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Abstract
Quantum computing (QC) and machine learning (ML), taken individually or combined into quantum-assisted ML (QML), are 
ascending computing paradigms whose calculations come with huge potential for speedup, increase in precision, and resource 
reductions. Likely improvements for numerical simulations in engineering imply the possibility of a strong economic impact 
on the manufacturing industry. In this project report, we propose a framework for a quantum computing-enhanced service 
ecosystem for simulation in manufacturing, consisting of various layers ranging from hardware to algorithms to service and 
organizational layers. In addition, we give insight into the current state of the art of applications research based on QC and 
QML, both from a scientific and an industrial point of view. We further analyze two high-value use cases with the aim of a 
quantitative evaluation of these new computing paradigms for industrially relevant settings.
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1 Introduction

Quantum computing (QC), quantum sensing, and quan-
tum communication are emergent technologies that are 
expected to have a disruptive effect on large parts of science, 

technology, and the economy at large [2]. Of these three 
quantum technologies, quantum computing is thought of as 
having the greatest potential for economic impact [38] as it 
promises speedup resulting in a change of time complexity 
for certain hard computational tasks [56]. Quantum comput-
ing technologies are evaluated in various domains, such as 
finance [27], production [7], chemical modeling [52], and 
drug design [15]. Some algorithms feature provable speedup 
[56], while many others are being analyzed by simulation 
on classical computers or early QCs [9, 24]. Classical sim-
ulations of QC algorithms have, in general, exponential 
resource requirements that grow with the number of qubits 
and operations. While quantum algorithms of optimization 
tasks as targeted by operations research (e.g., scheduling and 
logistics) is a busy field of research, little attention has been 
paid to tasks in manufacturing (e.g., finite element methods 
(FEM)) [54].

The success of artificial intelligence (AI) technologies, 
in particular machine learning (ML), in the areas of natu-
ral language processing [72] and visual computing [44] is 
based on processing excessive amounts of data for training 
ML models. Large infrastructures are required for parallel 
execution of simple operations followed by optimization 
of model weights according to objective functions [33]. 
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Training large ML models currently takes several weeks. 
Hence, updating such models becomes a resource challenge. 
Quantum computing technologies could become a means 
for accelerating ML processes with the goal of real-time 
training of ML models with limited resource requirements. 
This will provide enormous economic advantages if real-
ized. The combination of machine learning with quantum 
computing, known as quantum-assisted machine learning 
or simply quantum machine learning (QML) [13, 62], har-
bors the potential of increased computing power for solving 
complex optimization problems [13]. With a competition 
of established scientific computing and ML in the classical 
realm, we can also ask in the QC domain which approach 
is more promising in the long run and in the NISQ era [59].

In this project report,1 we discuss the applicability of QC 
and various approaches for QML for the simulation of manu-
facturing processes. We distinguish between approaches that 
solely rely on quantum algorithms and hybrid approaches 
combining QC algorithms with classical algorithms. We 
describe the typical bottlenecks of current computing for 
application in real-world tasks such as manufacturing, and 
we describe several strategies pursued to improve the qual-
ity and speed of those calculations. A primary goal is to 
develop potential use cases for QC and QML for the manu-
facturing industry within the lightweight design sector. The 
term ‘simulation’ refers to the use of computational mod-
els to imitate physical systems over time [55]. The present 
work does not encompass ‘quantum simulation,’ in which 
the manipulation of a controllable quantum system directly 
simulates another quantum system of interest [2, 29]. The 
objective is to understand, develop, and evaluate software 
that addresses the application of QC in distinct and explicit 
industry-driven use cases. For science, we are working in 
an area where results on quantum speedup are conditional 
on various requirements or are only conjectured or empiri-
cal. For applications, mapping use cases to the library of 
quantum algorithmic primitives is an important step toward 
using and evaluating this technology.

