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cGerman Aerospace Center, Braunschweig, Germany
dDepartment of Surgery, University Medical Center Schleswig-Holstein, Lübeck, Germany
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ABSTRACT

The assessment of lymph node metastases is critical for accurate cancer staging and consequently the decision for
treatment options. Lymph node staging is a challenging, time-consuming task due to the fact that lymph nodes
have ill-defined borders as well as varying sizes and morphological characteristics. The purpose of this study is
to evaluate the effects of using different anatomical priors with the aim of guiding network attention within the
application of segmentation of pathological lymph nodes in the mediastinum. The first presented prior, a distance
map, displays the distance to a commonly defined point across all patients and, thus, provides an orientation of
where a patch is extracted from. The second prior option, a probabilistic lymph node atlas, provides a map of
areas where healthy and pathological lymph nodes are located, but also highlights lymph node stations that are
more likely to become malignant. The distance map as well as the probabilistic lymph node atlas are results of
an upstream atlas-to-patient registration approach. The third prior is a combination of segmentation masks of
anatomical structures generated by the TotalSegmentator algorithm. A paired t-test on 5-fold cross validated
results shows no significant differences in Dice score between models trained with the distance map or/and the
probabilistic lymph node atlas compared to models trained with CT only. Counterintuitively, the models trained
with segmentation masks of selected anatomical structures show significantly decreased segmentation accuracy.
However, using the probabilistic lymph node atlas reduces the number of false negatives and consistently elevates
the effect of post-processing.
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1. INTRODUCTION

As part of the Tumor Node Metastases (TNM) classification for cancer staging, the N-staging sheds light on
the infestation of metastases in regional lymph nodes. The enlargement of lymph nodes occurs as a response
by the immune system, whereby a major contributing factor is the infiltration of tumor cells. In the field of
medical imaging, PET/CT scans are oftentimes used to evaluate malignancy of lymph nodes. However, in
cases where PET scans are unavailable, medical professionals rely on CT images and assess lymph node size
based on a predefined rule set known as Response Evaluation Criteria in Solid Tumors (RECIST).1 According to
RECIST guidelines, a lymph node is considered pathological if its short-axis diameter exceeds 10mm. Automatic
segmentation of enlarged lymph nodes in CT images can serve as a basis for decisions regarding the necessity of
surgical intervention and further treatment, and support automatic tumor staging based on both PET/CT or
CT only. However, segmentation of lymph nodes in CT image data is difficult because, on the one hand, contrast
differences to surrounding tissue are marginal and, on the other hand, lymph nodes strongly vary in size, shape,
number, and location.
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Automatic lymph node classification, detection, and segmentation has a long history in medical research.
Feuerstein et al.2 transfer the use of atlases for segmentation purposes from the field of brain imaging to lymphatic
tissue in the chest. Similarly, Feulner et al.3 create a probabilistic atlas from lymph node segmentation masks
and use this as a spatial prior for a multistep approach based on conventional methods. With Roth et al.,4 who
provide a data set of 3D CT volumes of 90 patients and 388 segmented lymph nodes, learning-based methods
become popular in this field of research. The authors train a CNN using three reformatted, orthogonal 2D slices
through the centroid coordinates of a volume of interest. Multiple authors build upon this work and experiment
with variations of network architectures. Iuga et al.5 introduce a 3D fully convolutional foveal neural network,
which extracts features at different resolutions. Nayan et al.6 test a modified upsampling strategy for U-Net++.
A combination of both worlds – the introduction of spatial prior information and learning-based approaches, is
proposed by Bouget et al.7 They use segmentation masks of the esophagus and other anatomical structures as
additional channel input to a 3D U-Net with the aim to prevent the network from generating false positives in
these areas.

This work focuses on the comparison of different spatial anatomical priors consolidated as additional input to
deep learning methods for the segmentation of enlarged, mediastinal lymph nodes. We propose upstream atlas-
to-patient registration to generate strong anatomical priors, in turn, to assist the neural network in overcoming
the challenges of robustly detecting lymph nodes. Here, the priors used were a distance maps normalized to
the atlas’ coordinate system, probability maps for the occurrence of lymph nodes, and segmentation masks of
various anatomical structures. We used a modified version of nnU-Net as the network architecture. In our
experiments, we investigated the influence of different prior information on segmentation accuracy and selected
distance metrics.

