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Abstract

Background: For an individualized support of patients during rehabilitation, learning of individual machine learning
models from the human electroencephalogram (EEG) is required. Our approach allows labeled training data to be
recorded without the need for a specific training session, which is important for the feasibility of using EEG to
support exoskeleton-assisted therapy. For this, the planned exoskeleton-assisted rehabilitation enables bilateral
mirror therapy, in which movement intentions can be inferred from the activity of the unaffected arm. During this
therapy, labeled EEG data can be collected to enable movement predictions of only the affected arm of a patient
based on the EEG and a proposed transfer learning approach in the second step.
Methods: A study was conducted with 8 healthy subjects and the performance of the classifier transfer approach
was evaluated. Each subject performed 3 runs of 40 self-intended unilateral and bilateral reaching movements
toward a target while recording EEG data from 64 channels, EMG data from 16 channels, and motion tracking data.
A support vector machine (SVM) classifier was trained under both movement conditions to make predictions for the
same type of movement. Furthermore, the classifier was trained under the bilateral condition and then transferred
to predict motion intention under the unilateral condition. The approach was evaluated comparing a custom EEG
channel selection method to a standard electrode constellation under varying the number of EEG channels.
Results: The results show that the performance of the classifier trained on selected EEG channels evoked by
bilateral movement intentions is not significantly reduced compared to a classifier trained directly on EEG data
including unilateral movement intentions. Comparisons with standard channel constellations show that the
comparable performance was enabled by our knowledge-based channel selection. Moreover, the results show that
our approach also works with only 8 or even 4 channels.
Conclusion: It was shown that the proposed classifier transfer approach enables motion prediction without explicit
collection of training data. Since the approach can be applied even with a small number of EEG channels, this
speaks for the feasibility of the approach in real therapy sessions with patients and motivates further investigations
with stroke patients.

Keywords: EEG; movement prediction; rehabilitation; classifier transfer; robot assisted therapy; lateralized
readiness potential (LRP); event related potential (ERP); BCI; transfer learning

Background
With the demographic change, concepts for maintain-
ing the health of an increasingly aging population must
be rethought. As shown in a statistic by [1] the cost
of stroke in 2017 was e60 billion in the 32 European
countries alone. Necessary changes affect the entire
range of health care from prevention and acute treat-
ment to rehabilitation and reintegration of persons
who are ill or injured into everyday life. One of the
approaches pursued is the use of robots in rehabili-
tation therapy, which was clinically tested, for exam-
ple, as early as 1994 with the MIT-MANUS [2] and
meanwhile proven to improve arm and hand function
and muscle strength [3] and to enable more effective
therapy if combined with traditional physiotherapy [4].
*Correspondence: elsa.kirchner@uni-due.de; elsa.kirchner@dfki.de
2Institute of Medical Technology Systems, University of Duisburg-Essen,
Duisburg, Germany
Full list of author information is available at the end of the article

The goals of using such complex technologies are man-
ifold and range from reducing costs to increasing the
efficiency of therapy and relieving the burden on the
therapists, to achieve high repetitions in interactive
and self-initiated therapy as well as to extend therapy
options [5].
On the other hand therapy strategies for the rehabil-
itation and restoration of functions in humans, as for
example discussed in [6] in order to maximally restore
functions of patients with spinal cord injury (SCI), can
be very intense to achieve optimal results. Regarding
physiotherapy it was shown that patients receiving in-
tensive peer mentoring during and after rehabilitation
had greater gains in self-efficacy [7], which is highly im-
portant in rehabilitation [8]. It further decreases the
time for unplanned rehospitalizations [7].

For support at home, robotic solutions provide as-
sistance in daily living (ADL), which can range from
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helping a patient balance [9] while walking and stand-
ing to complex assistance with reaching [10] and grasp-
ing [11].

Active exoskeletons [12] are commonly used for such
assistance, as well as for rehabilitation therapies, and
have shown to be effective in neuromotor rehabilita-
tion, especially after stroke [13, 14, 15].