Two use cases are used to illustrate the opportunities and 
challenges of the practical application of QC. The first use 
case relates to the simulation of manufacturing processes 
with the aid of FEM for the example of the production of 
blade integrated disks (blisks) for jet engines. This involves 
the simulation and optimization of milling processes while 
complying with quality specifications, i.e., it has to be 
ensured that the milling process is not compromised by 
resonant mode excitations. In this use case, we investigate 
how quantum algorithms accelerate classical simulation 

processes. The second use case relates to the field of laser 
cutting of metals with a focus on heat dispersion and thermal 
expansion. Here, hybrid and pure QML approaches are dis-
cussed. Both cases are attractive for QC—both in the scien-
tific computing and the QML context. They deal with large 
sets of data but a relatively small set of input and output 
information. Also, they are based on linear or near-linear 
theories.

The remainder of this paper is organized as follows. Sec-
tion 2 describes a framework for a QC-enhanced ecosystem 
for simulation in manufacturing. Next, a number of QC- and 
QML-approaches to accelerating simulations in manufactur-
ing are discussed. This includes the description of the cur-
rent state of the art in both quantum simulation (Sect. 3.1) 
and quantum machine learning (Sect. 4.1), in each case fol-
lowed by the quantum-enhanced approach (Sects. 3.2 and 
4.2, respectively). To exemplify these concepts, Sect. 3.3 
describes the application of QC to a milling use case, while 
Sect. 4.3 describes the application of QML to the simulation 
of heat dissipation during laser cutting.

2  Framework for QC‑Enhanced 
Service Ecosystem for Simulation 
in Manufacturing

The goal of the project “QC-Enhanced Service Ecosystem 
for Simulation in Manufacturing" (QUASIM) is to develop 
and test algorithms and technologies of quantum comput-
ing for critical simulation challenges in manufacturing. This 
involves integrating QC into Industry 4.0 frameworks as 
“Quantum-as-a-Service" (QaaS) and facilitating knowledge 
transfer for production-oriented simulation based on QC.

Figure  1 shows our proposed framework for a QC-
enhanced service ecosystem for simulations in manufac-
turing, composed of multiple layers: hardware, platform, 
algorithmic, data, service, and organizational. The hardware 
layer forms the basis for the QC-enhanced ecosystem, con-
taining the hardware necessary for realizing QC and QML 
applications. The platform layer then connects AI and QC 
platforms via AI and QC patterns as well as algorithms. In 
the algorithmic layer, algorithms for both pure and hybrid 
QC (the combination of QC with classical computing) are 
developed based on AI, QC and domain models. The last 
can be either static or dynamic and develop from domain-
specific processes and tasks, which are fed into the mod-
els via representations of data assets. This layer also hosts 
algorithmic benchmarks. Finally, the algorithmic results are 
transferred to the data layer using classical output models.

The service layer provides QC services that are developed 
based on algorithms and data assets. Quantum computing 
services shall be made available for domain environments, 
e.g. tool and mold making, semiconductor industry, or 

1 This work is part of the research project QUASIM, funded by the 
Federal Ministry for Economic Affairs and Climate Action (BMWK), 
grant number: 01MQ22001A. https:// www. quasim- proje ct. de/.
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engine construction, and support the processes and tasks 
therein. The services can be used by and provide value for 
different stakeholders with disparate business goals (cf. 
organizational layer). The underlying business goals of the 
stakeholders such as decision makers, engineers, or work-
ers are included in the development and refinement of QC 
services to create the most value for them. QC requirements 
engineering methods [68] can be used to conceptualize the 
services and related software in a first step.

Implemented QC-based services will be integrated into 
the existing digital twin framework. This opens the door to 
QC applications in existing digital infrastructures for indus-
trial end users and drives QC use in industrial environments. 
The framework builds a basis for demonstrating practical 
QC applications in manufacturing and to derive medium and 
long-term competitive advantage for manufacturing compa-
nies using QC.

The algorithms developed within the project’s scope are 
hardware agnostic; this feature provides flexibility in select-
ing appropriate hardware for each use case. Access to QC 
hardware can achieved via configurable API.

