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ABSTRACT 
A scanpath is an important concept in eye tracking that represents 
a person’s eye movements in a graph-like structure. Passive gaze-
based interfaces, in which users do not consciously interact using 
their eyes, typically interpret users’ scanpaths to enable adaptive 
and personalised interaction. Despite the benefits of graph neural 
networks (GNNs) in graph processing, this technology has not been 
considered for that purpose. An example application is perceived 
relevance estimation, which still suffers from low classification per-
formance. In this work, we investigate how and whether GNNs can 
be used to analyse scanpaths for readers’ perceived relevance esti-
mation using the gazeRE dataset. This dataset contains eye tracking 
data from 24 participants, who rated the relevance of 12 short and 
12 long documents in relation to a given query. The relevance was 
assigned either to an entire short document or to each paragraph 
within a long document, which allowed us to investigate two differ-
ent GNN tasks. For comparison, we reproduced the gazeRE baseline 
using Random Forest and Support Vector classifiers, and an addi-
tional Convolutional Neural Network (CNN) from the literature. 
All models were evaluated using leave-users-out cross-validation. 
For short documents, the GNNs surpassed the baseline methods, 
with certain experiments showing an absolute balanced accuracy 
improvement of 7.6% and 14.3% over the CNN and gazeRE baselines, 
respectively. However, similar improvements were not observed in 
long documents. This work investigates and discusses the future 
potential of using GNNs as a scanpath analysis method for passive 
gaze-based applications, such as implicit relevance estimation. 

CCS CONCEPTS 
• Computing methodologies → Neural networks; • Human-
centered computing → Human computer interaction (HCI). 
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1 INTRODUCTION 
Scanpaths refer to traces of a person’s eye movement across space 
over a period of time [19]. A scanpath consists of a series of alter-
nating fixations and saccades [4]. Fixations describe the state when 
the eyes remain relatively still for a time period lasting somewhere 
between a few tens of milliseconds up to a few seconds, while sac-
cades are the rapid eye movements from one fixation to another [19]. 
Scanpaths are among the most common methods for analysing and 
representing human eye movements [4, 27]. Figure 1 is an example 
of a visual encoding format where a scanpath is projected on top 
of a stimulus, e.g. a piece of text, where fixations are shown as 
numbered circles, and saccades are lines connecting them. Graph 
representation is another common format, where a scanpath gaze 
data is grouped, e.g. clustering neighbouring fixations, to create 
nodes and edges representing a graph structure [30]. 

Graph Neural Networks (GNNs) are deep-learning models that 
process graph structures and capture their dependence via message 
passing between nodes [43]. GNNs have shown good performance 
in multiple fields, e.g., natural science, social science, and bioinfor-
matics [43]. Despite this, GNNs have not been properly investigated 
in processing scanpath graph structures. There have been attempts 
in active gaze-based applications, e.g. [35]. However, we only found 
one publication, i.e. [38], that used GNNs with scanpath data in a 
passive gaze-based application, i.e., applications where eye tracking 
is used as a supporting modality to understand a user’s behaviour 
and activities without explicit gaze-based interaction [13, 34]. 

An important area for passive gaze-based applications is to un-
derstand and monitor cognitive processes [29], e.g. implicit rele-
vance estimation during reading [1, 2, 6] or during decision mak-
ing [15]. Detecting a user’s perceived relevance towards a piece of 
media is often used to improve the system performance and return 
user-tailored results, e.g., in recommender [33] and information 
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His rooms were brilliantly lit, and, even as I looked up, I saw his 
tall, spare figure pass twice in a dark silhouette against the blind. He 
was pacing the room swiftly, eagerly, with his head sunk upon his 
chest and his hands clasped behind him. To me, who knew his every 
mood and habit, his attitude and manner told their own story. 

He was at work again. He had risen out of his drug-created dreams 
and was hot upon the scent of some new problem. I rang the bell and 
was shown up to the chamber which had formerly been in part my 
own. 
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Figure 1: A manually generated scanpath over a piece of text 
as a simplified version of a real-world example. 

retrieval [32] systems. Perceived relevance estimation is also used 
in human-computer interaction (HCI), e.g. to create adaptive user 
interfaces (UIs) [14, 15]. However, explicitly detecting perceived 
relevance using questionnaires or interviews could have a negative 
impact on a user’s cognitive load [33], which is why implicit rele-
vance estimation is seen as a better alternative because it requires 
no extra effort on a user’s behalf [33, 39]. 

In this paper, we investigated using GNNs for scanpath pro-
cessing to estimate a user’s perceived relevance while reading text 
documents using the gazeRE dataset [1]. This dataset contains data 
from two different tasks using two different text corpora, where a 
user’s perceived relevance to a given query is estimated either for 
each paragraph in a document or for the document as a whole. This 
enabled us to treat each full document as a single graph and investi-
gate a graph classification task, i.e. predicting the label assigned to 
the full document, and a node classification task, i.e. predicting the 
label assigned to each single paragraph. Using a GNN requires con-
verting scanpaths into suitable graph structures. We implemented 
and compared four different scanpath graph structures to use as 
inputs to our GNNs. To evaluate our proposed method, we imple-
mented two baseline approaches. The first approach reproduced 
the setup of Barz et al. [1], which used 17 eye tracking features with 
random forest (RF) and support vector machine (SVM) classifiers. 
We extended this setup by investigating an additional feature sub-
set. The second approach replicated the method of Bhattacharya 
et al. [3], which used the VGG19 Convolutional Neural Network 
(CNN) architecture [36]. We extended this approach by examining 
its performance not only on short documents, similar to those used 
in their original experiment, but also on long documents. 

