion could act as indicators of user 
disagreement with a model’s output. This state of confusion inter-
sects with our understanding of user disagreement—essentially, a 
mismatch between what users expect and what the system delivers. 
Nonetheless, while confusion might signal disagreement, not ev-
ery case of disagreement is necessarily tied to confusion. Further, 
Pollak et al. [22] investigated the use of facial emotion recognition 
technologies to distinguish between user satisfaction and dissatis-
faction, thereby establishing a clear relationship between emotional 
responses and user feedback. Inspired by their fndings, our study 
is specifcally designed to elicit user disagreement and use eye 
trackers and cameras to record user behavior and reactions. 

Early research on confusion detection originates from the feld 
of educational computing [6, 8], where detection techniques of-
ten involve analyzing facial expressions of students, posture or 
interface interaction, and their studying behavior. Pachman et al. 
[21] propose using gaze data for predicting confusion in digital 
learning environments, by tracking the progression of the user’s 
puzzle-solving tasks. Their goal was to detect the buildup of con-
fusion during the problem-solving process. Our focus shifts from 
these studies by concentrating on the immediate afective state of 
confusion that results from the user processing the information 
of the model’s output. Detecting this type of immediate confusion 
is especially relevant in Human-Computer Interaction (HCI) as it 
impacts user experience and satisfaction [19]. Salminen et al. [23] 
develop a confusion predictor partly derived from gaze data within 
their persona information visualization tool, using metrics such 
as the number of fxations, transitions between Areas-of-Interest 
(AOIs), and users’ demographic information to predict confusion 
with 80% accuracy. They later enhance this predictor by solely using 
gaze data, achieving a 70% accuracy rate in identifying confusion, 
which boosts to 99% when demographic details are integrated. This 
indicates a strong correlation between demographic factors and 
confusion instances. However, while demographic features can help 
model the frequency of confusion, they may not be efective for 
real-time monitoring. Notably, they highlight that confusion pre-
dominantly afects inexperienced, older male users in contrast to 
younger participants — a fnding that hints at a possible correla-
tion between confusion and demographic traits such as age and 
gender. However, while demographic features can help model the 
frequency of confusion across diferent user groups, they may not 
be as efective for real-time confusion monitoring. 

Lallé et al. [15] created a predictor of user confusion during inter-
action with their interactive data visualization tool ValueChart, an 
interactive data visualization tool designed to aid users in making 
well-informed decisions (such as fnding rental property) aligned 
with their preference In their study, with 136 participants, gaze and 
mouse movement were collected as users performed tasks with the 
tool. Users could indicate confusion by clicking a dedicated button 
in the tool’s interface in the top-right corner. Using a Random Forest 
Classifer, the authors’ model achieved a 61% accuracy in predicting 
confusion. A more recent contribution from the same group [29] 
uses deep learning based on raw eye movements to predict confu-
sion on the same dataset as [15]. They shifted from pre-processed 
features to raw sequential gaze data, fed into a Recurrent Neural 
Network (RNN). According to the author, this method enabled the 
RNN to uncover subtle patterns indicative of confusion, outperform-
ing the previous model with an accuracy of 82% — a noteworthy 
improvement over the initial 61%. The success of this approach sup-
ports the potential of combining deep learning with unprocessed 
sequential gaze data for more accurate afect recognition. However, 
the dataset is highly imbalanced, with instances of no confusion 
overwhelmingly outnumbering confusion cases (99% vs 1%). This 
skew could potentially bias the model’s ability to identify confu-
sion accurately. Additionally, the interface’s confusion self-report 
button might afect users’ gaze behavior, introducing further data 
collection complexities. In response to these issues, we propose 
utilizing a handheld trigger to capture user feedback to minimize 
disruption to their gaze [5]. To further enhance the reliability of 
our study, we aim to balance cases of agreement and disagreement, 
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Figure 1: (1) User interacts with an IML system; (2) a predictor 
picks up that the user disagrees with the output; (3) the IML 
system reacts by returning an alternative solution or (4) trig-
gers a feedback request. Steps (3) and (4) illustrate possible 
future integration in an IML system 

thus addressing the disproportion found in the earlier dataset in 
the data collection study. 