The application of new robotic technologies, such as
exoskeletons, gives us hope to cope up with higher de-
mands caused by demographic changes, the orienta-
tion to more intensive therapy, self-efficacy of patients,
relieve of therapists, extension of therapeutic options
and reduction of cost, all together reducing the total
disease burden by 6 to 10 per cent by 2040 [16].
However, for an individualized support, learning of in-
dividual models from human data is required. To ac-
quire such data without the demand of a person to
attend long training and calibration sessions is very
relevant. Here, we show that we can successfully com-
bine rehabilitation sessions with data acquisition to
train models that infer movement intentions in hu-
mans, which in turn, can then be supported by an
assistive robotic device.

Exoskeletons and physiological measures in therapy
To provide support when needed [17, 18, 19], phys-
iological measurements such as the electromyogram
(EMG), which can for example be recorded from a
healthy leg to control a disabled leg using an exoskele-
ton [20], or the electroencephalogram (EEG) which al-
lows conclusions to be drawn about a user’s intention
to move, are of great importance for successful neu-
rorehabilitation [13, 14]. In particular, EEG can be
used to infer movement intentions [21, 12], for exam-
ple, where a patient wants to move [22, 23]. There are
many examples of how human EEG can be used to
control exoskeletons using a brain computer interface
(BCI) [24, 22, 23, 25, 13, 14, 26]. However, BCIs are
often not used to decode brain activity that correlates
with the brain processes that control movement inten-
tion, planning, and execution; instead, other brain sig-
nals are used, such as the activity evoked in the visual
cortex by flickering light, known as steady state visual
evoked potentials (SSVEP) [22, 23, 27] to rather artifi-
cially make use of the patient’s EEG as a control input.
To bridge the gap between brain and body caused by
brain injury and to promote rehabilitation, such an ap-
proach is not the preferred one. Instead, brain activity
that drives movement intention, planning, and execu-
tion should be used as a natural or intrinsic bridge
between the brain and the body [28, 29], using both,
the physiological data that directly encodes the hu-
mans intention and the autonomous capabilities of the
robotic system, i.e., an exoskeleton.

Transfer learning and classifier transfer in BCIs
In the field of BCIs, long training sessions are of-
ten required to record a large amount of training
data [30, 31]. However, transfer learning (TL) can be
applied in BCI applications to reduce the calibration
effort and training duration. This can be achieved by
using prior knowledge or data that does not origi-
nate from the target session, subject or even mea-
surement device or task [32]. TL has recently proven
its potential to improve classification performance
and reduce calibration times in several investigations,
e.g., [33, 34, 35, 36, 37]. This is of high importance for
enhancing the usability of BCIs in real-world applica-
tions.

In addition to cross-session as well as cross-subject
paradigms, a cross-task TL approach could achieve
complete avoidance of calibration sessions and even
enable learning in the first place if labeled data is
available only for a training task but not for a test
task, as in this work. However, in comparison, cross-
task classification approaches based on EEG data and
TL have been less comprehensively investigated [32].
Nevertheless, across different fields of BCI research,
transfer approaches for cross-task EEG classification
have been proposed. In our previous work, we showed
that a classifier trained on EEG data from an obser-
vation scenario could be transferred to detect erro-
neous behavior of a robot during an interaction sce-
nario [38, 39, 40, 41]. Therefore, the elicted event-
related potential (ERP), namely the error-related po-
tential (ErrP), could be classified in the transfer case
although the tasks and ERP shapes differed between
training and testing. The transferrability of a classi-
fier for the detection of errors across tasks was also
shown in [42], where a deep convolutional neural net-
work was used to detect errors for two different error
paradigms from intracranial EEG data. Another appli-
cation of a classifier transfer is the detection of target
and missed target events from EEG while the classifier
was trained on EEG data evoked by target and stan-
dard events (oddball paradigm) to enhance the amount
of available training data and, hence, to enable classifi-
cation of EEG trials evoked during recognition of tar-
gets and the failure of recognition of those [43, 44, 45].
Further examples of applied cross-task EEG classifica-
tion can be found in literature in the area of workload
recognition [46, 47, 48], where the performed workload
task differed between training and testing a classifier
or model. For example in [46], a domain adaptation ap-
proach was applied that improved the workload classi-
fication performance for the transfer case compared to
a non-transfer case. Besides cross-task EEG classifica-
tion, where a classifier is strictly trained on one task
and tested on another task, fusion approaches were
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applied in which data from different tasks were com-
bined for training a classifier [49, 50]. However, clas-
sifier transfer and TL approaches for the detection of
movement intentions in motor imagery or motor exe-
cution paradigms have been little investigated so far. A
few examples are the decoding of forearm movements
that were improved by combining data from motor im-
agery and motor execution tasks [51] as well as the in-
vestigation of cross-subject and cross-task motor im-
agery classification [52].