We designed our experiments to explore two primary research 
topics in a single, coherent framework. The first topic examined 
the feasibility of using GNNs to process scanpaths for perceived rel-
evance estimation, focusing on both graph and node classification 
tasks. The second topic involved a comparative analysis of the per-
formance of GNNs with other machine learning algorithms, namely 
SVM, RF, and CNN, in the context of perceived relevance estimation. 
This analysis aimed to provide a comprehensive understanding of 
the performance of these different approaches. 

2 RELATED WORK 
In the literature, we found different methods to construct graph 
structures out of scanpaths for passive gaze-based applications. Lan 
et al. [25] used a CNN to process complex graph structures where 

each gaze point represented a node for a stimulus and task infer-
ence application. Ma et al. [28] treated each word in a reading task 
as a node to structure a scanpath as a graph to measure reading 
comprehension using network metrics such as density, centrality, 
and small-worldness. Cantoni et al. [8] focused on modelling user 
viewing behaviour for user authentication by splitting the stimuli 
into 7x6 grids and used the centre of each grid cell to combine the 
different fixations into graph nodes; each node had a weight rep-
resenting the total number of fixations and total fixation duration 
within it. Khosravan et al. [21] used the BIRCH clustering algo-
rithm [42] to generate a less dense graph structure out of scanpaths 
on medical images to simplify the scanpaths without changing 
their topology; they encoded the number of nodes in each cluster 
and the total duration spent within each cluster in the graph as 
a representation for the attention in a particular region. Despite 
structuring scanpaths as graphs being common for passive gaze-
based applications, we only found one paper by Wang et al. [38] 
that proposed a gaze-guided GNN to process graphs created by 
embedding the raw gaze data with image patches from x-ray scans. 

GNNs have emerged as a powerful tool for learning with graph-
structured data, such as molecules and social, biological, and fi-
nancial networks; the key to this learning process is the effective 
representation of the graph structure [41, 43]. GNNs operate on a 
message passing scheme; each node calculates a new feature vector 
that contains structural information of its neighbouring nodes by 
aggregating the feature vectors of these neighbouring nodes; to 
represent an entire graph, a pooling method is used, such as sum-
ming the representation vectors of all nodes in the graph [41]. Zhou 
et al. [43] described a general GNN task pipeline, which consists 
of: defining the graph structure; determining the graph type (e.g., 
directed or undirected graph); identifying the task type, whether 
node-level tasks that focus on the graph nodes (e.g., node classifica-
tion), edge-level tasks that focus on the graph edges (e.g., predicting 
if an edge exists between two nodes), or graph-level tasks that focus 
on the full graph structure (e.g., graph classification); and finally, 
building the GNN model. We wanted to combine GNNs and scan-
path graph representations (without stimulus information) for a 
passive gaze-based application. The application we decided to focus 
on was estimating a user’s perceived relevance while reading to see 
whether this approach could help improve the field’s current state. 

Previous studies showed that eye tracking is a valid modality for 
estimating a person’s perceived relevance towards a text document 
with respect to a previously read trigger question. Buscher et al. 
[6] investigated the relation between a user’s reading behaviour 
and their perceived relevance towards a document. They found 
that users tend to skim irrelevant documents but exert continuous 
reading behaviour while reading relevant ones. Gwizdka [17, 18] 
introduced the g-REL corpus, which is a collection of short text 
paragraphs and corresponding questions. They used it to investi-
gate the relation between eye movements and a user’s perceived 
relevance while reading and were able to confirm the prior findings 
of Buscher et al. [6]. 

Bhattacharya et al. [3] used the g-REL corpus and encoded users’ 
scanpath data as images to estimate their perceived relevance us-
ing a CNN. They evaluated six different pre-trained CNNs but 
concluded that VGG19 [36] produced the best results. Afterwards, 
Bhattacharya et al. [2] introduced two novel convex hull-based 
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scanpath features to estimate a user’s perceived relevance while 
reading short news articles. They conducted two separate data col-
lection studies where 24 participants and 120 news articles were 
used in the first study, and 24 participants and 42 news articles 
were used in the second study. They used 10-fold cross-validation 
with an RF classifier for a binary classification over three separate 
subsets, i.e. Agree where the user’s perceived relevance matched the 
system relevance, Topical where the news articles were on the topic 
of interest but did not have the required answer, and All where they 
used the dataset as a whole. They achieved the best classification 
performance when they combined their two proposed convex hull 
features with 15 other eye tracking features from the literature. 
They reported the best model performance for the Agree subset 
followed by All, but the Topical subset produced poor results. 