The simulation services developed will be incorpo-
rated into preexisting industry 4.0 frameworks to acceler-
ate users’ adoption. One example of such a framework is 
dPart Ⓡ , developed at the Fraunhofer IPT for digital twins in 
machining. Additionally, a QaaS backend will be available 
as software modules that can be integrated by CAx software 
providers and machine tool manufacturers into their product 

offerings. In the short term, it is envisioned to give users 
access to QC simulations via web-based applications, where 
examples of the two use cases described in the following 
sections will be available.

3  Quantum Computing for Classical 
Simulation

3.1  State of the Art

Enhancing the simulation capabilities of scientific comput-
ing, compared to what is currently classically achievable, 
is one of the goals of quantum computing. This area of 
research can be broadly divided into two categories: quan-
tum simulation of material and molecular properties, and 
QC for general linear algebra. In the QUASIM project, we 
focus on the latter.

Most quantum algorithms for linear algebra rely on the 
quantum phase estimation (QPE) subroutine [23, 41, 56]. 
The problem that QPE solves can be formulated completely 
classically: given the eigenvector u with eigenvalue ei� of a 
N × N unitary matrix U, estimate the phase � of the eigen-
value. It was shown in [1] how QPE can be turned into an 
eigenvalue and eigenvector finder for a general matrix H 
with an exponential reduction in the number of systems 
needed, given some assumptions on the matrix H. We note 
that QPE is the basic subroutine used by Shor’s factoring 

Fig. 1  Envisioned QC-enhanced service ecosystem for simulation in manufacturing
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algorithm [65] and by the standard version of the Har-
row–Hassidim–Lloyd (HHL) algorithm for solving linear 
systems of equations [34].

The core idea of quantum algorithms for linear algebra 
is to encode a N × N  matrix as an operator in a quantum 
system involving only O(poly(logN)) qubits. Despite this 
exponential compression, a quantum computer is still capa-
ble of extracting useful information about the matrix and, 
thus, the problem we want to solve. However, an end-to-
end analysis of a quantum algorithm requires studying the 
scaling also with respect to other parameters such as the 
sparsity or the rank of the matrix, its condition number, and 
the desired precision of the solution. Depending on the prob-
lem, these parameters can also implicitly depend on the size 
of the matrix. Additionally, the encoding step in the quan-
tum computer and the extraction of the information from 
the quantum computer, which are problem-dependent tasks, 
also need to be efficient. For a comprehensive overview of 
quantum algorithms and their scaling, please refer to [25].

An important subroutine that is employed in many quan-
tum algorithms is Hamiltonian simulation. In Hamiltonian 
simulation, we are given a Hermitian matrix H, which we 
call a Hamiltonian, and a quantum system in a state ��⟩ . The 
task is to transform the state into a new state evolved for a 
time t, ��(t)⟩ = e−iHt��⟩ , within a certain accuracy. The first 
quantum algorithm for Hamiltonian simulation was given by 
Lloyd for the case in which the Hamiltonian has an efficient 
decomposition in terms of operators acting locally on qubits 
[46]. Later, Aharonov and Ta-Shma extended this result to 
sparse Hamiltonians with oracle access to their matrix ele-
ments [3]. For this access model, improvements in terms of 
runtime and number of ancilla systems needed have been 
achieved during the years [10, 11, 19]. In recent years, the 
seminal works of Low and Chuang [47, 48] allowed the 
formulation of the previous algorithms under the general 
framework of block-encoding of matrices into unitaries. 
The block-encoded formulation of Hamiltonian simulation 
further sparked the development of the quantum singular 
value transform (QSVT) [32, 71], which, in the modern 
theory of quantum algorithms, is viewed as a fundamen-
tal primer of several quantum algorithms with a provable 
quantum advantage [49]. [40] even provided a small scale 
test of Hamiltonian simulation based on block encoding on 
NISQ devices. On the other hand, the QSVT formulation of 
quantum algorithms has also allowed the inverse process of 
dequantization, i.e., the development of classical algorithms 
inspired by the quantum ones [6, 18, 30, 31, 69, 70].