2. METHODS

As a basis for our segmentation network, we used the nnU-Net8 with additional residual connections in the
encoder.9,10 Standard augmentations such as random cropping, rotating, and flipping were used.

2.1 Generation of Anatomical Priors and Pre-processing

Three anatomical priors were investigated for comparison, which were defined and generated as follows: A
distance map (DM) was calculated with respect to a manually defined point (underneath the bifurcation of
the trachea) on a reference patient, our atlas.11 This distance map was then warped to all training patients,
resulting in an individual distance map for each patient normalized to a standard coordinate system. This prior
provides coordinates relating to a reference anatomy, so that identical anatomical localizations have identical
coordinates in all images. The motivation behind using this prior is that it provides an orientation of where a
patch is extracted from. The probabilistic lymph node atlas (PA) originated from the registration of annotated,
publicly available CT images of 119 patients4,7 to the atlas. The registered segmentation masks were averaged
to create a probability map and warped to each patient image to indicate potential regions with lymph nodes.
In addition, this prior option highlights lymph node stations (i.e. 4, 7, and 10) that are more likely to become
malignant due to their proximity to the lungs. The segmentation masks (SM) for the third prior option resulted
from a selection of anatomical structures, e.g. bones, heart, esophagus, trachea and aorta, segmented by the
TotalSegmentator algorithm.12 Segmentation masks of anatomical structures can also serve better orientation,
as the same structures are marked with the same class value throughout all patients. Additionally, all segmented
regions besides the background indicate where lymph nodes are not to be found. The suggested collection of
priors can be reviewed in Fig. 1 and was provided in various combinations as network input in addition to the
CT data.

The registration pipeline of the atlas to the input data consisted of a rigid registration (first step), followed
by an affine registration (second step), and finally a non-linear registration using ITK’s VariationalRegistration
module13 (third step). As mentioned in Sec. 1, the CT images are strongly heterogeneous, vary in field of view,
and contain pathologies, compromising the robustness of pure intensity-based registration. Therefore, rigid and
affine registration was based on the anatomical segmentation masks described above.

Further pre-processing, included cropping all input data to the size of the segmentation mask of the lung by
using the lung masks from TotalSegmentator12 to reduce computational costs. Default CT normalization of the



Figure 1: Image 1a shows the CT image and the according lymph node segmentation masks of an exemplary
patient. Image 1b, the distance map, has its center approximately underneath the bifurcation of the trachea.
The deformation of the map is visible, which comes from the fact that distances are measured according to the
atlas’ coordinate system. The probabilistic lymph node atlas registered on the exemplary patient as well as the
segmentation masks of its anatomical structures are shown in picture 1c and 1d respectively.

(a) CT and lymph node
segmentation mask (b) Distance map

(c) Warped probabilistic
lymph node atlas

(d) Segmentation masks
from Totalsegmentator

nnU-Net, that is, taking the 0.5th and 99.5th percentile of all intensity values of the foreground class, was applied
to the input data. The resulting values are similar to the soft tissue intensity window. The distance maps were
divided by the largest value of all distance maps, the probabilities of lymph node occurrence were smoothed with
a Gaussian filter (σ = 5) and scaled to a range between zero and one.

2.2 Post-processing

The post-processing consisted of padding the resulting masks to the original input size, accounting for the
strong class imbalance between fore- and background by reducing the threshold for binarization, and removing
some falsely segmented pixels. The threshold for class binarization for pixel at position (i, j, k) ∈ Nm×n×s was
calculated according to:

mijk = t× (1− 0.5× pijk) , (1)

where mijk is the threshold depending on the probabilistic lymph node atlas at pixel with indices i, j, k, the
constant threshold is denominated with t, and pijk is a pixel of the probabilistic lymph node atlas P . Similar to
Bouget et al.,7 the threshold t was set to 0.5, 0.3, or 0.2. By predefining areas of where lymph nodes are more
likely to occur, we can allow for more uncertainty in a controlled manner. This resulted in enlarged segmentation
masks. To fulfill the RECIST criterion, we restrict the ellipsoid diameter of a connected component to be larger
than 7mm, 5mm or 3mm.