2.1 Application in Machine Learning 
The concept of implicit feedback for artifcial agents is a recent idea, 
with limited literature on the topic. In an explorative study, Pollak 
et al. [22] investigated the potential of user emotional feedback 
serving as a reward signal for a reinforcement learning agent. This 
feedback, determined by facial emotion recognition, was designed 
to refect the user’s satisfaction level, categorizing emotions into 
negative (such as ’angry’, ’disgust’, ’fear’, ’sad’), positive (’happy’), 
or neutral (’neutral’, ’surprise’) categories according to [11]. They 
enabled a user to control a virtual drone, which, informed by the 
user’s emotional reactions, adapted its movements to align with 
correct actions. Their preliminary results indicate that emotional 
feedback could indeed be integrated as a functional part of a re-
inforcement learning agent’s reward system. However, they also 
observed signifcant variances in the intensity of emotional feed-
back from participant to participant, which presented challenges in 
distinguishing between positive and negative reactions accurately. 

Krause and Vossen [14] suggest using signs of user confusion or 
uncertainty as cues to provide explanations in interactions between 
humans and AI agents. They argue that explanations should not 
only be provided when the user explicitly asks for it but also when 
the system identifes signs of the user’s uncertainty or confusion. 
Further, they identify additional triggers like, belief conficts, or 
misunderstandings of the agent’s output, which are in line with the 
indicators of user disagreement that our research aims to explore. 
While Krause and Vossen [14]’s approach focuses on delivering 
explanations, we propose integrating these indicators into the in-
teractive machine learning cycle. This integration might involve 
providing alternative model outputs and, when necessary, solicit-
ing additional user feedback to facilitate continuous learning (see 
Figure 1). 

3 Data Collection 
In this section, we detail our data collection study. This study was 
designed to explore the potential of eye movement as an implicit sig-
nal for detecting user disagreement in machine learning interaction. 
We are particularly interested in the context of image captioning 
tasks, as this setting allows for the occurrence of disagreements 
due to model-generated errors or unsuitable captions. Hence, in the 
study, we presented participants with a series of images and their 
associated captions from the FOIL COCO dataset [28], with half of 
the captions intentionally containing errors to elicit disagreement. 
Meanwhile, the participants were recorded using an eye tracker 
and a camera. Next, we provide information about the participants, 
the specifcs of the task, the stimuli involved, the apparatus setup, 
and the procedure followed for data collection. Finally, an overview 
of the collected dataset is presented. 

3.1 Participants 
We designed and conducted this study following guidelines pro-
vided by our Ethics Committee. The experiment was reviewed and 
approved by the Committee before any recruitment or data collec-
tion. We recruited 31 potential participants via email and university 
postings. However, due to complications with the eye tracker, one 
participant’s data could not be included, resulting in a fnal count 
of 30 participants (21 males, 9 females, avg. age 26.4). Nineteen 
participants had used an eye tracker before. Each participant was 
fuent in English and had normal or corrected-to-normal vision. For 
their contributions, participants were compensated at a rate of 15 
Euros per hour. The study took around 60 minutes. 

3.2 Task 
Participants in our study were primarily asked to rate the accuracy 
of the images and captions paired. They were given a series of 
images, each linked with a corresponding caption derived from the 
FOIL-COCO dataset. Half of these captions contained deliberate 
errors to mitigate the issue of data imbalance prevalent in related 
research. As participants viewed each image-caption pair, they were 
instructed to provide a binary rating of ’agree’ or ’disagree’ based 
on their perception of the caption’s correctness. Once a rating was 
provided, they could proceed to the next pair in the series. 

3.3 Stimuli 
We selected a total of 154 images, 134 from the FOIL-COCO training 
set and 20 from the FOIL-COCO validation set. The FOIL-COCO 
dataset builds upon the standard COCO dataset by providing ’foil’ 
captions — captions that are identical to the original captions but 
with one intentional error. To ensure a diverse range of categories, 
we included two images from each of the dataset’s supercategories. 
We primarily selected captions around ten words in length and 
standardized the image resolution across all stimuli. Participants 
were split into two groups — Group A and Group B. Both groups 
were presented with the same images to maintain uniform visual 
stimuli. The key distinction between the two groups’ experiences 
was the presentation of ’foil’ captions: if Group A saw the correct 
caption for a given image, Group B would see the foil caption 
for that same image, and vice versa. To reduce order efects, we 
randomized the image sequence for each participant. 
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Figure 2: Screenshot of the study interface showcasing an 
image-caption pair. Here the induced error in the caption is 
the word ’keyboard’ instead of ’phone’. 