Nevertheless, to our knowledge, the transferability of
a classifier between bilateral and unilateral movements
(upper body reaching movement tasks), especially con-
ceptualised to support rehabilitation therapy, has not
been proposed or investigated so far.

Approach and goal of the paper
In this work, we focus on how to generate training
data for EEG-based intention recognition to guide sup-
port using an active exoskeleton [53] for unilateral arm
movements of the affected arm after stroke. Our ap-
proach eliminates any time spent by the patient gen-
erating training data, as data collection is integrated
into the therapy training itself.
For motion intention detection in human EEG, train-
ing data is needed to train a classifier or model for
the prediction task. Even if a patient is able to com-
plete such long training sessions, this is not desirable
since all time available should be used for therapy in
the early post-stroke period in which the brain is very
plastic [54]. Waist of time in this very sensitive time
by plainly recording data to train a classifier must be
avoided as far as possible.
Here we present our approach to train a classifier dur-
ing a therapy session that does not require intention
recognition from EEG activity but makes use of the
intelligence of the robotic system to timely map move-
ment intention to movement execution. This is done by
making use of the exoskeletons mirror mode in which a
movement of the unaffected arm is transferred to the
affected arm by the exoskeleton [53]. Hence the ex-
oskeleton supports mirrored dual arm movements in-
tended by the patient. While the patient is exercising
in this mode, EEG data can be recorded. The recorded
EEG contains activities associated with the planning
and execution of bilateral arm movements and can be
used to train a classifier to infer movement intention of
both arms. The usability of such classifier to determine
the motion intention of the affected arm alone, will be
explained in the following methods section. To develop
such a classifier-transfer approach and evaluate its fea-
sibility in principle, we conducted a study with healthy
subjects and report and discuss the results here.

Methods
Proposed Classifier Training Method

Table 1 Definition of concept for training and testing the
EEG classifier.

training testing
A no transfer unilateral unilateral
B no transfer bilateral bilateral
C transfer bilateral unilateral

To train an EEG-classifier to predict movement in-
tentions only for the affected arm of stroke patients,
the following two-step concept was developed. In the
first step, the EEG classifier is trained during the ex-
ecution of bilateral movements (in a mirror mode re-
habilitation session). The onsets of the bilateral move-
ments are infered from the non-affected arm to gen-
erate reliable labels to train the classifier. In the sec-
ond step, the classifier is transferred to predict unilat-
eral movements of the affected arm. The transfer ap-
proach consists of training on EEG data derived from
bilateral movement executions and applying a custom
EEG-channel selection to improve the transferability
of the classifier by data adaptation. Since the LRP
(Lateralized Readiness Potential) [55, 56], that is asso-
ciated with movement planning, can be observed from
EEG-channels of the motor cortex side contralateral
to the moved upper limb [57], we focus on the differ-
ences and similarities in the EEG data between bilat-
eral and unilateral movement intentions. Therefore, we
customly select EEG-channels for the data processing,
that are related to the planning of unilateral move-
ments with the affected limb. Hence, the abilities of the
non-affected limb are used to generate reliable train-
ing labels and the classifier can be customly trained on
the provided EEG-data, containing information about
movement intentions of the affected arm. The proposed
method was evaluated by conducting experiments, in-
volving bilateral and unilateral movement tasks, ex-
ecuted by healthy subjects. The training and testing
conditions of the evaluation are illustrated in Table 1.