Barz et al. [1] extended the prior work of Bhattacharya et al. [2] 
by investigating using the same 17 features on long documents. 
They collected data from 24 participants using 12 documents from 
the g-REL corpus and 12 documents from the Google Natural Ques-
tions (GoogleNQ) corpus [24], which is a collection of long docu-
ments that require scrolling. Despite the lower model performance, 
using RF and SVM classifiers, they produced similar findings to 
Bhattacharya et al. [2] under the same experiment conditions for 
the g-REL corpus, but were unable to generalise their findings to 
the GoogleNQ corpus. Perceived relevance estimation is still an on-
going area of passive gaze-based research. It still has open questions 
regarding topical and long documents, so it is a suitable application 
domain to investigate and test GNNs for scanpath processing. 

3 METHODS 
In this paper, we present a novel GNN-based scanpath analysis 
approach using the gazeRE dataset for a node and a graph classi-
fication problem. For the graph classification, we evaluated four 
different scanpaths graph representation formats. However, for the 
node classification, we evaluated one graph representation format. 
We evaluated different GNN operators for both tasks. As a base-
line, we reproduced the setup reported in [1] using SVM and RF 
classifiers; we also evaluated these classifiers using only the two 
convex hull-based features from [2]. In addition, to compare against 
a neural network, we replicated the VGG19 setup reported in [3]. 

3.1 Dataset 
The gazeRE dataset1 has eye tracking data from 24 participants for 
perceived relevance estimation while reading. Each participant read 
12 short articles from the g-REL corpus [17] and 12 long articles 
from the GoogleNQ corpus [24]. 

The g-REL corpus contains four relevant, four irrelevant, and 
four topical documents with respect to their accompanying query 
according to the system label. Each document had between three 
to five paragraphs (𝜇 = 3.5, 𝜎 = 0.645). Participants were shown a 
query and had to decide whether the entire document was relevant 
or irrelevant with respect to the query. A schematic example of a g-
REL stimulus is shown in Figure 2a. Out of 288 total trials, 107 were 
perceived as relevant and 181 as irrelevant by the participants. The 
Agree subset (where the perceived relevance matched the system 
relevance) has 181 total trials, with 86 relevant and 95 irrelevant 
1https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset 

Label 

Query

(a) g-REL Corpus 

Label 0 

Label 1 

Label 2 

Label 3 

Label 4 

Query

(b) GoogleNQ Corpus 

Figure 2: Schematic example of a stimulus for both g-REL 
in 2a and GoogleNQ in 2b from the gazeRE dataset [1]. 

trials. The Topical subset (i.e., documents on the topic of interest 
but not containing the query answer) has 96 total trials, with 20 
relevant and 76 irrelevant trials. 

The GoogleNQ corpus contains 12 long documents that re-
quire scrolling. One paragraph in each document is relevant, and 
the remaining paragraphs are topical to the accompanying query. 
GoogleNQ does not have explicitly irrelevant paragraphs. Each doc-
ument had between five to seven paragraphs (𝜇 = 5.83, 𝜎 = 0.799). 
Participants were shown a query and had to decide whether each 
separate paragraph in a document was relevant or irrelevant with 
respect to the query. A schematic example of a GoogleNQ stimulus 
is shown in Figure 2b. GoogleNQ has a total of 288 trials, with 450 
relevant and 1230 irrelevant paragraphs. The Agree subset (where 
the full document perceived relevance matched the system rele-
vance) has 145 total trials, with 248 relevant and 1190 irrelevant 
paragraphs. Due to all 12 documents having topical paragraphs, 
GoogleNQ did not have a Topical subset. 

We used the participants’ perceived relevance of the text to the 
query, i.e. relevant or irrelevant, as our labels for the binary classifi-
cation problem. When we mention the word label moving forward, 
that is what we are referring to. There are multiple differences 
between g-REL and GoogleNQ. Each document in g-REL has one 
label assigned to the full document. However, in GoogleNQ, each 
document has multiple labels corresponding to the number of para-
graphs within each document. Additionally, GoogleNQ does not 
have explicitly irrelevant paragraphs because all the paragraphs 
that do not have the answer to the query are on the topic of the 
query, i.e. Topical. We decided to use this dataset because the dif-
ferences between the two corpora allowed us to investigate two 
different GNN task types: Node-level and Graph-level tasks. In both 
tasks, we treated each full document as a single graph. g-REL was 
suitable for graph classification because each document had one 
label assigned to it. GoogleNQ, on the other hand, was suitable for 
node classification, where we tried to classify the labels assigned 
to each paragraph in a document. 

3.2 Traditional Machine Learning 
In order to establish a baseline for comparison, we reproduced the 
setup reported in [1]. However, in addition to using the same 17 
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Table 1: Overview of the 17 eye tracking features from [1, 2]. 