3. RESULTS

The self-configuration process of the nnU-Net configuration set the patch size to 128×112×160 and a batch size
of two. The learning rate scheduling was modified to be as follows: From epoch 1 to 1,040 the learning rate
linearly decreases from 0.01 to 2× 10−5, from epoch 1,040 to the end of training (epoch 2,000) the learning rate
linearly reduces to 4 × 10−8. In this way, the learning rate decreases at a larger rate in the first training half
than in the second half to encourage fast weight adaptation.

For our experiments, two different data sets provided by Roth et al.4 and Bouget et al.7 were used with 119
thoracic and abdominal CT images in total. Image resolution varies between 0.58 and 0.97mm3 in-plane and 0.5
to 5.0mm3 between slices. The manual lymph node segmentations provided for the training data show a large
heterogeneity. That is, lymph nodes smaller than 10mm in short-axis diameter are contained and, in some cases,
rather regions or lymph node stations are delineated instead of single lymph nodes with identifiable borders.

For our analysis, in addition to the Dice score, we report two distance metrics – the 95th percentile of the
Hausdorff Distance (HD95) and the Average Symmetric Surface Distance (ASSD). While the Hausdorff distance
shows the maximum, the ASSD shows the average of all shortest distances for all points of the segmented lymph
node in the prediction compared to the ground truth. As it is often the case in medical applications, it is



favorable to accept a higher false positive rate at the cost of a lower false negative rate. To assess the methods
regarding this, we report the Recall and the number of false positives (FP) and false negatives (FN). The metric
LN found indicates the percentage of lymph nodes segmented in both the prediction and the ground truth
annotation from all ground truth annotated lymph nodes, in more mathematical terms: true positives

true positives+false negatives .
The computation of this metric follows the implementation introduced by the organizers of the BRATS 2023
challenge. Originally designed for assessing lesion segmentation in brain images, the evaluation code can be
found at: https://github.com/rachitsaluja/BraTS-2023-Metrics.

Table 1: Results using 5-fold cross-validation and different input combinations for model training without post-
processing. Dice scores and distance metrics significantly different to training on CT only (p < 0.05) are marked
in italic.
Dataset Dice HD95 [mm] ASSD [mm] Recall FP FN LN found
CT 0.6417 + 0.0297 41.7915 ± 8.5516 6.1019 ± 0.7651 0.6171 ± 0.0345 507,596 769,793 0.6891
CT & DM 0.6414 ± 0.0386 38.8456 ± 7.1209 6.0841 ± 0.8221 0.6135 ± 0.0359 516,147 738,325 0.6736
CT & PA 0.6323 ± 0.0514 39.9907 ± 4.4516 5.9800 ± 0.9250 0.6142 ± 0.0451 525,049 736,361 0.6698
CT & DM & PA 0.6321 ± 0.0381 39.2634 ± 3.9633 5.9974 ± 0.5087 0.6178 ± 0.0393 567,977 730,980 0.6767
CT & SM 0.6144 ± 0.0481 40.9410 ± 3.3736 6.3296 ± 0.7831 0.6046 ± 0.0428 560,350 747,953 0.6566

Table 2: Results using 5-fold cross-validation and different input combinations for model training with post-
processing. Dice scores and distance metrics significantly different to training on CT only (p < 0.05) are marked
in italic.
Dataset Dice HD95 [mm] ASSD [mm] Recall FP FN LN found
CT 0.6477 ± 0.0289 43.6615 ± 9.6834 6.2353 ± 0.9130 0.6547 ± 0.0346 619789 700841 0.7115
CT & DM 0.6483 ± 0.0378 39.1601 ± 7.0599 6.0755 ± 0.9324 0.6536 ± 0.0364 616,594 670,527 0.6968
CT & PA 0.6374 ± 0.0490 41.9950 ± 5.3156 6.1922 ± 0.9477 0.6538 ± 0.0429 646,646 655,010 0.6953
CT & DM & PA 0.6369 ± 0.0372 37.8621 ± 3.3415 5.9690 ± 0.5932 0.6558 ± 0.0382 685,689 656,769 0.6976
CT & SM 0.6184 ± 0.0475 40.7263 ± 2.1792 6.3622 ± 0.6243 0.6362 ± 0.0463 665,955 683,977 0.6790