Experimental Setup and Procedure
Eight healthy subjects (4 male, 4 female) at the age of
25.5 ± 4.0 years participated in the conducted study.
Only healthy right-handed subjects with no history
of neurological or muscular diseases were recruited for
the experiments. All subjects were advised to be well-
rested for the experiment. The subjects were seated in
a comfortable chair insight a shielded cabin. In front
of the subjects a custom-build board, including hand-
switches and a button was placed on a table. The sub-
jects were asked to perform a reaching task, by pressing
the button with their thumb. The button was placed
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at a height of approximately 25 cm and at a distance
of 30 cm away from the resting position. The resting
position was defined by the hand switches, where the
subjects were asked to place their hands during the
resting period. The position of the button was adjusted
to the arm length of the subjects. Start and endpoint
of the movements were standardized by ensuring a 90-
degree forearm-upper arm angle at rest and 0 degree
when pressing the button.
The experiment consisted of two different movement
tasks which were 1) unilateral reaching movements and
2) bilateral reaching movements. The sequence of the
task was varied between subjects (counterbalanced) in
order to avoid possible learning effects. For the uni-
lateral task, only the dominant right arm was moved
whereby in the bilateral task a synchronous movement
of both arms (both thumbs pressing the button) was
executed. Each task included 3 sets of 40 self-initiated
movements. Therefore, each subject performed a to-
tal of 120 trials for each task. Each trial consisted of
a resting period of at least 5 seconds followed by a
self-initiated and self-paced reaching movement. Tri-
als with a resting period under 5 seconds were ex-
cluded from the evaluation and an error symbol was
presented on a monitor for a duration of 200 ms. The
error symbol consisted of a fixation cross that turned
from a green to a red background colour. During the
hole experiment, a fixation cross with a green back-
ground was continuously shown on the monitor. After
each set, the subjects were asked to relax for at least
5 minutes to avoid any fatigue. The whole experiment
was designed and controlled by using the Presenta-
tion software [Neurobehavioral Systems, Inc., Albany,
USA]. The experimental setup is illustrated in Figure
1.

Data Acquisition
EEG data was recorded using a LiveAmp64 ampli-
fier and an actiCap montage with 64 active elec-
trodes [Brain Products GmbH, Munich, Germany].
The electrodes were located according to the extended
10-20 system with FCz as reference electrode. All
impedances were kept below a threshold of 5 kΩ and
were controlled after each measurement set. The data
was acquired at a sampling rate of 500 Hz and pre-
filtered by the measurement device to a bandwidth of
0.1 − 131 Hz. To avoid possible artifacts during the
recording, the subjects were asked to avoid head and
eye movements as far as possible.
EMG signals were recorded bipolar (Ag/AgCl elec-
trodes) by a WavePlus wireless system and picoEMG
sensors by Cometa [Cometa srl., Barregio, Italy]. The
EMG was sampled at 2000 Hz and reduced to a band-
width of 10-500 Hz by filters of the measurement de-
vice. The signals were recorded from 8 muscles for the

EEG-cap (64 channel) 

screen

EMG-electrodes

motion tracking
marker

button

hand-switches

a) b)

Figure 1 Experimental setup of the study. In a) a subject is
shown sitting in front of a screen wearing an EEG-cap with 64
electrodes. In b) the custom build experimental board
including hand-switches (orange) and a button (blue) as well
as the placed EMG-sensors (yellow) and motion tracking
marker (green) are illustrated.

right and left side of the body which were: M. biceps
brachii medial, M. triceps brachii medial M. triceps
brachii lateral, M. deltoideus lateral, M. deltoideus an-
terior, M. deltoideus posterior, M. trapezius pars de-
scendens (upper trapezius) and M. flexor carpi radi-
alis. The skin was prepared with alcohol and electrodes
were placed according to anatomical landmarks [58].

To mark the physical movement onsets, an infrared
motion tracking system [Qualisys AB, Gothenburg,
Sweden] was used in addition to the mechanical hand-
switches. In total, 4 motion tracking cameras (Oqus
300+) were placed in the shielded cabin to record mo-
tion data. To track the motions, 3 reflecting markers
were placed on the back of the hand, the elbow (next
to the lateral epicondyle) and the deltoideus (muscle
belly) on each side of the body. The motion tracking
data was acquired at a sampling rate of 500 Hz.

