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Abstract

The increasing capabilities of deep neural networks for
re-identification, combined with the rise in public surveil-
lance in recent years, pose a substantial threat to individ-
ual privacy. Event cameras were initially considered as a
promising solution since their output is sparse and there-
fore difficult for humans to interpret. However, recent ad-
vances in deep learning proof that neural networks are able
to reconstruct high-quality grayscale images and re-identify
individuals using data from event cameras. In our paper,
we contribute a crucial ethical discussion on data privacy
and present the first event anonymization pipeline to prevent
re-identification not only by humans but also by neural net-
works. Our method effectively introduces learnable data-
dependent noise to cover personally identifiable informa-
tion in raw event data, reducing attackers’ re-identification
capabilities by up to 60%, while maintaining substantial in-
formation for the performing of downstream tasks. More-
over, our anonymization generalizes well on unseen data
and is robust against image reconstruction and inversion
attacks. Code: https://github.com/dfki-av/
AnonyNoise

1. Introduction

The amount of public and private surveillance increased
strongly in the past decade as monitoring systems and cam-
eras got cheaper and more energy efficient. The underlying
motivation is often a heightening of security and the preven-
tion of criminal acts. Additionally, there is a steady increase
in the capabilities of deep learning methods for processing
this visual data, allowing for the re-identification of individ-
uals even between non-overlapping camera views [28]. This
introduces a critical ethical debate about the value of indi-
vidual privacy, which is endangered when high amounts of
videos and images in public spaces are recorded, stored and
processed. Moreover, in many cases the security of these
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Figure 1. Visualization of re-identification and target accuracy for
different noise applied to DVS-Gesture [4]. The arrow is pointing
from the result without to the result with a denoise network used.
Our approach AnonyNoise is very robust against inversion.

cameras is lacking, potentially allowing unauthorized ac-
cess and thus malicious usage of personal information. To
enhance our understanding of data privacy from an ethical
standpoint, we present a crucial discussion on the subject in
Sec. 2, providing valuable insights into the ethical dimen-
sions of this complex issue.

Event cameras, gaining popularity as a low-energy al-
ternative to RGB cameras, have recently been recognized
for their effectiveness in always-on tasks like surveillance
[14, 19, 24]. A distinct feature of event cameras are their
asynchronous pixels, which only register changes in inten-
sity instead of absolute intensity values compared to RGB
cameras. This allows for a high dynamic range as well
as a high temporal resolution, making this technology at-
tractive for many applications. Since event cameras regis-
ter mainly movement information instead of visual details
like in RGB frames, their output is difficult to comprehend
for humans. This might seem to solve the privacy concerns
for public surveillance, however latest research showed that
neural networks are able to reconstruct grayscale images
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[17,18,25,30] and perform re-identification [2, 3] based on
event streams. This proofs the remainder of structural and
personal information within event data, which can be ex-
ploited with the help of deep learning.

The work of [1] went into a promising direction by train-
ing an anonymization network to prevent image reconstruc-
tion while enabling re-identification. However, it has to be
argued, that re-identification is a main threat to the indi-
vidual privacy. Their approach prevents human readabil-
ity but does not prevent a re-identification by a neural net-
work. This could potentially allow an attacker to track a
person over multiple cameras despite the application of their
anonymization approach.

In our work, we expand the scope of event anonymiza-
tion by introducing a novel training pipeline dedicated
to preventing re-identification. Our approach goes be-
yond eliminating visual information essential for human
interpretation or reconstruction and instead targets the re-
moval of personal features exploitable by neural networks.
This methodology offers a means to eliminate crucial per-
sonal information, particularly beneficial for future market-
ing applications where identification is unnecessary, such
as gesture recognition and emotion detection in public
spaces. Our method draws inspiration from the use of Gaus-
sian noise, a straightforward technique for preventing re-
identification. However, as demonstrated in Fig. 1, the ben-
eficial effects of noise can be undermined by the application
of a denoising network. Additionally, while noise can cover
identifying information, it also significantly degrades the
accuracy of the target task. To overcome these challenges,
we introduce AnonyNoise, a trainable data-dependent noise
prediction technique. Applied to event data, AnonyNoise
effectively reduces the risk of re-identification while pre-
serving the critical information necessary for the desired
target task. We further enhance our method by employ-
ing adversarial training, ensuring that attackers cannot re-
cover any remaining personally identifiable information.
AnonyNoise thus achieves a sophisticated balance between
privacy and performance, facilitating a more ethical and se-
cure use of visual data in practical applications.

Our main contributions can be summarized in the fol-
lowing way:

- We provide a comprehensive ethical discussion of data
privacy.