3.4 Apparatus 
The setup included a Tobii Pro Fusion eye tracker 1, operating 
at 250Hz, mounted on a 27-inch monitor. Directly below the eye 
tracker, a Luxonis OAK-D[17] camera was positioned to record 
the participant. The interface interaction was facilitated using a 
Logitech Presenter, selected for its intuitive design and the ability 
to be used without diverting gaze from the screen, minimizing infu-
ence on gaze behavior. Consistent lighting was maintained across 
sessions to reduce the impact on pupil dilation. A height-adjustable 
table was used to optimize eye tracker accuracy by accommodating 
varying participant heights. Moreover, the participant-to-screen 
distance was controlled at 60cm. 

3.5 Procedure 
As participants arrived, they were frst presented with a consent 
form, which they signed to acknowledge their voluntary partici-
pation and understanding of the study’s nature. They were also 
asked to fll out a demographic questionnaire to collect relevant 
background information. Following the acquisition of consent, par-
ticipants received a thorough briefng about the task at hand. This 
briefng included the key detail that the captions they were to eval-
uate had been generated by an Image Captioning Model. After 
making sure that participants fully grasped the task and its objec-
tives, we introduced them to the study system. We then proceeded 
with the calibration of the eye tracking device, utilizing the Tobii 
Pro Eye Tracker Manager for a precise 9-point calibration process. 
To confrm the accuracy of the eye tracker, we manually checked 
the data using the provided gaze visualization tool, performing 
recalibrations when necessary. 

Before beginning the main task, a training phase was conducted 
to familiarize participants with the study environment and proce-
dure. A countdown on the interface was shown at the center of the 
screen. This ensured that all participants began their task with their 
gaze focused on the center. Upon completion of the countdown, an 
image-caption pair was presented. Participants were instructed to 
1https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion, [Ac-
cessed 16-08-2024]. 

determine the correctness of the caption and then proceed to the 
next screen to enter their decision. Participants advanced to the 
main task phase once they confrmed their understanding of these 
instructions. Upon its completion, a debriefng session was con-
ducted, and participants were compensated for their contribution 
to the study. 

3.6 Dataset Overview 
Our dataset consists of 4,620 samples, collected from 30 participants. 
In line with the study’s design, the dataset was structured to achieve 
an even distribution of perceived correctness, targeting a 50/50 split 
between agreement and disagreement with the presented image 
caption pairs. This objective is refected in the dataset, with 50.5% of 
the samples rated as incorrect (disagree) and 49.5% as correct (agree). 
The average accuracy compared to ground truth from the FOIL 
COCO dataset across all participants was 90.24% with a variance 
of 8.8%. Additionally, the response times across trials indicated an 
average duration of 5.16 seconds per trial, a median duration of 
4.45 seconds, and a standard deviation of 2.92 seconds. Lastly, the 
robustness of the eye tracking data was confrmed, with a minimum 
recognized gaze signal rate of 91% and an average rate of 98.5%. 
The dataset is available at https://github.com/DFKI-Interactive-
Machine-Learning/disagreement-detection-dataset. 

4 Method 
In the following section, we describe the preprocessing of the eye 
tracking data and the feature extraction method applied. The prepro-
cessing was aimed at preparing the data for the feature extraction 
process, while the latter focused on identifying the attributes from 
the eye tracking data that could be used for classifcation. Addition-
ally, the classifcation methods proposed for disagreement detection 
are outlined. This includes traditional machine learning algorithms 
as well as a deep learning method based on VTNet [29], designed 
specifcally to process raw gaze data. 

4.1 Data Preprocessing 
During preprocessing, we addressed inconsistencies in the dataset’s 
timestamps. Initially, these timestamps varied slightly, with difer-
ences ranging from 3.99 to 4.01 milliseconds. These were adjusted 
to a fxed interval of exactly 4 milliseconds to establish temporal 
consistency across the dataset. Gaze points were then computed 
as the average of the gaze coordinates obtained from each eye. 
In circumstances where data from one eye was missing, the gaze 
point was inferred from the coordinates of the other eye, ensuring 
continuous data representation. 