Type Features 

Fixation 

1. Number of fixations 
2. Sum of fixation durations 
3. Mean of fixation durations 
4. Standard deviation of fixation durations 

Saccade 

5. Sum of horizontal amplitudes of saccades, normalised by w 
6. Sum of vertical amplitudes of saccades, normalised by h 
7. Sum of Euclidean distance of normalised saccade amplitudes 
8. Ratio of horizontal to vertical amplitudes 
9. Average saccade amplitude 
10. Horizontal saccade velocity 
11. Vertical saccade velocity 
12. Saccade velocity 

Area 

13. Area scanned by summed saccade amplitudes 
14. The scanned area normalised by the scan time 
15. Number of fixations per scanned area 
16. The convex hull area normalised by the scan time 
17. Number of fixations per convex hull area 

features, shown in Table 1, we investigated using just the convex 
hull features from Bhattacharya et al. [2], i.e. numbers 16 and 17 in 
Table 1 because Bhattacharya et al. [2] only evaluated them on short 
documents and not longer documents such as the GoogleNQ corpus. 
We used three machine learning algorithms with our two feature 
sets: the default RF classifier from scikit-learn2; the RF∗ classifier 
which is the RF classifier with two additional preprocessing steps, 
the oversampling technique SMOTE [9] from the imbalanced-learn 
package [26], and the standardisation feature scaling method to 
make the features have zero mean and unit variance; in addition 
to the SVM∗ classifier which is the default SVM classifier from scikit-
learn with the same preprocessing steps of RF ∗ . 

3.3 Convolutional Neural Network 
We replicated the best-performing setup reported by Bhattacharya 
et al. [3] using VGG19, which is a variant of the VGG model with 
19 layers. It includes 19 convolutional layers to capture the spatial 
patterns in images. The architecture uses small 3x3 convolution 
filters, which allow it to collect more detailed and complex features. 
In addition, it incorporates three fully connected layers following 
these convolutional layers. We adapted the final output layers to 
ensure their compatibility with our binary classification task. 

In the preprocessing step, we transformed each eye tracking 
recording into a scanpath image following the methods used by 
Bhattacharya et al. [3]. For g-REL, each document produced one 
single image, while for GoogleNQ, we produced a scanpath image 
for each paragraph independently to ensure that the image dimen-
sions and presentation remained consistent with those used for 
g-REL. An example of a scanpath image is shown in Figure 3, where 
each fixation is represented by unique visual markers proportional 
to its duration, while the saccades are colour-coded to illustrate 
the sequence of reading movements across the text. Each scanpath 
image was generated on a 2560x1440 canvas and scaled down to 
256x256 as input to the CNN. 
2https://scikit-learn.org/stable/ 

Figure 3: An example of a scanpath visual representation for 
the CNN. The fixations are represented by different markers 
based on their duration, while the saccades are colour-coded 
based on their timestamp. 

3.4 Graph Neural Network 
3.4.1 Scanpath Graph Representation. In order to use the scanpaths 
as inputs to our GNNs, we converted the scanpaths into simplified 
graph structures. The generated graphs were directed (to retain the 
temporal information of a scanpath) and homogeneous (i.e., all the 
nodes and all the edges had the same type). The GoogleNQ corpus 
had a simpler conversion process because its documents were used 
in the node classification task; we treated each document as a single 
graph, each paragraph represented a node, and the saccades from 
one paragraph to the next represented the edges. However, each 
document in the g-REL corpus was accompanied by only one label; 
we tested four different approaches to generate suitable graphs 
from the scanpaths: paragraph-based, line-based, cluster-based, and 
quartile-based. 

The Paragraph-based approach, shown in Figure 4a, is the same 
approach followed in GoogleNQ (to have a common representation 
between both corpora) where each paragraph represented a node, 
and the saccades from one paragraph to the next represented the 
edges. The Line-based approach, shown in Figure 4d, tries to pre-
serve the structure of the text and reading patterns, which could be 
seen as an extension to Ma et al. [28] where they treated each word 
as a node. The Cluster-based approach was inspired by Khosravan 
et al. [21], but instead of using the BIRCH clustering algorithm [42], 
we used the Affinity Propagation algorithm [16]; Figure 4b shows 
a very simplified depiction of this approach. The Quartile-based 
approach divides the full-text document into four equal-sized nodes, 
as shown in Figure 4c; this is similar to splitting the stimuli into 
grids as reported by Cantoni et al. [8]. 

The documents in both corpora contained additional white space 
around the text along the X-axis. We ignored this extra white space, 
focusing only on the main body of the text. We limited the gaze 
points to the text body and not the background or document title. 

Across the different graph generation approaches, we used the 
number of fixations and total fixation duration within each node 
as node features similar to [8, 21]. In addition, we computed the 
same 17 features shown in Table 1 for each node for all graph 
generation methods except for the line-based approach because 
we could not compute the area-based features and only computed 
the fixation and saccade-based features. To be able to use graph 
structures as inputs to a GNN, we need to define two parameters: 
Node Features (x) and Edges (E). The parameter x, shown in 
Algorithm 1, contains the node features, where each node has a 
feature vector. The parameter E, shown in Algorithm 1, contains 
the edges in the graph, which are directed in our use case. 
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(a) Paragraph-based (b) Cluster-based (c) Quartile-based (d) Line-based 

Figure 4: Schematic examples of our four scanpath graph representations where each coloured element is a different node. 