- We introduce the first trainable noise prediction network
for re-identification prevention with event data.

- Our adversarial training pipeline, ensures the robustness
of our anonymization against exploitation from any re-
identification network.

2. Ethics of Fragile Privacy

In the context of the ever-expanding technical possibil-
ities of data collection, the protection of private data is of

substantial importance. This imperative is underlined at
the European legal level, encompassing the member states
of the European Free Trade Association, with comprehen-
sive guidelines in the General Data Protection Regulation
(GDPR). Ethical implications regarding datasets and data
quality are of growing importance which is emphasized in
DEDA (Data Ethics Decision Aid) as well asin [11].

Central to this discourse is the ethical dimension of en-
suring data protection at a fundamental technical level. It
is crucial to acknowledge that data protection is not an iso-
lated ethical value; rather, its significance lies in the poten-
tial misuse of data. The raison d’étre for data protection is
rooted in the meaning of data for the individual. The focus
shifts from safeguarding data to safeguarding people, which
is encapsulated in the words of Wiegerling [26]: ”not data,
but people need to be protected.” This shift emphasizes the
ethical concern surrounding the potential misuse of private
data, framing the data protection issue as fundamentally tied
to the importance of human privacy [26].

Navigating the ethical horizon of surveillance capabili-
ties unveils intricate challenges and the prospect of eroding
privacy and private life [5, 16,20,23]. Surveillance options,
while enhancing security in certain scenarios like criminal
offenses, also pose a threat to the intrinsic human value
of privacy. The dual-use character of technology becomes
apparent, exemplified by the growing utilization of neuro-
morphic sensors in surveillance [14, 19,24]. Acknowledg-
ing this dual-use nature is crucial for addressing the ethi-
cal quandaries of surveillance, as it highlights the tension
between enhanced security benefits and potential privacy
risks.

The ethical discourse extends to products like event cam-
eras, which as a sustainable technology (from the perspec-
tive of the data economy) warrant promotion. However,
the ethical question of their dual-use character emerges,
demanding careful consideration of potential implications.
Critically addressing the ambivalent character of surveil-
lance possibilities, the necessity for data anonymization
methods arises, since this ambivalent character is allowing
for “broader controls, but also deeper interventions” [10].

Privacy, from an ethical perspective, is the basis of data
protection, particularly within the realm of informational
privacy [21]. Informational privacy refers the ability to con-
trol informational access to sensitive data, underscoring the
ethical challenges tied to preventing personal identification.

To preserve the human value of privacy, an interdis-
ciplinary approach is warranted, intertwining ethical and
technical perspectives at both foundational and application-
specific levels.



3. Related Work
3.1. Privacy Preservation for RGB Data

Person re-identification (Reld) describes the problem of
retrieving a certain person either across non-overlapping
camera views or for the same view but at different times-
tamps. As surveillance systems continue to expand, the
volume of available data has increased significantly, deep
learning has become a widely studied method for Reld ap-
plications using RGB images [28]. The success of these
methods shows that machines are able to extract personal
information rather easily from RGB images, which allows
for an automatic and scalable exploitation of public surveil-
lance data. This poses a potential thread against the pri-
vacy of the individual as discussed in Sec. 2. To ad-
dress these problems, multiple methods developed privacy-
preserving solutions for RGB data. The authors of [27] em-
ploy an anonymization network designed to modify RGB
input data. This modified data still allows a target network
to successfully perform action recognition, while simulta-
neously preventing identity detection by a privacy network.
The pipeline is trained in an adversarial manner by alter-
nating the optimization of the target/privacy-preserving and
identification losses. SPAct [7] and TeD-SPAD [9] follow
a similar pattern, but employ a contrastive self-supervised
loss instead of focusing on preventing re-identification di-
rectly. The work of [13] uses an encoder for the anonymiza-
tion of RGB images, which produces outputs similar to
event data. In contrast to these methods, we consider event
data as input for the protection of privacy.