In our project, we explore the application of quantum 
algorithms to problems that emerge in numerical simula-
tions of manufacturing processes. A typical example of such 
a problem is the analysis of the vibrations of a solid when 
subject to an external force. The problem translates into an 
eigenvalue problem that is discretized using finite element 

methods (FEM), for instance. Notice that once discretized 
the problem becomes mathematically equivalent to that of 
coupled harmonic oscillators, which has been recently stud-
ied in [4]. Quantum algorithms for FEM simulations have 
already been studied in [22, 54], where the authors analyzed 
algorithms based on the HHL algorithm [34]. General quan-
tum algorithms for partial differential equations have also 
been recently investigated [12, 20, 21, 45]. We remark that 
QPE-based algorithms are believed to require a fault-toler-
ant quantum computer given their high circuit depth, and as 
such, they are not considered NISQ algorithms.

3.2  General Approach in QUASIM

State-of-the-art manufacturing processes can be optimized 
with the support of computer simulations, which are time-
consuming and expensive. In QUASIM, we are concerned 
with mathematical problems that occur frequently in indus-
trial simulations, and quantum algorithms that solve those 
exact problems either in a shorter time or using less stor-
age than any classical algorithm. We aim for improvements 
on the scaling with problem-dependent parameters, such as 
the number of equations to solve, or the desired accuracy. 
Hence, we consider computations of large mathematical 
problem size, which are common in simulations.

One common simulation algorithm used in manufactur-
ing is the FEM. This method allows the solving of physi-
cal equations for continuous systems in return for extensive 
computational effort. As part of FEM, the physical domain 
is discretized in so-called elements. The interaction between 
those elements is described by a system of numerical equa-
tions, which often require iterative solvers. For linear equa-
tions, both, the computation time ( O(N3) ) and the required 
storage ( O(N2) ) scales polynomially with the number of 
equations N [43]. For more details on the finite element 
method, please refer to [36, 37].

In order to achieve an advantage, we concentrate on prob-
lems that can be solved with exponential speedup over their 
classical counterparts. Two quantum algorithms promising 
such a speedup are the HHL algorithm and the QPE, which 
solve linear equations and eigenvalue problems, respec-
tively. Both problem types can be found in finite element 
simulations used in manufacturing. Linear equation solvers 
are more versatile, which makes an end-to-end implementa-
tion of the HHL algorithm more favorable. However, since 
QPE is a significant subroutine of the HHL algorithm, every 
knowledge gained in an end-to-end implementation of the 
QPE can be used for the HHL algorithm as well. This is 
why we concentrate our work on the QPE and eigenvalue 
problems in QUASIM.

When using QPE, one has to be cautious not to lose 
any speedup in the subroutines such as the Hamiltonian 
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simulation, state preparation, or post-processing steps. 
Those subroutines are the interface between classical and 
quantum computations and scale with the amount of infor-
mation that needs to enter and exit the quantum computer. 
Hence, the amount of data that shall be transferred between 
those two platforms has to be minimal in order to contain 
quantum speedup ( ≲ O(N) for polynomial or ≲ O(logN) for 
exponential speed up). Furthermore, the QPE is a probabil-
istic algorithm, which means that some results can only be 
extracted by sampling multiple times from the algorithm.

A standard application for an eigenvalue solver is the 
determination of eigenfrequencies of oscillating systems. 
This can be of importance in various areas, such as the 
design of LC circuits or the prevention of manufacturing 
dependent excitations of vibrational eigenmodes in products 
[28, 60]. The latter use case is described in more detail in 
3.3 for the optimization of the milling process of a com-
pressor blade. A more detailed description of how to use 
QPE for the computation of vibrational eigenmodes and the 
corresponding response function has been developed in this 
project [26]. This work contains a full complexity analysis 
with respect to error tolerances and the matrix size N, and it 
explores an additional application for this algorithm.