All events during the experiments, such as press-
ing/releasing the hand-switches and the button as well
as invalid trials (shown error symbols) were tracked by
the EEG system. Additionally, the start and stop of the
recordings of each measurement system was recorded
by the trigger channels of the EEG system to synchro-
nize all data in the offline analysis.

Estimation of Physical Movement Onset
For estimating the physical (ground truth) movement
onset, the position data tracked by the motion cap-
ture system were analyzed and processed in an offline
evaluation. Since the executed reaching tasks consisted
of moving the hand from a resting position towards
the button, the data from the reflective marker of the
moved hand was used for the estimation. Note that
in a later rehabilitation session, movement onsets will
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be measured by the exoskeleton [26, 59]. Since only
healthy subjects participated in the study, it was as-
sumed for the evaluations, that the right arm is af-
fected whereby the left arm is not affected. Therefore,
for bilateral movements only the position data of the
left hand was selected for estimating the ground truth
movement onset.
In a first processing step, the EEG and motion cap-
ture data were synchronized. Afterwards the position
data was re-initialized to the resting position by sub-
tracting the mean position data, calculated from the
first second (resting period) of each experiment. In the
next step, the absolute distance to the resting position
was calculated by computing the euclidean distance
from the three-dimensional position data. Addition-
ally, the velocity of the hand was calculated for each
timepoint by taking the difference between two consec-
utive samples of the euclidean distance. The velocity
was filtered by a lowpass filter with a cutoff frequency
of 4 Hz (butterworth, 4. order) and normalized to the
maximum value of the current trial. The distance and
velocity were then combined by multiplication in order
to provide an exact estimate of the movement onset.
This procedure was chosen to calculate the onset, in-
dependent from small position fluctuations (producing
high velocity values) or slight variations of the resting
position between trials.
Starting from the movement period towards the resting
period, it was searched backwards for a datapoint with
a magnitude below a defined threshold. The search
started at the time where the mechanical hand-switch
was released since this is assumed to be the move-
ment onset plus the mechanical delay of the device.
The threshold was set to 0.6 mm and specified with
respect to the resolution of the motion tracking system
after calibration. The movement onsets were marked
in the EEG data.

Channel Selection and Reduction
In order to provide a proper transferability of the clas-
sifier, we custom selected EEG channels by means of
the knowledge about the surface distribution of rel-
evant EEG activity with respect to individual EEG
channels. Due to the fact that the LRP can be ob-
served in the hemisphere contralateral to the side of
the moved limb (right arm), we custom selected chan-
nels for the classifications that were located on the left
hemisphere, especially in the area of the motor cortex.
By this approach, we aim for enhancing the transfer-
ability of the classifier, that is trained on evoked EEG
potentials from bilateral movement planning to pre-
dict unilateral movement intentions by selecting EEG
channels related to right arm movements.

Besides enhancing the performance of the transferred
classifier, we also aim to reduce the number of channels

to provide an approach that is feasible to be used with
persons suffering from stroke. Therefore, we system-
atically reduced the number of channels used for the
classification task in order to reduce the preparation
effort in a real rehabilitation session. Due to this we
evaluated the use of 32, 21, 16, 8 and 4 custom selected
channels for the classification task. For all numbers of
channels, the selection was made considering the C1
channel as a center of EEG activity related to move-
ment planning, with the other channels located around
it. Therefore, by reducing the number of channels the
area around this center was further reduced in size.
The specified EEG channels for the custom selection
are illustrated in Figure 2.

In order to evaluate the relevance of custom channel
selection, we further compared the custom selection
to standard electrode constellations based on the ex-
tended 10-20 system. Since such a standard constella-
tion comprises at least 16 EEG channels, we evaluated
and compared 32, 21 and 16 channels for the stan-
dard constellation as a baseline to our custom channel
selection. The standard channel constellations for the
different numbers of channels is illustrated in Figure 3.

EEG Processing and Classification
For the processing and classification of the EEG sig-
nals, the signal processing and classification platform
pySPACE [60] was used. A previously developed ma-
chine learning pipeline [21], specialized to detect the
LRP, was adapted.