For the categorization of gaze events into fxations and saccades, 
our implementation closely followed the methodology outlined by 
Tobii [20]. We classifed fxations using the Identifcation by Veloc-
ity Threshold (I-VT)[25] fxation detection algorithm. This method 
classifes fxations as sequences of the raw gaze signal, where gaze 
velocity stays below a predefned threshold, indicating a relatively 
stable gaze. We chose the Savitsky-Golay[26] flter for calculating 
velocities, with an order of 2 and a span of 40 ms, following rec-
ommendations from literature [31]. A default velocity threshold of 
20 degrees/s was applied. However, after manually inspecting the 
event detection results, we adjusted the threshold to 30 degrees/s 
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Table 1: Detailed Gaze, Pupil, and Transition Features. Fea-
tures marked with an asterisk (*) are calculated per Area of 
Interest (AOI), including the whole visit, visits on the Image, 
and visits on the Caption. 

Category Description 

Total number of fxations 
Number of fxations per unit time 

Fixation-based* Average duration of fxations 
Standard deviation of fxation durations 
Total duration of all fxations 

Average length of saccades 
Standard deviation of saccade lengths 
Average of relative angles of saccades 

Saccade-based* Standard deviation of relative saccade angles 
Average of absolute saccade angles 
Standard deviation of absolute saccade angles 

Average width of the left pupil 
Standard deviation of left pupil width 
Maximum width of the left pupil 
Minimum width of the left pupil 
Average width of the right pupil 

Pupil* Standard deviation of right pupil width 
Maximum width of the right pupil 
Minimum width of the right pupil 
Pupil width of the left eye at the frst fxation 
Pupil width of the left eye at the last fxation 
Pupil width of the right eye at the frst fxation 
Pupil width of the right eye at the last fxation 

Transition Number of transitions between AOIs 

for three participants where data exhibited higher noise levels. In 
addition, for each fxation calculated, we determined the location 
of its occurrence in relation to the predefned AOIs—specifcally, 
the image, the caption, or the background. 

4.2 Features 
Our features are retrieved from Barz et al. [2] and Lallé et al. [15]. 
These features are calculated across various segments of the user 
interface for the entire duration of each task, focusing on areas 
where users’ attention is most indicative of their decision-making 
process. We concentrate on three AOIs: the whole screen, the image 
area, and the caption area, as shown in Figure 2. 

The selection of these AOIs is strategic, as they represent key 
elements where user interaction is most telling of their agreement or 
disagreement. The whole screen provides a general overview of user 
engagement, the image area relates to visual content processing, 
and the caption area pertains to textual content processing. 

The features are categorized into three groups: Fixation-based, 
Saccade-based, and Pupil-based, each providing a diferent per-
spective on the user’s gaze behavior. Fixation-based features, for 
example, might indicate the points of interest or confusion, while 
saccade-based features could refect the user’s search patterns or 

hesitations. Pupil-based features ofer an additional layer, poten-
tially correlating with cognitive load or emotional response. Addi-
tionally, Transition features are included to capture the dynamic 
aspect of user interaction, tracking how users move between difer-
ent AOIs. These movements can be revealing of how users process 
and evaluate the image-caption pairs. 

Table 1 presents a detailed breakdown of these features, including 
parameters such as fxation count, fxation rate, mean and standard 
deviation of fxation durations, saccade lengths, angles, and various 
pupil dimensions. Each feature marked with an asterisk (*) indicates 
calculation on a per-AOI basis. 

4.3 Feature-based predictor 
The algorithms Random Forest (RF), Extreme Gradient Boosting 
(XGBoost), and Logistic Regression (LR) were utilized to develop 
models for predicting user disagreement from eye-tracking features. 
These methods are widely recognized for their robust performance 
in handling eye-tracking data [2, 4, 15, 24]. For each algorithm, 
hyperparameter tuning was conducted to optimize the models. 

For XGBoost, the hyperparameters that were considered included 
the number of estimators (100, 200, 300), learning rate (0.01, 0.1), 
maximum depth (3, 6), and minimum child weight (1, 2). Random-
Forest models were tuned using the number of estimators (100, 200, 
300), maximum depth (None, 10, 20, 30), and the number of fea-
tures considered at each split (None, ’sqrt’). For Logistic Regression, 
the hyperparameters included the regularization strength (C) with 
values 0.1, 1, 10, 100, and the type of penalty (’l1’, ’l2’). 