Models with varying combinations of priors were trained and averaged over five folds. Fold splits, network
architecture and training strategy were the same for each model run. Each model was tested on a left-out test
dataset per fold. The results with and without post-processing are shown in Tab. 1 and Tab. 2 respectively.
The optimal post-processing hyperparameters were set via grid search. For significance testing, we carried out a
paired t-test for the Dice scores and the distance metrics for the models with and without post-processing. The
results of the paired t-test showed that the Dice coefficient of CT & DM, CT & PA, CT & DM & PA, as well as
the model, trained on CT only varies marginally (p-value > 0.1), showing that differences between these models
originated probably from random variations in training. The segmentation accuracy was within the range of
0.6369− 0.6483, which is in alignment with related literature.7 Solely, the model trained with the segmentation
masks consistently performed worse than the other models throughout the folds (p-value = 0.0004). Using priors
reduced the HD95, in the case of CT & DM and CT & DM & PA significantly, if post-processing was applied.
This is also reflected by the fact that the standard deviation for the baseline model was larger than for the
models trained with priors. Fig. 2 shows the prediction results of the model trained on CT only for an exemplary
patient. The model segmented a possibly malignant, pulmonary nodule in the bottom of the lung, which was
not annotated in the ground truth as it is not a lymph node. Consequently, the HD95 became large. The ASSD
was lower when the proposed priors were used in comparison to the baseline model, but the differences were not
significant. It is noteworthy that the predictions of models trained with the probabilistic lymph node atlas have
a smaller number of false negatives. However, this did not have an effect on the number of lymph nodes found.
For all models, the optimal post-processing strategy was, to use a threshold that depends on the probabilistic
atlas with a reduced constant threshold for binarization. For most models, constant threshold t was set to 0.2.
This post-processing step reduced the number of false negatives, and, in this way, segmentation accuracy can be
improved. Removing small segmentation masks did not improve results, thus, this post-processing step was not
applied.

Even though it is surprising that additional information did not improve segmentation accuracy, these results
align with Bouget et al.7 The authors show that the model trained with anatomical priors produces less false
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Figure 2: Example prediction of model trained on CT only overlaid over CT in coronal, sagittal and axial view.
Here, a pulmonary nodule outside the mediastinum is segmented. As this is not a lymph node and, thus, not
included in ground truth annotations, the HD95 becomes large.

positives in the no-go regions defined in the prior, but overall performance was not, or not significantly, superior
to models trained using CT images alone.

4. DISCUSSION AND CONCLUSION

In this work, we present a fully automatic pipeline for mediastinal lymph node segmentation by using results from
atlas registration to serve as a road map and present a comparison of performance differences using different
anatomical priors as additional network input. Our comparison of anatomical priors for mediastinal lymph
node segmentation shows that including anatomical priors in network training does not improve performance
significantly. Variations between the priors, except for CT & SM, are also minimal. On the one hand, the
information in the CT seems to be sufficient for neural networks to learning patterns. On the other hand, other
reasons such as insufficient model-dependent hyperparameter tuning could play a role in anatomical priors not
unfolding their full potential. However, using the probabilistic lymph node atlas as network input reduces the
number of false negatives and consistently elevates the effect of post-processing.

If human learning processes are transferrable to neural networks, use cases of high complexity and little
training data can benefit from additional information that is congruent for all data points. Based on this, we
extended Bouget et al.’s 7 work by formulating different, potentially more intuitive, anatomical priors. But,
providing the suggested priors as additional input does not seem to be sufficient to guide network attention.
Instead of focussing on the formulation of priors, further research could explore other techniques to incorporate
priors into network training. Possibly, integrating additional information in the training process in a supervised
manner would ensure their use.
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