Algorithm 1: Graph Definition 

1 Let 𝐺𝑟𝑎𝑝ℎ = (𝑉 , 𝐸) be a directed graph, where 𝑉 is the set 
of nodes and 𝐸 is the set of edges. 

0 1 12 𝑉 =   𝑛𝑜𝑑𝑒 ( ) , 𝑛𝑜𝑑𝑒 ( ) { , . . . , 𝑛𝑜𝑑𝑒 (𝑛− ) } for 𝑛 nodes. 
3 𝐸 =  { 𝑛𝑜𝑑𝑒 (𝑖 )  ,   ( 𝑛𝑜𝑑𝑒 ( 𝑗 ) )} for each edge from 𝑛𝑜𝑑𝑒 (𝑖 ) to 

𝑛𝑜𝑑𝑒 ( 𝑗 ) . 
 =  (0) (4 𝑥 (𝑥 , . . . , 𝑥 𝑛−1) ) = 

((𝑓 (0) 1  
, . . . , (0) 1  

𝑓𝑚 ),     (𝑛− )   (𝑛− )    0 . . . , (𝑓 , . . . , 𝑓 0 𝑚 )) for 𝑛 nodes 
and 𝑚 node features. 

5 Each   𝑛𝑜𝑑𝑒 (𝑖 ) is represented by 𝑥 (𝑖 ) . 
6 All connections from   𝑛𝑜𝑑𝑒 (𝑖 ) to other nodes in the graph 

are represented by edges ((𝑛𝑜𝑑𝑒 𝑖 ) , 𝑛𝑜𝑑𝑒 ( 𝑗 ) ). 
For directed graphs  𝑛𝑜𝑑𝑒 (𝑖 ) , 𝑛𝑜𝑑𝑒 ( 𝑗 ) )7 ( ) ≠ ( 𝑗  (𝑖 )(𝑛𝑜𝑑𝑒 , 𝑛𝑜𝑑𝑒 ). 

3.4.2 GNN Model Architectures. We used the same GNN network 
architectures with both the graph and node classification problems. 
Wu et al. [40] stated in their review that an open research question is 
whether using deeper GNNs is actually a good strategy for learning 
graph data because the performance of some networks tended to 
drop with an increase in the number of graph convolutional layers. 
We kept our networks simple to investigate whether basic network 
structures could yield meaningful results and insights. We used 
PyTorch Geometric (PyG) for our implementations and used their 
documentation 3  as a starting point. 

We used the Adam Optimiser [22] and the Cross-entropy Loss 
in our GNN architecture. Due to 4  Cross-entropy Loss in PyTorch
already having a Sigmoid Activation function, we did not add an 
extra activation function. The graph classification GNN is shown 
in Figure 5a, while the node classification GNN is shown in Fig-
ure 5b. We had two main differences between the graph and node 
classification networks: (1) for graph classification, we used an 
additional readout layer, i.e. Global Average Pooling, which pro-
duces a single global representation for each graph from its nodes 
graph for the graph classification problem, and (2) we used differ-
ent normalisation strategies between both problems. According 
to Chen et al. [10], graph classification problems perform better 
when the node features are normalised using batch-based normali-
sation, while node classification problems perform better when the 
features are normalised on a graph-based normalisation. We used 
BatchNorm [20] as our batch-based normalisation for the graph 
classification, and GraphNorm [7] as our graph-based normalisation 
for the node classification. 

3https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
4https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html 

We evaluated various graph convolutional operators such as 
those from Morris et al. [31] and Kipf and Welling [23]5 . However, 
using the GATv2 operator from Brody et al. [5] performed the best, 
and we only focus on it here. The standard graph attentional (GAT) 
operator [37] assigns a weight, i.e. an attention coefficient, to each 
node’s neighbours, which indicates the importance of each neigh-
bouring node, and by using multiple attention heads, each head can 
learn a different type of information concerning the neighbourhood. 
While the GAT operator is computationally efficient, it has static 
attention, meaning the weights are fixed and cannot adapt based 
on the query or context. To address this, we utilised the GATv2 
operator, which allows for dynamic changes in the weights. This 
flexibility enables the model to adapt better and has been shown to 
outperform the traditional GAT operator. Our networks, as shown 
in Figure 5, consisted of three GATv2Conv layers, each followed by 
an ELU activation function because GATv2 incorporates LeakyReLU 
in its computations, a Dropout function before the last layer to 
prevent overfitting, and a final Linear layer, which mapped the 
outputs from the convolution layers to the number of classes. 

4 EXPERIMENT 
In all our experiments, we split g-REL into All, Agree, and Topi-
cal subsets, and GoogleNQ into All and Agree subsets, similar to 
[1, 2]. All contained the whole dataset; Agree contained the data 
where the user’s perceived relevance matched the system relevance; 
and Topical contained the data where the text was on the topic of 
interest, but without having the correct query answer. 