3.3  Specific Application: Milling Dynamics 
Simulation

Milling is a metal-cutting manufacturing process with a 
circular cutting motion of a usually multi-toothed tool to 
produce any workpiece surface. In all milling processes, in 
contrast to other processes such as turning, drilling, etc., 
the cutting edges are not constantly engaged, but at least 
one cutting interruption per cutting edge occurs with each 
revolution of the tool [42]. Due to the constant cutting inter-
ruptions, depending on the milling cutter speed, a dynamic 
excitation of the workpiece and the tool can occur, which 
can have a negative effect on the surface quality in the form 
of vibration marks. Dynamic process stability simulations 
are carried out to analyze the vibrations and to improve the 
process design for the milling of thin-walled components.

In industrial applications, models and simulations based 
on digital twins are mostly excluded due to their compu-
tational requirements and the expert knowledge needed to 
operate them. In industrial practice, many relevant physi-
cal effects are thus either neglected or only approximated 
by rough estimates. As a result, the quality of the digital 
twin, if used at all, and the insights and decisions derived 
from it suffer significantly, which often leads to significant 
economic disadvantages in the industry. Due to high-qual-
ity requirements and usually considerable costs for rejects, 
simulations based on digital twins enable economically and 
ecologically optimized machining processes to be planned 
and executed.

Within the digital twin framework of the Fraunhofer Insti-
tute for Productions Technology Aachen  dPart® [28], the 
engagement simulation is a dexel-based simulation. A dexel 
model is a discrete representation of a solid volume based on 
a regular grid, which enables a more efficient simulation of 
material removal processes than mesh-based methods. For a 
good representation of 3D volumes, a multi-dexel approxi-
mation is used [67]. The engagement simulation provides the 
tool’s contact area, contact length, and width (see Fig. 2). It 
also allows tracking removed volume to enable an evaluation 
of the workpiece cut by cut. To compute the removed mate-
rial, the algorithm calculates the intersections between the 
milling tool volume and the three-dimensional dexel field. 
The intersections are performed individually for each of the 
three dexel grids to take advantage of memory closeness. 
The calculations performed by the intersectors are based on 
floating-point calculations.

Modeling mechanical and thermal effects during machin-
ing, such as the calculation of dominant frequencies of 
thin-walled workpieces based on process-specific bound-
ary conditions, is frequently accomplished via FEM [17, 
64, 73]. The calculation of tool and workpiece dynamics at 
each selected cutter location along the toolpath is essential to 
describe vibrations occurring during the cutting process [5, 
14, 74]. Within novel simulation approaches based on FEM 
and computer-aided manufacturing (CAM), it is possible to 
take into account systematically the continuously changing 
workpiece dynamics due to material removal (see Fig. 2) 
[50, 51]. This allows a position-oriented evaluation of the 
frequency response function (FRF) of the workpiece, which 
can be subsequently coupled with simulated or experimen-
tally determined milling tool FRFs measured at the tooltip. 
The FEM simulation workflow, originally published in [60], 
is performed for each in-process workpiece (IPW) (Fig. 2) 
in subsequent calculations.

Fig. 2  Simulated milling tool engagement. Shown are an in-pro-
cess workpiece (IPW) of a single blade demonstrator (left), and the 
detailed representation of the chip removal (center) with the three 
characteristic chip parameters: length l

sp
 , thickness h

sp
 , and width b

sp
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Starting after the dexel-based engagement simulation 
in CAM, the main steps of the FEM simulation workflow 
are: IPW conversion from dexel to solid, meshing process, 
and modal analysis. Considering the condition for quantum 
acceleration, the workflow is analyzed step by step both in 
terms of computational time and with regard to extracting 
numerical problems that can be transformed in quantum 
algorithms [61]. The “modal analysis”, i.e., solving the 
eigenvalue problem, is found to be a suitable numerical 
problem for computation on a quantum computer. The solu-
tion of the eigenvalue problem using quantum algorithms is 
under investigation within this project. Within the classical 
step “modal analysis” the equation of motion

for a free and undamped system is consulted in the physical 
domain on a local simulation computer. Here, M is the mass 
matrix, K is the stiffness matrix and x(t) and ẍ(t) contain the 
displacements. In combination with the equations of har-
monic motion, the equation of motion can be transformed 
into a generalized eigenvalue problem