Preprocessing and Windowing
The EEG signals were processed window-wise by cut-
ting out overlapping windows with a length of 1 s and a
stepsize of 0.05 s. For each trial, a total of 81 windows,
starting from window [−5.00,−4.00] s to [−1.00, 0.00]
s were cut out with respect to the labeled physical
movement onset at 0 s.
First, a subset of EEG channels corresponding to the
evaluated channel selection methods, was included in
further processing steps (see Channel Selection and
Reduction). Afterwards the data was standardized
channel-wise (zero mean, SD of one) and decimated to
20 Hz. Next, a FFT bandpass filter with a passband
of 0.1-4.0 Hz was applied.

Feature Extraction and Classification
The channel dimension was reduced by applying an
xDAWN spatial filter [61] with 4 remaining pseudo-
channels, that was designed to enhance event related
potentials. Afterwards, the last 4 samples of each win-
dow, that correspond to the last 0.2 s, were extracted
as time domain features. Therefore, a total of 16 fea-
tures were extracted for each window. The features
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Figure 2 Custom selected channels from the left hemisphere. Channels used for the study are marked by a red circle.
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Figure 3 Standard channel constellation based on the extended 10-20 system. Channels used for this study are marked in green.

were then normalized by applying a gaussian feature
normalization (zero mean, variance one). After feature
extraction, an SVM with L1-norm regularization was
trained for a binary classification task. The class labels
were NoLRP (resting) and LRP (movement intention).
The complexity parameter of the SVM was optimized
by applying a grid search with 7 equal spaced values in
a range of 10−6 to 100. The class weights of the SVM
were set to a ratio of 1 : 2 (NoLRP:LRP). The win-
dows [−1.10,−0.10] s and [−1.00, 0.00] s were used as
training instances of the LRP class and the windows

[−3.05,−2.05] s, [−3.25,−2.25] s and [−3.50,−2.50]

s were selected as training instances of the NoLRP
class. After training, the classifier was used to pre-
dict all windows of a separated test set. This was done
to simulate a real online application scenario, where
a classifier is continuously deciding between a resting
period and movement intention. The SVM scores were
then transformed into a probability by using platts
sigmoid function [62]. A probability greater than 0.5

corresponded to a detected movement intention (LRP
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class), otherwise a resting period (NoLRP class) was
detected.

Performance Evaluation and Metrics
Since the class ratios (NoLRP:LRP) are unbalanced
for a continous detection of movement intentions
(longer resting periods than movement planning) the
balanced accuracy (BA) was used as a performance
metric. The balanced accuracy calculates the perfor-
mance with respect to the individual class rates for
both classes and is defined as the mean of the true
negative rate (TNR) and the true positive rate (TPR).
During the evaluation, care was taken that the TNRs
and TPRs are not imbalanced in order to avoid a dis-
balance or bias between the prediction of the NoLRP
and LRP classes.
To emulate an online application scenario, the classi-
fier was evaluated by creating set wise train and test
pairs. For each condition, 2 sets were used for training
and the remaining was used as a test set to evaluate
the performance. For each condition a total of 24 per-
formance results were produced due to 3 train/test
permutations for all 8 subjects.
To evaluate the performance results in respect to the
characteristics of the LRP, a relabelling technique was
applied to the classification outcome in order to gen-
erate ground truth labels for performance evaluation.
Since the individual planning and execution of a move-
ment, for example depending on the waiting time, is
affecting the temporal characteristics of the LRP [63],
a variability between single trials must be considered.
Since the actual start of the movement planning re-
mains unknown, ground truth labels of the windows
were computed based on the classification outcome for
each individual trial considering an online application.
In the following, the procedure is described in detail.

First, a change point of classes (class boundaries)
was computed, which gives an estimate of a started
movement planning phase following the resting period
and therefore the starting point of the LRP class in
time. This change point was defined as a point be-
tween two consecutive windows that is determined in-
side an interval ranging from window [−2.00,−1.00]
s to window [−1.00, 0.00] s. This is the range where
the movement planning is to be expected when con-
tinously classifying windows in an online application
scenario. The windows at the boundary of the de-
fined interval correspond to windows where the true
label is known with high certainty for the NoLRP
([−2.00,−1.00] s) and LRP ([−1.00, 0.00] s) class. The
choice of the class boundaries was also discussed in our
previous work in [21]. If three consecutive NoLRP win-
dows were counted backwards in time (starting from
window [−1.00, 0.00] s backwards) within this range,

A) Determine label change point

time in s

0.00-5.00

-1.20, -0.20

-1.15, -0.15

-1.00, 0.00

-2.10, -1.10
...