4.4 The VTNet and VTNet_att models 
In parallel with traditional machine learning algorithm models, we 
also employed a deep learning method that uses the raw gaze data. 
The VTNet model, initially presented in [29], was developed to 
detect user confusion by learning from raw Eye Tracking (ET) data. 
The model integrates a single-layer Gated Recurrent Unit (GRU) 
sub-model with a two-layer Convolutional Neural Network (CNN) 
sub-model, each operating independently. The GRU sub-model is 
responsible for processing the ET data sequentially, whereas the 
CNN sub-model processes its corresponding spatial representation 
by learning from scan path images, which is a representation of the 
ET samples’ X and Y gaze coordinates and the transitions between 
them. In [30], a self-attention layer was added before the GRU 
to allow it to focus on the more important segments within the 
ET sequences, thereby enhancing the model’s ability to discern 
long-term dependencies. This model, now termed VTNet_att to 
indicate the addition of attention, incorporates a self-attention 
layer with a dimensionality of 6 to match the dimensionality of the 
input sequential ET data and a single attention head to preserve 
model simplicity and computational efciency, which is important 
to prevent overftting on small datasets (a typical characteristic of 
ET datasets). The output from the GRU, characterized by a 256-unit 
hidden state, concatenates with a 50-element vector from the CNN 
to form a combined vector of 306 elements. This vector serves as 
the input for a simple neural network comprising a hidden layer 
and a SoftMax output layer, which classifes the input into two 
categories: Disagreement or Agreement. The hyperparameters of 
the VTNet_att model remain consistent with those specifed in 
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[29] and [30], and the model undergoes end-to-end training as a 
cohesive unit. 

As a data augmentation method, we cyclically split the eye track-
ing sequences, following the approach used by Sims and Conati 
[29] and Sriram et al. [30]. In these works, the cyclical splitting 
process produced four new data points from each original one by 
grouping samples collected at 120Hz that were four steps apart 
into the same new data point. This method preserved the temporal 
structure because contiguous samples showed minimal variation 
due to the high sampling rate, and it expanded the dataset fourfold. 
However, since our eye tracker had a higher sampling rate of 250Hz, 
we cyclically split each data point into eight separate ones, thereby 
increasing the dataset eightfold. 

5 Evaluation 
In this section, we present our experiment setup. We aim to explore 
the possibilities of predicting user disagreement through eye track-
ing data using traditional machine learning algorithms and a deep 
learning method. Our exploration is split into two key experiments: 
the Cross-user experiment and the Within-user experiment. 

The Cross-user experiment attempts to determine the generaliz-
ability of the predictive model—can it efectively use eye tracking 
data from a pool of users to predict disagreement for any given 
user? This experiment will reveal the model’s capability to apply 
learned patterns of disagreement from the collective data to unseen 
individuals. 

Whereas the Within-user experiment focuses on the model’s 
capacity to predict disagreement when trained and tested on data 
from the same user. Here, the aim is to understand how well a 
model can learn individual-specifc patterns of eye movements and 
whether these personalized models lead to improved performance 
over generalized models. 

The fundamental questions guiding our experiments are: 
(1) Is eye tracking data a viable source of implicit feedback for 

predicting user disagreement with an AI-generated caption, 
and can such a prediction model generalize across diferent 
users? 

(2) How efective are personalized models, tailored to individual 
users, when using eye tracking data to predict disagreement? 

In both cross-user and within-user experiments, we statistically 
compared the results using a one-way MANOVA test, where the 
model type served as the independent variable, while the perfor-
mance metrics acted as the dependent variables. For post-hoc pair-
wise comparisons, we used the Tukey’s HSD test. We report statis-
tical signifcance when the p-value is less than 0.05. 