We implemented a 5-fold stratified leave-users-out cross-validation 
using scikit-learn6 to split the data into non-overlapping training 
and testing subsets. We used leave-users-out cross-validation be-
cause, for physiological data, traditional k-fold cross-validation 
might lead to overestimating the model performance [11, 12]. For 
each fold with the traditional machine learning models (i.e., RF and 
SVM), 80% of the data were used for training, and 20% were used for 
testing. However, with the CNN and GNN models, we used nested 
cross-validation for hyperparameter optimisation using the Optuna 
framework7 . The outer cross-validation loop split the data into 20% 
for testing, and an inner cross-validation loop split the remaining 
80% of the data into 64% for training and 16% for validation. In the 
inner cross-validation loop, each model configuration was tested 
on five different training and validation data splits, and then the val-
idation performance metrics were averaged over the five folds. The 

5Their respective architectures and results are available in the Appendix in the supple-
mentary material. 
6https://scikit-learn.org/stable/modules/generated/sklearn.model_selection. 
StratifiedGroupKFold.html
7https://optuna.org/ 
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Figure 5: Our Graph Convolution Neural Networks 

configuration with the best average performance metric was then 
used to retrain the model on the whole training/validation data and 
produce the testing results; this was repeated five times for each 
testing subset. The pseudocode, shown in Algorithm 2, summarises 
this process. We used 5-fold leave-users-out cross-validation be-
cause five is a commonly used value, it is computationally efficient 
for nested cross-validation, and our data is quite small for two 
10-fold cross-validation loops. Our codes are publicly available on 
GitHub8 . 

We used balanced accuracy as our main evaluation metric. Bal-
anced accuracy is the average of the sensitivity (i.e., the true positive 
rate or how many positive labels were correctly classified as posi-
tive) and the specificity (i.e., the true negative rate or how many 
negative labels were correctly classified as negative). Our goal is to 
correctly identify a user’s perceived relevance towards a piece of 
text, which means focusing on correctly identified labels, whether 
relevant or irrelevant. Due to the data imbalance, especially for 
the Topical subset, we computed the balanced accuracy because 
it gives equal weight to both positive and negative classes. How-
ever, Barz et al. [1] used f1-score, which is the harmonic mean of 
the sensitivity and the precision (i.e., how many correct positive 
predictions exist in the total positive predictions). The issue is that 
the f1-score does not take into consideration the amount of true 
negative classifications, which is why we decided to use balanced 
accuracy as the main evaluation metric instead. 

4.1 Results 
Table 2 shows the test balanced accuracies averaged across the 
5-fold stratified leave-users-out cross-validation. For each corpus 
subset, the result of the best-performing model is emphasised and 
underlined. In the Appendix9 , we reported additional performance 
metrics, such as f1-score, true positive rate, false positive rate, and 
area under the curve. 

4.1.1 Traditional Machine Learning. For g-REL, using all 17 fea-
tures with RF resulted in a 0.624 balanced accuracy for All. Both 
feature subsets resulted in an almost identical balanced accuracy 
of 0.692 for Agree using  SVM ∗. On average, using all 17 features 
produced better results for All and Agree. None of the approaches 
produced balanced accuracies above 0.6 for Topical. For GoogleNQ, 
using all 17 features with SVM ∗ resulted in a 0.604 balanced accuracy 

8https://github.com/DFKI-Interactive-Machine-Learning/GNN-Scanpath-Analysis-
ICMI2024 
9In the supplementary material. 

Algorithm 2: GNN and CNN Model Training and Evalua-
tion Using Nested Cross-validation 

Input: Scanpath Data 
Output: Average Test Data Balanced Accuracy 

1 for each fold 𝑖 ∈ {1, 2, 3, 4, 5} do 
Split input data into training/validation set  𝑖 2 𝐷train, val 
and test set 𝐷𝑖 

test 
3 for Optuna trial 𝑡 ∈ {1, 2, . . . , 𝑛𝑡 𝑟 }𝑖𝑎𝑙𝑠  do 
4 Pick model configuration 𝑐 𝑖 𝑡
5 for each fold 𝑗 ∈ {1, 2, 3, 4, 5} do 

 6 Split 𝑖  
  𝑖 𝑗

𝐷 into training set 𝐷 train, val train and 

validation set 𝐷 𝑖 𝑗 val 
Train Model 𝑖  

7  𝑗
  𝑚 𝑐𝑡 using configuration 𝑐 𝑖 𝑡 and 

training set  𝑖 𝑗 𝐷train 
8 Evaluate Model 𝑚 𝑖 𝑗 on validation set 𝑖 𝑗 

𝐷 𝑐𝑡 to get val
the Balanced Accuracy 𝑖 𝑗 

𝐵𝐴val,𝑐𝑡 
9 Store model configuration 𝑐 𝑖 𝑡 , and Balanced 

Accuracy 𝑖  
𝐵𝐴 𝑗val,𝑐𝑡 

10 Compute Average Validation Balanced Accuracy 
𝑖

𝐵𝐴val,𝑐𝑡 for configuration 𝑐 𝑖 𝑡
11 Determine the configuration 𝑐 𝑖best with the maximum 

𝑖 
𝐵𝐴val,𝑐𝑡 

12 Train the best model 𝑚 𝑖best using 𝑐 𝑖 and 𝐷 𝑖 best train, val 
13 Test 𝑚𝑖 on 𝐷𝑖 to get test best test Balanced Accuracy 𝐵𝐴𝑖

test 
14 Store 𝑐𝑖 , and 𝐵𝐴𝑖

best test 

15 Compute Average Test Balanced Accuracy 𝐵𝐴test 

for All, but none of the approaches produced balanced accuracies 
above 0.6 for Agree. 

4.1.2 Convolutional Neural Network. For g-REL, the CNN approach 
produced average balanced accuracies of 0.676 and 0.768 for All and 
Agree, respectively. For GoogleNQ, the CNN approach produced 
a 0.603 balanced accuracy for Agree. However, for the remaining 
subsets from both corpora, the CNN resulted in balanced accuracies 
below 0.6. 