The eigenvalues and eigenvectors are the square of natu-
ral frequency �2

i
 and the mode shapes Φi of the structure, 

respectively. By knowing eigenvalues and eigenvectors (and 
damping ratio), the dynamics for each simulated IPW can 
be described in state space representation, usually visualized 
as FRF on the quantum computer. The calculated solutions 
can then be sent back to the local simulation computer via a 
quantum as a service backend. There, the results can be fur-
ther utilized for optimization of the spindle speed to reduce 
process vibrations.

4  Quantum Machine Learning for Classical 
Simulation

4.1  State of the Art

In recent years, ML has made significant progress due to a 
combination of better hardware as well as new processing 
techniques, both of which have allowed models to process 
larger amounts of data than ever before [33, 44, 72]. In addi-
tion to typical data-driven scenarios, ML has also become 
an alternative to numerical solutions for the simulations of 
classical physics [39]. A major challenge of state-of-the-art 
ML is the increasing amount of computational resources 
needed for training. One promising way to mitigate this 
challenge is to use quantum computing for more efficient 
learning methods.

(1)Mẍ(t) + Kx(t) = 0,

(2)(K − �2
i
M)Φi = 0.

Since NISQ computers are still in their infancy, and lim-
ited in size and available gate depths, they often can be simu-
lated on classical hardware. Therefore, one can use real and 
simulated NISQ computers alongside classical computers 
to perform tests on machine learning tasks in hybrid QC. A 
popular implementation of this uses variational or param-
eterized quantum circuits (PQCs), which have an advantage 
over classical ML in certain learning tasks [16].

Such PQCs generally consist of four parts: encoding 
blocks, parameterized blocks, a measurement, and a loss 
function. The encoding blocks map classical data into 
a quantum state, while parameterized blocks consist of 
quantum gates with tunable parameters that are optimized 
throughout the learning process. The choice and structure 
of gates has a large effect on the outcome of the learning 
process [35, 57, 63, 66]. The measurement collapses the 
qubits into one of the computational basis states and passes 
an average over several measurement outcomes to a classi-
cal computer, where the loss function is calculated, and the 
optimization step is performed. The parameters in the circuit 
are then tuned to minimize the loss function [8, 62].

Below, we demonstrate how large graph data sets can be 
processed using PQCs. Section 4.3 then demonstrates an 
application of these methods to the laser cutting use case.

4.2  General Approach in QUASIM

In the simulation of manufacturing processes, meshes are 
used to digitally represent a space-discretized version of 
produced parts. We focus on simulated physical quantities 
stored in a mesh-based data structure. One can view the 
meshes as graphs G = (V ,E) , with V the set of vertices, E 
the set of edges, and represent the physical quantities of the 
manufactured part as node features f t

v
 and edge features �t

v,w
 , 

for vertices v, w, and for a certain timestamp t. The task is 
to predict an update for the physical quantity of interest, 
represented by the label f t+1

v
 , for each vertex of the graph 

(for simplicity, we focus on vertex-based data structures).
For such data structures, graph neural networks (GNNs) 

are the preferred machine learning approach, since they 
can leverage the symmetries of the graph. There are quan-
tum variants of such approaches that take symmetries into 
account, for example, equivariant models for unweighted 
[53] and weighted graphs [66]. Equivariant models permute 
the outputs in the same way as the inputs are permuted. 
The downside of these proposals is that at least one qubit 
is needed for each node and feature, thus rendering large 
graph data sets unfeasible for near-term quantum computers.