3.2. Privacy Preservation for Event Data

RGB data is naturally seen as a privacy concern, since
their visual information can easily be understood by hu-
mans. Data from event cameras on the other hand are
difficult to interpret for the human eye especially without
any pre-processing. That is why event data was previously
seen as privacy-preserving by default. However, recent deep
learning methods like [17,18,25,30] show, that high quality
grayscale images can be recovered from event data. Con-
trary to previous believes, these methods suggest that event
streams contain personal information, that can be exploited
by humans after being processed by a machine. To en-
hance the privacy preservation, the authors of [1] and [2]
suggest a pipeline for training an event anonymization net-
work. This network is designed to anonymize the event in-
put, preventing grayscale image reconstruction while main-
taining the ability for re-identification. However, a notable
limitation arises during their training process, where the
parameters of the image reconstruction block remain un-
trained. Consequently, it might be possible to train a net-
work with the capability to reconstruct images from the
anonymized events. Moreover, their approach focuses only

on the privacy preservation against the human perception
while neural networks are still able to extract personal in-
formation for the re-identification. This poses a substantial
threat to user privacy and presents an exploitable avenue
for potential attackers. Our approach presents a compre-
hensive pipeline for event anonymization that prioritizes the
removal of personal information exploitable by neural net-
works, while preserving usability for downstream tasks like
action recognition. Notably, our approach incorporates a
min-max training strategy to ensure robustness against re-
identification networks that undergo subsequent retraining
on the anonymized event data.

4. Method

The goal of our anonymization method is to manipulate
the event-based input in order to prevent re-identification
while preserving the ability to perform downstream tasks
based on the anonymized events. As shown in Sec. 5.3,
Gaussian noise is a simple way to prevent re-identification
based on event data. However, by applying a denoising net-
work its effect can be partially diminished. Therefore, we
are introducing a learnable Gaussian noise, which can not
easily be removed and still prevents re-identification. To do
S0, we propose a training pipeline as visualized in Fig. 2,
which contains the following three main components: An
anonymization network fspnon to manipulate the raw event
data, a re-identification network frerq as an adversarial
trainer and a target network fr to perform the downstream
task, e.g. action and emotion recognition. These compo-
nents are trained in three stages. First, initial pre-training
of individual models is performed. Second, the components
are trained all together in an adversarial manner. Lastly,
the weights of the anonymization network are frozen and
the target and re-identification network are fine-tuned on the
anonymized data, simulating a potential privacy attack.

4.1. Event Data Representation

The output of an event camera substantially differs from
RGB cameras as their pixels register logarithmic intensity
changes asynchronously instead of absolute intensity values
at a frame rate. This results in a sparse stream of events in
the form of tuples e; = (z;, yi, t;, p; ), which include a pixel
position (x;, y;), a timestamp ¢; and a polarity p; € {0,1},
depicting a negative or positive change in intensity.

It is very challenging for neural networks to process
such sparse input data, especially when modern clock-based
Graphic Processing Units (GPUs) are used during the train-
ing. For these reasons, we aggregate the event stream into
dense event histograms X, of shape (2 x T, H,W) with
(H,W) as the height and width of the event sensor and
2 * T channels for T' = 5 timesteps, which are split into
the negative and positive polarity.
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Figure 2. Our approach addresses all involved interests simultaneously. The target network (green) aims to optimize performance on the
given target task, while a potential attacker (red) seeks to re-identify individuals from the input data. Our anonymization network (blue)
tries to prevent this attack while still allowing for good performance of the target network. These two concurrent objectives the ethical
trade-off between privacy and utility. The different losses of Sec. 4.3 are employed to train each network according to its specific objective

(indicated by dotted lines).

4.2. Network Architectures and Pre-Training

Anonymization Network. The anonymization of the
event stream is done by the anonymization network fa.,on,
which acts as as a noise generator in order to cover any pri-
vacy information inside the event data. The network’s in-
put are the event histograms X, concatenated with random
noise n = A(0, 1) in the same shape as X.. The output is
a per pixel mean X, and standard deviation X2, which are
combined with the noise n to form the anonymized data:

X! = Xe+ X, + Xo2 - 1. (1)

This is equivalent to the widely used re-parameterisation
trick, which allows for the separation of the stochastic and
deterministic processes in order to avoid the problem of
back-propagating through a stochastic node. Moreover, we
use the random noise as an input for f,., to allow the
network to learn the correlation between its output and the
resulting anonymized data.

In order to keep the architecture lightweight and appli-
cable for mobile setting, we only utilize six convolutional
layers with a 3 x 3 kernel. This has the additional benefit
that f 4,0, can be applied to any input resolution, allowing
for generalisability to a variety of input data. Since event
data is comparably sparse, the network needs the ability to
create exact per pixel decisions for its output. For this rea-
son, we utilize stride of 1 in all convolutional layers and thus
avoid upsampling methods, which might result in additional
blurring and loss of information. Notably, the network does
not include skip connections in order to allow the network
more flexibility in its noise prediction.