4.1.3 Graph Neural Network. For the graph classification using 
g-REL, the 17 node features resulted in higher balanced accuracies 
for both All and Agree compared to using only two node features. 
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The paragraph-based scanpath graph representation produced the 
highest average balanced accuracies of 0.701 and 0.691 for All and 
Agree, respectively. However, for Topical, the cluster-based scanpath 
graph representation resulted in a 0.648 average balanced accuracy 
using only two node features, as opposed to 0.621 using all 17 node 
features. 

For the node classification using GoogleNQ, the 17 node features 
were slightly better for both corpora. However, the average balanced 
accuracies were below 0.6 with 0.553 and 0.559 for All and Agree, 
respectively. 

5 DISCUSSION 
In this study, we implemented a GNN to process scanpath data for 
perceived relevance estimation, focusing on both graph and node 
classification tasks using the gazeRE dataset. We used established 
methods from the literature as baselines, comparing our GNN re-
sults with those obtained using traditional and neural network 
machine learning algorithms, namely SVM, RF, and CNN classifiers. 
The experiments were conducted with two primary objectives: (1) 
to assess the effectiveness of GNNs in scanpath analysis for per-
ceived relevance estimation and (2) to compare the performance of 
GNNs with that of established methods from the literature. 

5.1 Traditional Machine Learning 
For g-REL, using all 17 features resulted in better accuracies than 
just the two convex hull features, which aligns with the findings 
from Bhattacharya et al. [2]. Our results were also consistent with 
the results from Barz et al. [1], who reported best balanced accu-
racies of 0.605 for All, 0.689 for Agree, and 0.527 for Topical. This 
difference in performance can be attributed to Barz et al. [1] using 
normal k-fold instead of leave-users-out cross-validation. Overall, 
Agree performed better than All, and none of the approaches pro-
duced meaningful results for Topical, which aligns with the findings 
from both Bhattacharya et al. [2] and Barz et al. [1]. 

For GoogleNQ, Barz et al. [1] were only able to achieve a 0.57 
and a 0.543 balanced accuracy for both All and Agree, respectively. 
For Agree, we achieved similar results to Barz et al. [1]. However, 
for All, we were able to achieve a better balanced accuracy using 
all 17 features. The SVM∗  was the only approach, across all experi-
ments, including the GNN and CNN approaches, to reach a balanced 
accuracy above 0.6 for All. The two convex hull features were un-
successful in producing any meaningful results for either subset. 
Overall, despite the improvement for All, we believe it warrants fur-
ther research as we cannot conclude the success of this approach at 
predicting users’ perceived relevance with longer text documents. 

5.2 Convolutional Neural Network 
For g-REL, the CNN performed quite well. It resulted in 0.676, 0.768, 
and 0.572 balanced accuracies for All, Agree, and Topical, respec-
tively. With a 5.2% and a 7.2% absolute difference for All and Agree 
compared to the traditional machine learning classifiers, which is 
a noticeable improvement. However, despite the improvement for 
Topical, its balanced accuracy is still below 0.6. Overall, we believe 
that the CNN was successfully replicated on a new dataset. This 
proves its ability to predict users’ perceived relevance, but on short 
text documents. 

For GoogleNQ, the CNN produced the overall best results for 
the Agree subset with a 0.603 balanced accuracy. However, it did 
not produce any meaningful results for All. Therefore, we cannot 
reach a proper conclusion regarding its success at predicting users’ 
perceived relevance with longer text documents. 

5.3 Graph Neural Network 
For the GNN experiments, we start with the graph classification 
task using g-REL, and then we discuss the node classification task 
using GoogleNQ. 

5.3.1 Graph Classification Task. For g-REL, the GNN outperformed 
CNN and traditional machine learning for both All and Topical. It 
achieved a 0.701 balanced accuracy for All using the paragraph-
based graph representation with 17 node features; this is a 2.5% and 
a 7.7% improvement over CNN and traditional machine learning, 
respectively. For Topical, it achieved a 0.648 balanced accuracy using 
the cluster-based graph representation with two node features, 
which is a 7.6% and a 14.3% improvement over CNN and traditional 
machine learning, respectively. For Agree, the highest balanced 
accuracy was 0.691 using the paragraph-based graph representation 
with 17 node features; this closely matched traditional machine 
learning but fell short of CNN by 7.7%. Using all 17 features, with the 
normalisation step, provided the best performance for both All and 
Agree. However, for Topical, using only fixation duration and the 
number of fixations in each node without normalisation produced 
better results. Our assumption is that when using All, the model 
requires more information to differentiate between the different 
classes, but for Topical, a more concise view of the problem is more 
beneficial. Overall, the GNN approach was effective in analysing 
scanpaths for perceived relevance estimation for short documents in 
a graph classification task, outperforming the baseline approaches. 