5.1 Cross-User evaluation 
The Cross-User evaluation aims to assess the generalizability of 
our models in predicting user disagreement. To achieve this, we 
implemented a 10-fold Leave-Groups-Out cross-validation (CV) 
strategy. Under this validation method, the dataset was divided 
into 10 exclusive groups, with each group acting as a hold-out test 
set at diferent iterations. Every iteration ensured that a particular 
user’s data was included in the test set just once, thus guaranteeing 
that the training set did not contain any data from the user being 
tested. This separation is vital for ensuring that our evaluation of 
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Table 2: Average Performance Metrics with Standard Devia-
tion for Each Model 

Model F1 Score Accuracy Precision Recall 

LR 0.59 ± 0.04 0.53 ± 0.04 0.53 ± 0.05 0.70 ± 0.17 
RF 0.59 ± 0.05 0.54 ± 0.03 0.53 ± 0.03 0.66 ± 0.12 
XGBoost 0.63 ± 0.04 0.55 ± 0.01 0.54 ± 0.02 0.76 ± 0.13 

VTNet 0.53 ± 0.04 0.54 ± 0.03 0.53 ± 0.06 0.55 ± 0.10 
VTNet_att 0.50 ± 0.07 0.55 ± 0.04 0.56 ± 0.07 0.47 ± 0.13 

the model’s generalizability is not compromised by information 
leakage. In the context of feature-based predictors, such as Random 
Forest, Extreme Gradient Boosting, and Logistic Regression, we 
incorporated recursive feature elimination with cross-validation 
(RFECV) within the CV framework. This method is intended for 
feature selection and is executed in tandem with hyperparameter 
tuning on the training set. 

For the VTNet model, which accepts raw gaze data without 
prior feature selection, no feature selection step was used within 
its validation loop. The model was evaluated based on its ability to 
learn from raw data as provided. 

Algorithm 1 Cross-User evaluation 

1: �, �,� ← Dataset, Targets, Groups 
2: � ← Set of Models 
3: � ← Hyperparameters for Models in � 
4: � ← Set of Features 
5: for (�����, ����) ∈ LeaveGroupsOut(�) do 
6: ������, ������ ← � [�����], � [�����]
7: ����� , ����� ← � [����], � [����]
8: ��������� ← FeatureSelection(������, ������, � )

� � 
9: �

����� ← ������ [��������� ]
� � 

10: ����� ← ����� [��������� ]
11: for ����� ∈ � do 

� � 
12: ����_����� ← ParamTuning(� , ������,�����, � )

����� 
� � 

13: _�����, � Scores����� ← Evaluate(���� ���� , ����� )
14: end for 
15: end for 
16: return Scores����� 

5.1.1 Results. This section reports on the fndings from our ex-
periment designed to test the generalizability of various models 
in predicting user disagreement using eye tracking data. Table 2 
presents the average performance metrics for each model across 
the 10-fold Leave-Groups-Out cross-validation setup, providing 
detailed insight into their precision, accuracy, F1 scores, and recall 
rates, along with the variability of these metrics. 

The data in Table 2 highlights the average performance achieved 
by each model. The Logistic Regression model recorded an average 
F1 Score of 0.59 with a standard deviation of 0.04 and featured an 
average Recall of 0.70. Similarly, the Random Forest model demon-
strated an average F1 Score of 0.59 and a Recall of 0.66. Among 
traditional machine learning models, XGBoost performed the best 
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with the highest average F1 Score of 0.63 and the highest average 
Recall of 0.76. 

In contrast, the deep learning approaches, represented by VTNet 
and VTNet_att, exhibited worse performance metrics compared 
to the more traditional machine learning models. VTNet achieved 
an average F1 Score of 0.53 and a Recall of 0.55, while VTNet_att 
displayed slightly lower scores with an average F1 Score of 0.50 
and a Recall of 0.47. Furthermore, the standard deviations for these 
models indicate a higher variability in performance, particularly 
for VTNet_att. 

The MANOVA found signifcant efects of the type of model on 
the F1 Score(�4,45 = 8.620, partial �2 = 0.434) and Recall (�4,45 = 
6.254, partial �2 = 0.357). Pairwise comparisons showed that, based 
on the F1 scores, the XGBoost and Random Forest models were 
equivalent in performance and they both outperformed the other 
three models (Logistic Regression, VTNet, and VTNet_att). These 
three models were found to be equivalent to one another. In terms 
of Recall, the XGBoost, Logistic Regression, and Random Forest 
models were found to be equivalent to one another and they all 
outperformed the VTNet and VTNet_att models which, in turn, 
were equivalent in performance. 