Re-Identification Network. Deep learning methods for
re-identification aim to learn a distinctive feature represen-

tation for images of different individuals. This representa-
tion has to ensure that the features based on the same person
are similar, while the features between different people ex-
hibit dissimilarities. Such a design allows for the matching
of previously unseen validation samples in a query set to
samples archived in a gallery. Inspired by [1], we choose
a ResNet50 [12] architecture for the backbone of our re-
identification network fgr.rq, and adjust the input weights
for the 2 x T" channels of our event representation.

Moreover, we replace the last fully connected layer with
a block comprising a linear layer, a batch normalization
layer, a Leaky ReLU activation, and a dropout layer. This
modification results in a 256-dimensional feature vector
X 14 for identification.

To train this model, we append another fully connected
classifier layer with an output depending on the number
of classes (different identities) in the training data. Based
on initial weights trained on ImageNet [8], we further pre-
train frerq to perform re-identification on the raw event his-
tograms of the used datasets.

Target Network. The goal of our target network fr is
to preserve information necessary for various downstream
tasks during the anonymization training, The concrete task
is therefore depended on the used dataset. In this work,
we focus on gesture recognition and emotion detection, im-
portant tasks for modern human-machine-interaction that
can be completely detached from sensitive personal infor-
mation. Regarding the network architecture, we utilize the
same structure as for fr.;4 (With a different number of out-
put channels for the classification layer, i.e. the number of
gestures or emotions) and apply a similar pre-training on
the raw event histograms using a cross-entropy loss.



4.3. Pipeline Training

Once the networks are pre-trained, we train all of them
together as a pipeline in an adversarial end-to-end man-
ner. We strongly argue that simply fixing the weights of the
re-identification network, fr.rq4, during training is insuffi-
cient. In such a setup, the anonymization network, fanon,
could merely learn to deceive a single instance of fgrcsq,
without ensuring robustness against other re-identification
models that may still recover personal information from the
anonymized data. To address this limitation, we adopt a
min-max training strategy, where fr.sq is continuously up-
dated, allowing it to adapt its attacks in response to changes
in the anonymization process. This dynamic interaction en-
sures that as fa,., €volves to anonymize the input data,
fRrera concurrently adjusts to uncover any remaining iden-
tifiable information, resulting in a more robust anonymiza-
tion system.

Re-Identification Loss. As discussed before, the objec-
tive of frerq is to produce features, that have a high sim-
ilarity for different images of the same person. Therefore
a standard approach is the utilization of the identity loss,
which includes the cross-entropy loss CE between the target
and predicted identifier as well as the triplet loss 7 between
all the features of the samples in one batch. The triplet
loss minimizes the distances between features related to the
same identity and maximizes the feature distance between
different individuals. Therefore the loss to improve the re-
identification attack is defined as:

Lrera = CE(Tia, #ia) + T(Xia), 2

with z;4, ;4 as the target and predicted identifier and X id as
the predicted features based on the anonymized event input
Xelz = fAnon(Xe)-

Target Loss. For the chosen target downstream task, we
apply the cross-entropy between the ground truth z7 and
predicted label 27 of the target task, i.e. the gesture or emo-
tion category, that is based on the anonymized input X:

ﬁT = C(S(IT, i‘T). (3)

Anonymization Loss. The target network fr shares the
objective of a correct target prediction with the anonymiza-
tion network fanon. Thus, we incorporate the loss
term L7 into the training of fan.,. Additionally, the
anonymized output from f4,,, should lead to an incor-
rect re-identification when processed by frerq. To enforce
this, we apply a negative triplet loss, ensuring that features
of the same individual diverge, thereby lowering the re-
identification capabilities.

In summary, we utilize the following loss for the training
of f Anon:

EAnon = ‘CT - T(de) (4)
4.4. Post-Training Attack

After adversarial training for privacy preservation, we
simulate a hypothetical iterative re-identifaction attack by
training frerq again on the anonymized and fixed event
representations X/, i.e. fanon is frozen and not updated
anymore. Similarly, we fine-tune the target network on the
anonymized data in this post-training stage.

5. Experiments and Results

We conduct a series of experiments to demonstrate the
effectiveness of our anonymization strategy and provide in-
sights into its robustness and generalization capabilities.
After introducing the used datasets, we specify implemen-
tation and training details to ensure reproducibility. Next,
results after pre-training and after the re-identification at-
tack (post-training) are presented and compared. On data
that only includes re-identification labels and no additional
information for any downstream task, we validate the gen-
eralization of the anonymization network. Lastly, experi-
ments and results regarding the robustness are discussed.

5.1. Datasets

In order to validate our approach, we apply our
anonymization pipeline on the real event datasets DVS-
Gesture [4] and SEE [29] and test the anonymization capa-
bilities against re-identification. Additionally, we show the
generalization of the anonymization on the Event-Reld [1]
dataset.