In order to make such methods amenable to NISQ, we 
turn to a local model: instead of passing the whole graph 
to a PQC the circuit is parsed centered at one vertex at a 
time, which effectively lowers the input size for the cir-
cuit. In this approach, an update consists of applying many 
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submodels Md in parallel, each to a tree subgraph Gv of G. 
The set of vertices of Gv consists of v as the root node and 
its neighbors, N(v) , as leafs, having the root vertex degree 
d = |N(v)| . Submodels (together with their weights �d ) 
are shared across the subgraphs with the same degree. We 
restrict ourselves to nearest neighbors here, which turns 
the tree into a star graph. The extension beyond the nearest 
neighbors is straightforward.

Every submodel creates a quantum state ��v,N(v), �d⟩ , via 
the application of gates parameterized by learnable parame-
ters and data features. The expectation values of the quantum 
state with respect to an observable O are obtained through 
measurement and decoded using a classical function D. For 
the label f t+1

v
 at node v, the prediction f̃ t+1

v
 is obtained via 

the equation

The specific choices of D, O, and the circuit ansatz used to 
construct the state ��v,N(v), �d⟩ can be problem-dependent 
and need to be specified accordingly. However, we work 
with a few guidelines for defining these local models: param-
eterized one-qubit gates can be used for the encoding of 
node features, while two-qubit gates can entangle qubits that 
refer to connected nodes, parameterized by learnable param-
eters and edge features.

The submodels must be made invariant under permuta-
tions of the neighbors so that the order in which the nodes 
are read does not affect the output of the submodel. This 
reflects one symmetry of scalar functions defined on graphs. 
This inductive bias can be ensured by choosing the appropri-
ate gate architecture and reusing parameters. Figure 3 shows 
an example, explained in the next section.

Note that the combination of locality and degree-focus 
turns a trained model reusable for parts with different geom-
etry, as long as the range of degrees of their meshes are 
equal.

(3)
f̃ t+1
v

= Md(�d, f
t
v
, f t
w1
,… , f t

wd
, 𝜀t

v,w1
,… , 𝜀t

v,wd
)

= D
�
⟨v,N(v), �d

��O��v,N(v), �d⟩
�
.

4.3  Specific Application: Laser Cutting

This section delves into the promising potential of PQCs 
for addressing real-world manufacturing challenges cur-
rently addressed by FEM simulations. The example of heat 
distribution management in laser cutting processes with 
a TRUMPF laser cutting system serves to illustrate this 
potential.

TRUMPF laser cutting machines possess the capability 
to operate autonomously once the desired cutting program is 
specified, handling everything from running the laser path to 
loading or unloading and sorting materials. This enables the 
machine to operate without human supervision, yet frequent 
production standstills persist due to thermal expansion on 
laser-cut parts, causing up to 1% of parts getting stuck inside 
the sheet and having to be removed manually. Consequently, 
laser cutting machines can run into a standstill overnight, 
which results in significant economic disadvantage. To solve 
this problem, it is proposed to simulate the heat distribu-
tion during the laser-cutting process. By accurately mod-
eling it and subsequently predicting thermal expansion, an 
optimized cutting route that minimizes the risk of machine 
standstills can be planned.

Accurately simulating the temperature during laser 
cutting with complex geometries and long cutting times 
requires significant computational efforts. In contrast to con-
ventional FEM-based simulations, ML approaches, such as 
MeshGraphNets [58], accelerate FEM simulations by one to 
two orders of magnitude whilst maintaining a high accuracy. 
However, training such large ML models currently takes 
several weeks, which makes updating such models compu-
tationally challenging. Efforts have been made to conduct 
thermal simulations using hybrid-QML approaches, such 
as QFE-GNNs [75], where the encoding layer of the clas-
sical GNN is substituted with PQC to enhance feature rep-
resentation. This method achieves better performance than 
traditional GNNs, however, scaling these models to handle 
larger graphs with complex geometries remains challenging. 
In this work, the advantages of quantum machine learning 
approaches, as described above, are investigated to simulate 
thermodynamics from laser-induced heat on metal plates.