Algorithm 2 Within-User Model Training and Evaluation 

1: � ← Set of Participants 
2: � ← Dataset 
3: � ← Models 
4: for � ∈ � do 
5: �� ← getDataOfParticipant(�, �)
6: �train, �test, �train, �test ← Split(�� )
7: for ����� ∈ � do 
8: Train(�����, �train, �train)
9: Evaluate(�����, �test,test )
10: end for 
11: end for 
12: return Evaluation scores for each model 

5.2 Within-User evaluation 
To assess the efectiveness of personalized models for each indi-
vidual user, we conducted an experiment where a distinct model 
was trained for each participant using the full array of methods 
previously introduced, including both feature-based and VTNet 
algorithms. 

For this purpose, we organized the dataset comprising of 154 
samples from each user, splitting them into training and testing 
subsets. The division designated 134 samples for training purposes, 
while 20 samples were set aside for evaluation, adhering to a pre-
established split based on the image sets. Subsequently, a unique 
model employing both, the feature-based predictor as well as VTNet, 
was trained for each participant. This approach allows us to explore 
and compare the performance of models personalized to individual 
users. The specifc steps for the training and evaluation process for 
each user are detailed in Algorithm 2. 

5.2.1 Results. The summarized results of the within-user evalua-
tions are presented in Table 3, which illustrates the average perfor-
mance of all personalized models trained on data for a single user. 

Table 3: Average Performance Metrics with Standard Devia-
tion for Each Model 

Model F1 Score Accuracy Precision Recall 

LR 0.51 ± 0.19 0.54 ± 0.19 0.52 ± 0.30 0.38 ± 0.18 
RF 0.50 ± 0.33 0.55 ± 0.24 0.52 ± 0.20 0.42 ± 0.20 
XGBoost 0.57 ± 0.16 0.59 ± 0.12 0.57 ± 0.20 0.62 ± 0.18 

VTNet 0.55 ± 0.18 0.57 ± 0.13 0.55 ± 0.19 0.57 ± 0.21 
VTNet_att 0.58 ± 0.14 0.58 ± 0.12 0.59 ± 0.15 0.59 ± 0.17 

For the Logistic Regression model, an average F1 Score of 0.51±0.19 
was obtained. The Random Forest model had an average F1 Score 
of 0.50 ± 0.33. XGBoost had an average F1 Score of 0.57 ± 0.16, with 
the highest average Accuracy of 0.59 ± 0.12 and the highest average 
Precision of 0.57 ± 0.20 among the feature-based models. 

In the category of deep learning approaches, the VTNet model 
achieved an average F1 Score of 0.55 ± 0.18, while the VTNet_att 
model had an average F1 Score of 0.58 ± 0.14. The VTNet_att model 
also achieved the highest average Precision of 0.59 ± 0.15 when 
compared with other models. The standard deviation values indi-
cate variability in model performance across diferent user data. 
However, the MANOVA test revealed that there was no signif-
cant efect of the type of model on any of the performance metrics. 
Hence, they were all statistically equivalent to one another. 

6 Discussion 
The results of the cross-user experiment reveal that among the 
models evaluated, XGBoost achieved the best performance. How-
ever, the overall average accuracy score of 0.55 is quite low. The 
high recall rate (0.76), suggests that the model is good at identi-
fying most instances where the user disagrees with the caption. 
This means that most user disagreement instances are captured 
and can be used as feedback to the IML system. However, the low 
precision also implies that the model may produce false positives, 
i.e. predicting disagreement where there may be none. This can 
be problematic if the model’s predictions are used directly to trig-
ger requests for user feedback, potentially leading to an excessive 
number of interruptions. Such interruptions can decrease user ex-
perience by prompting users to provide feedback too frequently, 
particularly in cases where they might perceive the AI system’s 
output as satisfactory. 

Therefore, it might be benefcial to explore a diferent approach 
that incorporates additional implicit sources of information. By 
integrating data such as facial expressions, the model could gain 
insight into a wider range of implicit user feedback signals, possibly 
allowing for a more accurate determination of when to request 
explicit user input. With these enhancements, it would be possible 
to maintain the benefts of detecting disagreement for IML while 
reducing the risk of unnecessary feedback prompts. 