DVS-Gesture [4] is a gesture recognition dataset, that
was directly recorded with an event camera. The dataset
includes 29 different subjects, 6 in the test and 23 in the
training split. The subjects perform 11 hand gestures,
which results overall in 1342 event samples with a size of
128px x 128px. We constructed a query set, by choosing a
random sample per subject and per target label. During the
re-identification validation, we filter out samples from the
gallery dataset with both the same subject and target label
as the query sample.

SEE [29] is a single-eye emotion recognition dataset cap-
tured using a head-mounted event camera. It records seven
distinct emotions: anger, happiness, sadness, neutrality, sur-
prise, fear, and disgust. Each sample is captured at a res-
olution of 180px x 180px and consists of multiple event
frames. We construct event histograms by partitioning all
the event frames temporally into 7' = 5 timesteps and ag-
gregating them for each polarity. To tailor the dataset for the
re-identification task, we first exclude subjects who did not
have recordings for all seven emotions. Next, we select sub-
jects with the fewest samples to form the validation set. This



process resulted in a split of 78 subjects for training and 20
subjects for validation, with each validation subject having
only one sample per emotion. For the re-identification task,
two random samples are selected per subject for the query
set, with the remaining samples assigned to the gallery set.

Event-Reld [ 1] is an event dataset for the re-identification
of 33 subjects, 11 in the test split and 22 in the training
split. The subjects are recorded walking by 4 event cameras,
which have a non-overlapping field of view. Following the
processing in [ 1], we construct event samples for time win-
dows of 33.3ms and further resize them to a 304px x 304px
resolution. Since the used query/gallery split is not pro-
vided, we construct our own split using the same random
process as described in [1].

5.2. Implementation

In order to ensure optimal training settings, we utilize
different training parameters for the three datasets, which
are listed in more detail in the supplementary material.
For the pipeline training, we choose a higher learning rate
and a step-wise decay each 100 epochs for all the auxil-
iary networks as it is often done in adversarial training set-
tings. This helps provide a strong training signal to the
anonymization network throughout the whole training pro-
cess. As an optimizer we use AdamW [15].

During training on both datasets, we apply geometrical
augmentation as it is a widely established technique. Fol-
lowing the examples of [0, 22], we use random cropping
after zero-padding by a twelfth of the original size, random
horizontal flipping and random rotation by up to 15°. No-
tably, we do not apply horizontal flipping for DVS-Gesture
because the labels are dependent on the direction of the ges-
tures.

5.3. Re-Identification Attack and Target Task

During the pre-training, we train the auxiliary networks
fr and frerq for their respective tasks on the raw event
data in order to provide a better initialization and therefore
a more meaningful training signal during the pipeline and
post-training.

The results of the pre-trained target and re-identification
networks on DVS-Gesture [4] and SEE [29] are given in
Tab. 1. Both networks are evaluated in terms of accuracy
(accr and acciq) and for frerq we also compute the mean
Average Precision (mAP) of identity retrieval from the val-
idation dataset. Both networks achieve a reasonable result
on the raw event data.

We further demonstrate the effect of Gaussian noise
with varying standard deviations for both datasets in
Tab. 1. As the results indicate, introducing noise sig-
nificantly enhances anonymization by substantially reduc-
ing re-identification accuracy and mAP. This effect arises
from the distribution of events, where regions of interest

with high motion typically contain a dense concentration
of events. Consequently, noise effectively covers person-
ally identifiable features while still allowing for target de-
tection. However, the optimal standard deviation depends
heavily on the specific dataset, as excessive noise inevitably
also decreases the target task performance, limiting its prac-
tical applicability.

Utilizing the pre-trained weights of the auxiliary net-
works, we then continue with our strategy of adversar-
ial pipeline training as described in Sec. 4.3. The re-
sults in Tab. 1 show, that our method effectively prevents
re-identification reducing acc;y by nearly 60% for DVS-
Gesture and about 50% for SEE, which is considerably
lower than most applications of noise. Moreover, our
approach is able to almost maintain the target accuracy
accr only reducing it by 12% for DVS-Gesture and 22%
for SEE, vastly outperforming all noise with a similar re-
identification prevention. Example visualizations for both
datasets can be found in Fig. 3

Overall, the results proof, that our pipeline training is ca-
pable to anonymize events effectively and is indeed able to
cover minute private information, while preserving neces-
sary clues for other downstream tasks.

5.4. Generalization of Protection

We evaluate the generalizability of f 4,0, on Event-Reld
[1] without fine-tuning on this dataset. Since the dataset
does not contain data for a downstream task, we utilize
the anonymization network trained on DVS-Gesture [4] and
keep them fixed during the post-training for re-identification
on Event-Reld.