The metal geometry is represented by a mesh structure, 
which can be formulated as a graph G = (V ,E) . The model 
is formulated employing the PQC approach outlined in 
Sect. 4.2 for predicting the temperature f t+1

v
 at the vertex 

v for the next time step (t + 1) , depending on the tempera-
tures from the previous time step t at the vertex v and its d 
neighbors N(v) . A visualization of the circuit can be seen 
in Fig. 3.

Reusing the parameters �d,n and �d,e across wires repre-
senting neighbors turns the circuit invariant under permuta-
tions of the neighbors, in the sense that the same temperature 

encoding variational layer measuring

. . .

. . .

. . .

v |0〉 RY (πf t
v − π

2 ) RX(θd,c) H
arcsin z

π−−−−→ f̃ t+1
v
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2 ) RX(θd,n) RZ (θd,e)

|0〉 RY (πf t
wd

− π
2 ) RX(θd,n) RZ (θd,e)

Fig. 3  The PQC Md used to make temperature predictions in the 
laser cutting use case. The first qubit represents v, and the subsequent 
qubits represent the d neighboring nodes. The temperature of each 
node is embedded on to the corresponding qubit. This is followed by 
a parameterized layer, where the first qubit and the subsequent qubits 
are entangled. Finally, the expectation value of the first qubit is meas-
ured and then projected to a temperature value
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prediction f̃ t+1
v

 is obtained for any order in which the relative 
temperatures f t

wk
 are fed into qubits.

For a fixed graph G and time step t, the mean squared 
error (MSE) is minimized, which can be computed as

where, � denotes the trainable parameters and M� represents 
our overall model.

Future enhancements to the model will focus on integrat-
ing additional features, such as the distance between nodes, 
the thermal properties of the metal being cut, and the trajec-
tory of the laser. There are also plans to investigate different 
circuit ansatzes, including methods for data re-uploading 
and a variety of circuit architectures, to produce more accu-
rate predictions.

5  Summary and Outlook

The quantum computing project QUASIM represents a pio-
neering effort to integrate QC with traditional manufacturing 
processes, focusing on milling and laser-cutting use cases. 
This endeavor marks a significant advancement in the appli-
cation of quantum technology in high-value manufacturing 
operations. The project has addressed these complex pro-
cesses by combining domain-specific knowledge with QC 
expertise, offering new insights into potential efficiencies 
and precision enhancements. This synergy of traditional 
manufacturing techniques and cutting-edge quantum com-
putation is a testament to the project’s innovative approach 
and potential to revolutionize industry practices.

In the short term, heuristic benchmarking to analyze the 
expected quantum advantages in manufacturing simulations 
needs to be targeted. This involves a detailed investigation 
into the resource requirements of NISQ technologies [59], 
focusing on evaluating the performance of graph neural net-
works against phase estimation methods in quantum con-
texts. These initial steps are crucial in establishing a solid 
foundation for QC applications in manufacturing, ensuring 
the technology is not only advanced but also relevant and 
applicable to industry needs.

Looking ahead, the project envisions the development of 
comprehensive, end-to-end software packages that seam-
lessly integrate quantum algorithms with manufacturing 
processes. These software solutions aim to be user-friendly 
and accessible to industry professionals, bridging the gap 
between QC theory and practical application. In the longer 
term, the creation of application prototypes is planned. 
These prototypes will serve as tangible examples of quantum 
computing’s practical application in real-world manufactur-
ing scenarios, demonstrating its effectiveness and paving 

(4)�G,t(�) =
1

|V|
∑

v∈V

|||f
t+1
v

−
[
M�(G, {f

t
v
})
]
v

|||
2

,

the way for broader adoption in the industry. Through these 
ambitious goals, the project aims to lead the way in apply-
ing quantum computing to enhance high-tech manufacturing 
processes, setting a precedent for future innovations in the 
field.
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