Regarding the scanpath graph representation formats, paragraph, 
line, and quartile-based approaches performed well with both All 
and Agree, with paragraph producing better balanced accuracies 
for both. These three representation formats might have been suc-
cessful because they retained some semantic information about the 
text form; this requires further analysis to study the visualisation of 
the generated graphs superimposed over the stimuli for each clas-
sification result and see if there are indeed any noticeable patterns 
for each subset. However, the cluster-based graph representation 
using Affinity Propagation produced better balanced accuracies for 
Topical. This might be because the fixations were more focused 
on certain areas, e.g. certain words, so automatically generated 
clusters were able to find patterns unique to the respective labels, 
which might not have been found using paragraph, line, or quartile-
based approaches; this requires further investigation to check this 
assumption. Graph generation is quite important and could lead to 
interesting research questions regarding how different approaches 
hold up in different applications and finding better-performing 
generic scanpath graph generation approaches. 

5.3.2 Node Classification Task. For GoogleNQ, the GNN approach 
was unable to improve the balanced accuracies for either All or 
Agree. The GoogleNQ corpus did not have true irrelevant para-
graphs, and there was a high data imbalance between relevant 
and irrelevant paragraphs. Even with different graph convolutional 
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Table 2: The average balanced accuracy results (𝜇 ± 𝜎 ) for g-REL and GoogleNQ using 5-fold leave-users-out cross-validation. 
GNN models include Paragraph (PB), Line (LB), Cluster (CB), and Quartile-based (QB) graph structures. The subscript number 
indicates the total number of features (either 2 or 17), except for the LB GNN, which did not have the five area-based features. 
The best overall result for each corpus subset is underlined and emphasized. 

g-REL GoogleNQ 

All Agree Topical All Agree 
Ba

se
lin

e
M
od

el
s RF17 0.624 ± 0.056 0.651 ± 0.076 0.494 ± 0.097 0.527 ± 0.064 0.484 ± 0.015 

RF∗ 
17 0.600 ± 0.045 0.650 ± 0.092 0.505 ± 0.101 0.572 ± 0.059 0.502 ± 0.108 

SVM∗ 
17 0.607 ± 0.044 0.692 ± 0.107 0.490 ± 0.124 0.604 ± 0.047 0.542 ± 0.103 

RF2 0.486 ± 0.056 0.557 ± 0.139 0.444 ± 0.050 0.479 ± 0.038 0.461 ± 0.027 
RF∗ 

2 0.477 ± 0.049 0.570 ± 0.135 0.371 ± 0.116 0.503 ± 0.051 0.578 ± 0.218 
SVM∗ 

2 0.587 ± 0.065 0.692 ± 0.031 0.454 ± 0.088 0.588 ± 0.033 0.509 ± 0.106 

CNN 0.676 ± 0.078 0.768 ± 0.107 0.572 ± 0.086 0.552 ± 0.024 0.603 ± 0.083 

G
ra
ph

 N
eu
ra
l N

et
w
or
k PB17 0.701 ± 0.021 0.691 ± 0.114 0.486 ± 0.116 0.553 ± 0.049 0.559 ± 0.049 

LB12 0.674 ± 0.050 0.668 ± 0.070 0.528 ± 0.086 − − 
CB17 0.563 ± 0.111 0.664 ± 0.073 0.621 ± 0.220 − − 
QB17 0.634 ± 0.034 0.674 ± 0.059 0.584 ± 0.129 − − 

PB2 0.650 ± 0.040 0.682 ± 0.103 0.591 ± 0.124 0.548 ± 0.035 0.535 ± 0.031 
LB2 0.646 ± 0.031 0.682 ± 0.082 0.555 ± 0.081 − − 
CB2 0.492 ± 0.089 0.534 ± 0.031 0.648 ± 0.205 − − 
QB2 0.606 ± 0.043 0.645 ± 0.083 0.441 ± 0.132 − − 

operators, none of them produced any meaningful above chance 
level results. We think in order to test relevance estimation while 
reading longer documents that require scrolling, a more balanced 
dataset is required by either assigning a single label to a large doc-
ument or having the same number of paragraphs corresponding to 
each label, in addition to having truly irrelevant paragraphs, not 
just relevant and topical ones. Although we cannot conclude that 
our approach generalises to multi-paragraph documents, the 0.604 
balanced accuracy achieved by SVM ∗ makes us believe that investi-
gating different node classification algorithms from the literature, 
and using different node and edge features might lead to better 
results for GoogleNQ before attempting to collect a new dataset 
and dismissing this one. 

6 CONCLUSION 
This paper investigated the feasibility and potential of using GNNs 
for scanpath analysis for a passive gaze-based application, i.e., im-
plicit relevance estimation during reading. Our experiments used 
the gazeRE dataset [1], allowing us to test GNNs for graph and node 
classification tasks based on texts from the g-REL and GoogleNQ 
corpora, respectively. We implemented a very simple GNN with 
three GATv2 convolutional layers. For the graph classification task, 
we evaluated four methods for generating graph structures from 
scanpaths, while for the node classification task, we used a sin-
gle graph generation approach. As a baseline, we reproduced the 
method from Barz et al. [1] using RF and SVM classifiers with 17 
eye tracking features. We also trained these classifiers using only 
two convex hull-based features by [2]. In addition, to compare 
against a neural network, we replicated the CNN approach from 
Bhattacharya et al. [3], which we also evaluated, for the first time, 
on long documents. 
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