The result of our experiments can be found in Tab. 2.
They show that our anonymization method is able to de-
crease the re-identification accuracy of the retrained f;4 net-
work by 20% and more than half the m AP score, all with-
out fine-tuning f,.,. This is especially remarkable since
the two datasets are very different in terms of event density
as well as in the human poses. While DVS-Gesture contains
only front-facing subjects, Event-Reld includes recordings
from diverse camera angles, further underscoring the ro-
bustness and generalization of our anonymization approach.

5.5. Ablation Study

We conduct an ablation study on different input-output
configurations for the anonymization network fa,on, as
shown in Tab. 3. For the input, we evaluate the use of raw
events alone, as well as the concatenation of raw events with
Gaussian noise n = A(0, 1), which is applied to the net-
work’s output. For the output, we explore the addition of
the noise n or the raw events X, to the network output as
well as scaling n by predicting a pixel-wise standard devia-
tion X ;2.

The results indicate that without the addition of the orig-



(a) DVSG Original

(b) DVSG Anonymized

(c) DVSG Image recon

(d) SEE Original (e) SEE Anonymized

Figure 3. Example visualizations of the raw and anonymized events for DVS-Gesture [4] and SEE [29]. Subfigure c) depicts the result of
grayscale image reconstruction from the anonymized data using E2VID [18]. The images are visually enhanced for human perception.

Table 1. Evaluation of the target task and the re-identification on DVS-Gesture [4] and SEE [29] for different training stages and the

application of standard Gaussian noise.

Dataset Input Stage acep|%] 1| accig[%) 4 | mAP[%] L
Raw Pre-training 92.42 98.33 69.64
Noise std=32  Post-training 84.47 60.00 27.24
DVS-Gesture [4] Noise std=64  Post-training 82.20 61.67 27.04
Noise std=128  Post-training 78.79 50.00 23.40
Noise std=256  Post-training 66.29 36.67 20.07
Anonymized All stages 80.68 40.00 20.69
Raw Pre-training 77.14 72.5 43.27
Noise std=1  Post-training 66.43 47.5 25.63
SEE [29] Noise std=2  Post-training 60.00 35.00 17.98
Noise std =4  Post-training 55.00 32.5 17.08
Anonymized All stages 55.71 25.0 13.14
inal input X, to the network’s output, the re-identification -
accuracy indeed reduces drastically. However, the target ac- §/ _
curacy is substantially decreases as well, as the network AnonNet ~—»  Denoise _ RelD/Target _
output lacks constraints tied to the input events. On the g Q Network i

other hand, merely adding the network’s output to the input
event is resulting in limited anonymization, reducing acc;q
by only 15%.

Introducing noise n to the output significantly enhances
anonymization, further lowering acc;q by 35%. This
demonstrates the effectiveness of randomness, which poses
a challenge for neural networks during re-identification.
The best results are achieved when the used noise is ad-
ditionally fed into the anonymization network as an input,
achieving an overall reduction of the re-identification accu-
racy of almost 60%. The noise input enables the network to
determine its output in a data-dependent manner, including
the computation of X > based on both the noise and input
event histograms.

However, predicting and adding an additional X,, does
not yield further improvements, showing that maintaining a
mean of zero is crucial for the effective application of this
noise.

Figure 4. For the inversion attack, we insert a denoising network
(orange) between the frozen anonymization network (blue) and the
classification network (red/green) for the post-training.

5.6. Robustness against Image Reconstruction and
Inversion Attacks

We evaluate our anonymization method against two
more privacy attacks: Inversion and image reconstruction.

An inversion attack utilizes a neural network to reverse
anonymization by reconstructing the original data from its
anonymized counterpart. To achieve this, we introduce a
denoising network fpenoise and position it before the re-
identification or target network, as illustrated in Fig. 4,
during post-training. While freezing the weights of the
anonymization network, the denoising and target networks
are trained jointly using a combination of the classification



Table 2. Re-identification results on Event-Reld [1] for raw and anonymized event input based on the anonymization network trained for

DVS-Gesture [4] without further fine-tuning.

Method | top-1acc [%] | | top-5acc [%] | | top-10acc [%] | | mAP [%] |
No Privacy 59.09 77.27 81.82 34.04
AnonyNoise (Ours) 38.64 61.36 68.18 15.23

Table 3. Results of the target task and the re-identification after post-training when we ablate and vary the input and output of f 4o during

our pipelined training.