-4.00, -3.00

Boundaries
for change 
point search 

Certain NoLRP windows

Certain LRP window

-1.10, -0.10

Uncertain windows

-1.25, -0.25 NoLRP

NoLRP

NoLRP

LRP

Change
point

Model 
predictions
(3x NoLRP
detected)

B) Set ground truth labels

time in s

0.00-5.00

-1.20, -0.20

-1.15, -0.15

-1.00, 0.00

-1.00, 0.00
...-4.00, -3.00

NoLRP windows

-1.10, -0.10

-1.25, -0.25 NoLRP

NoLRP

NoLRP

LRP

Ground truth 
labels

-2.10, -1.10

LRP

LRP

Figure 4 Illustration of the relabeling technique. In A) the
determination of the label change point between two
consecutive windows is shown while in B) the ground truth
label after applying the method are illustrated.

the label change point was detected and the labels of
all windows prior to this point were set to the NoLRP
class and past this point to the LRP class. In case no
change point was found inside this range, all windows
within this range were defined as instaces of the LRP
class corresponding to a detected long movement plan-
ning phase. However, for windows where the true la-
bel is known (from the experimental design), the class
label remained fixed for each movement trial. There-
fore, all windows prior to window [−2.00,−1.00] s were
always instances of the NoLRP class while window
[−1.00, 0.00] s was always an instance of the LRP class.

In conclusion, this technique was used to provide
ground truth labels for each sliding window based on
the nature of the LRP under predefined constraints
where the detection of a movement intention was al-
lowed. To illustrate the procedure, the applied method
is shown in Figure 4.

Statistical Analysis
For the main analysis, the classification performances
were analyzed by two-way repeated measures ANOVA
with number of channels and train-test condition as
within-subjects factors to investigate the effect of
transfer depending on the number of channels: transfer
vs. no transfer (see Fig. 5). Additionally, we performed
two-way repeated measures ANOVA with channel con-
stellation and train-test condition as within-subjects
factors to compare both standard constellation and
custom channel selection for each train-test condition
(see Fig. 6).
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Results
Figure 5 shows the classification performance between
both train-test conditions: (A) unilateral- unilateral
(no transfer) and (C) bilateral-unilateral (transfer). We
found no significant differences between both train-test
conditions (A vs. C) for all setups of channel numbers
(32, 21, 16, 8, 4). That means, the classification perfor-
mance was for the transfer case slightly reduced, but
did not significantly differ from the no transfer case.

Figure 6 shows the classification performance be-
tween both types of channel constellations: standard
constellations vs. custom channel selection. The cus-
tom channel selection improved the classification per-
formance. This was evident for the case transfer [stan-
dard constellations vs. custom channel constellations:
n.s. for all setups of channels, see condition (C) in
Fig. 6]. The case no transfer also benefited from the
selection of custom channels when the number of chan-
nels was reduced (see condition (A) in Fig. 6). How-
ever, when EEGs from bilateral movements were used
for training and test, we found no differences between
both channel constellations, although in the custom
channel selection only channels from the left hemi-
sphere were used. Moreover, the classification perfor-
mance was not affected by channel reduction (see, con-
dition (B) in Fig. 6).

Discussion
In this work, we proposed a novel approach to generate
labeled EEG data from bilateral movement executions
to train a classifier to predict unilateral movement in-
tentions with a high performance. The results show,
that unilateral movement intentions can be predicted
with a balanced accuracy up to 0.845 (for 32 chan-
nel, see Fig. 5) using the proposed approach for trans-
ferring the classifier. This implies that recorded EEG
data from a bilateral interaction session, i.e., from a
mirror mode rehabilitation session with an exoskele-
ton, can be used to predict unilateral movement in-
tentions with a high performance.