In the within-user experiment, both the XGBoost and the VTNet 
models achieve the best average accuracies of 0.59 and 0.58, respec-
tively. However, these results were accompanied by high variances 
in performance between users. Such variances are further empha-
sized by the considerable standard deviations between precision 
and all other metrics, as shown in Table 3. 
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Table 4: Comparative Performance Metrics for Top and Bot-
tom 5 Users Based on Balanced Accuracy of XGBoost and 
Gaze Robustness Score 

User ID Balanced Accuracy Gaze Robustness 

B13 0.3000 0.97230 
A06 0.4000 0.94518 
B07 0.4141 0.91343 
B11 0.4394 0.99513 
B03 0.4596 0.95736 

B05 0.7083 0.99408 
A04 0.7143 0.97802 
B14 0.7473 0.99496 
B09 0.7500 0.99438 
B01 0.8333 0.99935 

XGBoost worked well for certain users and poorly for others, 
indicating the presence of individual diferences in disagreement 
behavior (see Table 2). For 7 users, the models provided balanced 
accuracies exceeding 0.70, and more than half of the users had ac-
curacies greater than 0.60. However, for other users we observed 
performance with balanced accuracies falling below 0.50, highlight-
ing a potential disparity in how efectively models can capture 
indicative behavior. 

To understand the variability in model performance, particularly 
for users where models underperformed (<.50), we examined met-
rics such as gaze robustness and noise level. We aimed to determine 
whether low performance could be associated with identifable 
factors, such as a user’s fxation on the background instead of the 
relevant areas of interest or inconsistency in gaze data. An analysis 
revealed that the accuracy of XGBoost has a moderate correlation 
(.43) with gaze robustness, a metric that assesses the quality and 
consistency of the gaze signal. Notably, 4 out of the 5 users with 
the worst model performance had gaze robustness scores that were 
lower than the group average (98.5). This fnding suggests that gaze 
robustness may play a role in the efectiveness of the model in 
predicting user disagreement accurately. 

In addition, we also investigated the infuence of increasing train-
ing data using XGBoost, which has the best average performance. 
These results are graphically represented in Figure 3, where users’ 
average accuracy is plotted against the increasing number of train-
ing samples provided to their personalized model and error bars 
showing the standard deviation. We found that, on average, there 
is a moderate increase in the XGBoost model’s performance as 
the quantity of training data per user increases, indicating that 
additional training samples improve model accuracy. However, the 
high std suggests that there is inconsistent individual performance 
improvement. 

6.1 Limitations 
Although our study ofers the frst insight into the predictive ca-
pacity of gaze for user disagreement, it has its limitations. First, 
the data were collected in a controlled experiment setting which 
contrasts natural user interaction with AI, the latter of which can 
introduce a wider range of variability and complexity that is not 

Figure 3: Average balanced accuracy performance of person-
alized models with increasing training samples 

fully replicated in a laboratory context. Second, our work does not 
explore alternative modeling techniques [18] or the integration of 
additional data sources (e.g., facial expressions), which could ofer 
further dimensions to understanding user disagreement and im-
prove model robustness. Lastly, the scope of the study was restricted 
to the context of image-caption pairs. The focus on image-caption 
pairs is context-specifc and thus, future research should assess the 
transferability of these insights across diferent forms of Human-AI 
interaction to validate their broader applicability. 

7 Conclusion & Future Work 
This work investigated the potential of eye tracking signals as an 
implicit source of prediction of disagreement when interacting with 
an AI system. We collected a dataset with 30 participants in which 
they interacted with a simulated image captioning system, while 
their eye movements as they rated the AI-generated captions were 
recorded. We investigated the performance of machine learning 
models in both cross-user and within-user contexts. The fndings 
indicate that while the best model (XGBoost) performs well in de-
tecting instances of disagreement, its precision remains a challenge, 
underscoring the necessity for models that better capture individual 
user behaviors. Notably, XGBoost proved efective for some users 
while failing to capture the disagreement of others, demonstrating 
a disparity in model performance that should be further investi-
gated. In conclusion, our research provides a frst understanding of 
the relationship between eye movements and user disagreement 
in AI interactions. The integration of additional modalities and the 
application of advanced analytical techniques represent promising 
directions for future research. 
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