Input Output acer[%] 1 | accig|%) 4 | mAP;q[%)] |
Pre-Training - 92.42 98.33 69.64
Xe X, 56.44 35.0 19.48
Xe Xe + X, 81.82 83.33 45.48
X, Xe+n- X, 84.85 48.33 24.71
Xesn Xe+n- X, 80.68 40.00 20.69
Xeon  Xe+ X,+n-X,o | 8258 45.00 22.75

loss and the MSE loss between the original input event data
X, and the reconstructed output fpenoise(X.). For the
denoise network fpenoise We choose a simple architecture
consisting of 15 convolutional layers (k = 3x3, s = 1) with
batch normalization. The results of this attack applied to
our method as well as to standard Gaussian Noise are visu-
alized in Fig. 1 and are listed in the supplementary material.
The data shows, that the inversion is especially effective for
noise with a high standard deviation, where it increases the
re-identification accuracy by up to 11 %. Our method, on
the other hand, proofs to be very robust and even after the
inversion attack retains a similar acc;4, while increasing the
desired target accuracy by almost 4 %.

Image reconstruction based on the events could be an-
other way to regain private information after the anonymiza-
tion. To evaluate this, we utilize a pre-trained E2VID
network [18], a recurrent neural network for high-quality
grayscale images reconstruction from event data. The qual-
itative result of the image reconstruction attack in Fig. 3c
shows that the attack failed for DVS-Gesture [4]. There-
fore, our anonymization is robust against possible grayscale
reconstructions. Further reconstruction examples are pro-
vided in the supplementary material.

6. Limitations

While our event anonymization pipeline has proven ef-
fective on the utilized datasets, our current framework ex-
clusively supports event histograms as the input represen-
tation. This is due to the computational infeasibility of
processing sparse event streams with state-of-the-art neu-
ral networks on recent GPUs, which have a clock-based
architecture. As improvements in sparse data processing
continue, our approach stays flexible and provides potential
avenues for future research extensions.

7. Conclusion

In this paper, we present an ethical analysis of data pri-
vacy and propose a novel anonymization method for event
data for the prevention of re-identification risks. We argue
that mere anonymization against human recognition based
on visual features falls short in many applications. In-
stead, a more comprehensive approach is needed - one that
anonymizes all personal information embedded in event
data, preventing misuse by deep learning models. Our pro-
posed method achieves anonymization by predicting and
applying noise in a data-dependent manner. When ap-
plied to event data, our approach effectively prevents re-
identification attempts by neural networks while preserv-
ing the performance of downstream tasks. To demonstrate
its effectiveness, we simulate a re-identification attack by
training a neural network to identify individuals from the
anonymized event data. The results of our experiments con-
firm that our method is robust against such attacks, while
maintaining strong performance on target tasks such as ges-
ture recognition. Furthermore, our approach generalizes
well to unseen data and remains robust against inversion
and image reconstruction attacks. By covering unnecessary
personal data, our method supports the ethical use of vision
sensor data, ensuring secure storage and safeguarding pri-
vacy even amidst security threats, making it applicable to
any recognition system where person identification is unde-
sirable.
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Supplementary Material

A. Overview

In this supplementary material, we provide a more de-
tailed overview of AnonyNoise, a method developed for
predicting data-dependent noise aimed at preventing re-
identification. The document is structured as follows: First,
we detail the training parameters used in our implementa-
tion for the three datasets: DVS-Gesture [4], SEE [29], and
Event-Reld [ 1], in order to ensure reproducibility. Next, we
present numerical results from an inversion attack on our
method, comparing its effectiveness to Gaussian noise when
evaluated using a denoising network. This comparison pro-
vides insight into the robustness of AnonyNoise in contrast
to traditional noise techniques in preventing data recovery
and re-identification attempts. We moreover provide our
statement regarding our responsibility to human subjects in
the datasets used during our experiments. Lastly, we in-
clude an expanded set of visual examples across all datasets,
including the results from image reconstruction attacks.

B. Implementation Details

The training parameters for each dataset are listed in
Tab. 5. Notably, we choose a higher learning rate for all
the auxiliary networks during the pipeline training. This en-
sures that a strong training signal is consistently delivered to
the anonymization network throughout the entire process.
Moreover, we apply a step-wise learning rate decay every
100 epochs, with a gamma value of 0.5. For all networks
and training stages, we employ the AdamW optimizer [ 5].
Additionally, the same parameter settings are used in the
post-training phase for the inversion attack when utilizing
the denoise network. Since the SEE [29] dataset results in
event histograms with a lower amount of events, we uti-
lize a A/(0,0.1) distribution for the added noise instead of
N (0, 1) for DVS-Gesture [4].