Most interestingly, the results showed that there
were no significant differences between classification
performances of the condition unilateral-unilateral (A)
and bilateral-unilateral (C) using the custom channel
selection although a reduced number of channels was
used for the classifications for the transfer condition
(C) (see Fig. 5). This means, that the proposed trans-
fer approach yields comparable performances to the
no-transfer case for a unilateral movement prediction
task based on EEG data.

As expected, the results showed that the perfor-
mance of the classifier systematically decreases with
the number of used channels for all conditions. Never-
theless, the results show that the number of channels

can be reduced, for example, from 32 to 21 channels
without a significant performance loss in case of clas-
sifier transfer (condition C in Fig. 5). This means that
a subset of channels covering to some extent relevant
brain regions provide sufficiently relevant features for
the detection of movement intentions. Even more inter-
esting was, that we did not find significant differences
between the transfer condition bilateral-unilateral (C)
and baseline condition unilateral-unilateral (A) even
though the number of channels was reduced for ex-
ample from 32 to 21 included channels (see Fig. 5).
This strongly motivates the applicability of the pro-
posed approach, due to a clear reduction of prepara-
tion time when using a reduced number of EEG chan-
nels. Nevertheless, the channels must be carefully se-
lected and were specifically chosen in the conducted
study depending on the motion task in order to al-
low the channel reduction without much loss in per-
formance. Therefore, the same number and selection
of EEG channels may not be adequate for a different
movement task (e.g., hand movements) and an alter-
native manual or automatic technique can be required
when reducing the number of used EEG channels.

Most importantly, we found that a custom selec-
tion of EEG channels outperformed the use of a stan-
dard channel constellation for training and transferring
the EEG classifier (see Fig. 6). Therefore, the custom
channel selection outperformed the standard channel
constellation, especially for the transfer case. This re-
sults indicate, that the custom channel selection allows
the possibility to provide a proper transferability of
the classifier to predict unilateral movements although
only bilateral movements were executed in the train-
ing session. Although, preliminary measurements with
stroke patients showed that movement intention can be
inferred with similar performance compared to healthy
subjects, brain activity patterns are different due to
the disturbance after stroke. Therefore, the approach
has to be further evaluated with EEG data from per-
sons suffering from stroke.

Conclusion
We proposed a novel approach to train an EEG clas-
sifier on EEG data recorded during bilateral reach-
ing movements that is afterwards transferred to pre-
dict unilateral reaching movements. Classifier trans-
fer was supported by our knowledge-based selection
of EEG channels as a data adaptation technique. The
approach was evaluated with data from healthy sub-
jects recorded in the conducted study. It was shown
that the proposed transfer approach can predict uni-
lateral movement intentions with a high performance
although the classifier is trained only on EEG data
recorded during bilateral movements even when using
only a small amount of channels.
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Figure 5 Transfer effect: classification performance between both train-test conditions: (A) no transfer (unilateral-unilateral)
and (C) transfer (bilateral-unilateral). Details for train-test conditions, see Table 1. The n.s. stands for no significant difference
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Figure 6 Effect of electrode distribution: classification performance between standard constellation and custom channel
selection for all train-test conditions. Details for train-test conditions, see Table 1. The ∗ stands for significant difference

Due to the promising results, we are planning fur-
ther investigations with patients suffering from stroke
to evaluate the proposed approach to improve stroke
rehabilitation. In future work, we will use our ap-
proach in robot-supported rehabilitation using an up-
per body exoskeleton. In such an application bilateral
movements of a hemiplegic patient allows to detect
movement onsets from the non-affected arm while the
assistive robotic device moves the affected arm syn-
chronously with the unaffected arm (mirror mode).
Hence, rehabilitation therapy can take place while
EEGs are recorded and labeled to generate training
data. After training a classifier on this data, unilateral
movement intentions of the affected arm can be de-
tected from it and supported by an exoskeleton. How-
ever, we expect that in the case of patients suffering
from stroke channel selection must be adapted. To this
end, an automated approach considering the type and
effect of lesion would be preferable.

We believe that our envisioned novel robot assisted
rehabilitation approach can improve future rehabil-
itation therapy coping with effects of demographic
changes such as the rising life expectancy and the ac-

companying need for more support for the aging pop-
ulation.
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