C. Inversion Attacks

Reconstructing the original data from anonymized
events is a key threat that any anonymization method must
prevent. To evaluate this, we simulate an inversion attack
by inserting a denoise network between the anonymization
and classification networks. We compare the impact of

this attack on the AnonyNoise method and Gaussian noise
(with varying standard deviations) using the DVS-Gesture
dataset [4]. The results are shown in Tab. 4 and correspond
to Fig. 1 of the main paper.

The data indicates that increasing the standard deviation
of Gaussian Noise reduces re-identification accuracy. How-
ever, this also makes inversion easier, which increases the
identity accuracy (acc;q) by more than 11%. Furthermore,
using noise with a high standard deviation significantly
decreases the target accuracy, making this anonymization
method unsuitable for practical applications.

In contrast, when AnonyNoise is applied, the denoise
network is unable to increase the re-identification accuracy
significantly. Instead, the inversion process positively im-
pacts target accuracy, improving it by almost 4%, a desir-
able outcome. This demonstrates that our method is robust
against inversion attacks, even without explicitly optimizing
for this feature during training.

Table 4. Results of the inversion attack during post-training based
on DVS-Gesture [4]. In brackets is the difference to the results of
the post-training without the inversion attack.

Method acep %] T acciq|%] 4
Raw 92.42 98.33
N(0,32) 85.23 (+0.75)  58.33(-1.67)
N(0,64) 83.33 (+1.13)  61.67 (+0.00)
N(0,128) 77.65 (-1.14)  61.67 (+11.67)
N(0,256) 68.56 (+2.27)  41.67 (+5.00)
AnonyNoise (Ours) 84.47 (+3.79) 41.67 (+1.67)

D. Responsibility to Human Subjects

The datasets used in our experiments were obtained
through collaboration with human subjects on a voluntary
basis. The authors of the respective papers are accountable
for ensuring that all essential consents were secured before
the publication of the datasets. It is crucial to note that the
data encompasses personally identifiable information, a re-
grettable but imperative aspect for our research aimed at
training networks for re-identification prevention.

E. Extended Visualizations and Image Recon-
struction

In Fig. 5, we present a broader range of visual exam-
ples from the three datasets: DVS-Gesture [4], SEE [29],
and EventReld [3]. The visualizations include raw and
anonymized event data, as well as grayscale image recon-
structions from both raw and anonymized events. Since
EventReld contains only re-identification labels, we lever-
age the weights trained on DVS-Gesture for our anonymiza-
tion network.



Table 5. Training parameters for pre- and post-training as well as for training the anonymization pipeline for each dataset.

Dataset Training Phase Network Batchsize | Learning Rate Scheduler Epochs
- —4 1
DVS.-Gesture [] Pre/Post Re-ID /Target Net 32 1 x 10_3 Cosine df:cay 200
SEE [20] Pineline Re-ID /Target Net 32 1x10 Step-wise 300
p Anon Net 32 5x10~% | Cosine decay 300
Event-Reld [1] Pre/Post Re-ID Net 24 1x 1073 Cosine decay 200

The work of [3] specifically addresses the threat of
grayscale image reconstruction from event data, which en-
ables easy human identification. Their method employs an
explicit loss during training to limit the reconstruction of
images from anonymized events, while still allowing re-
identification.

In contrast, our AnonyNoise method prevents re-
identification by both humans and neural networks without
any explicit loss preventing image reconstruction. To show
this, we use the same pre-trained E2VID network [18] em-
ployed in [3]. E2VID, based on a recurrent neural network
architecture, is capable of producing high-quality grayscale
reconstructions from event data. However, the qualitative
results of the image reconstruction attack, shown in Fig. 5,
demonstrate that the attack failed for all three datasets. The
images confirm that no human-recognizable reconstructions
can be achieved, proving that our method is robust against
such attacks. Furthermore, the results on EventReld show
that AnonyNoise generalizes well even to previously unseen
data.




Re-ID SEE SEE DVS-Gesture DVS-Gesture

Re-ID

(a) Original (b) AnonyNoise (c) Gaussian Noise (d) Original Recon. (e) AnonyNoise Recon.

Figure 5. Visualized examples of a) the original event data, b) the anonymized event, c) original events with Gaussian noise, d) grayscale
image reconstruction based on the original event data and e) grayscale image reconstruction based on the anonymized events for DVS-
Gesture [4], SEE [29], and EventReld [3]. The image reconstruction is based on E2VID [18]. We apply Gaussian noise with a standard
deviation of 32 for DVS-Gesture and of 1 for the other datasets. The images are visually enhanced for human perception.
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