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Abstract
Dataset distillation aims to replace large training sets with sig-
nificantly smaller synthetic sets while preserving essential infor-
mation. This method reduces the training costs of advanced deep
learning models and is widely used in the image domain. Among
various distillation methods, "Dataset Condensation with Distri-
bution Matching (DM)" stands out for its low synthesis cost and
minimal hyperparameter tuning. Due to its computationally eco-
nomical nature, DM is applicable to realistic scenarios, such as
industries with large tabular datasets. However, its use in tabular
data has not been extensively explored. In this study, we apply
DM to tabular datasets for outlier detection. Our findings show
that distillation effectively addresses class imbalance, a common
issue in these datasets. The synthetic datasets offer better sample
representation and class separation between inliers and outliers.
They also maintain high feature correlation making them resilient
against feature pruning. Classification models trained on these dis-
tilled datasets perform faster and better that will enhance outlier
detection in industries that rely on tabular data.

CCS Concepts
• Computing methodologies→ Anomaly detection; Neural
networks.
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1 Introduction
Tabular data, characterized by its structured rows and columns,
often encompasses mixed-type features, including numerical and
categorical data. Despite the unique challenges posed by its hetero-
geneous nature, tabular data is critically important across various
industries, supporting applications in finance, healthcare, manu-
facturing, and retail. The prevalence of tabular data in finance has
made it a particularly promising area for the application of ad-
vanced machine learning methods. The recent escalation in fraud-
ulent activities has heightened the focus on detecting financial
fraud, making outlier detection a key area of research [15]. Outlier
detection, crucial for identifying rare but significant outliers, has
been an active research domain for decades, especially within the
financial sector [2]. However, a significant challenge in this area
is the common occurrence of class imbalances, where outliers are
far less frequent than normal instances. This imbalance results in
a dominance of majority classes, leading to models becoming bi-
ased towards these classes and reducing their ability to accurately
detect classes [8]. Addressing class imbalance issues is essential
for enhancing the performance and reliability of machine learning
models in identifying outliers within tabular data.

To develop AI-based solutions for various industrial tasks, such
as fraud detection, model training is essential. However, training
these models can be expensive and resource-intensive, creating a
strong demand for techniques that reduce the computational cost
of training multiple models on the same dataset with minimal per-
formance degradation. Traditionally, coreset selection has been
employed to reduce training set sizes by picking samples deemed
crucial for training using heuristic criteria. Examples include mini-
mizing the distance between the centers of the coreset and the entire
dataset [6], tracking the frequency of misclassifications [29], and
enhancing the diversity of the chosen samples [3]. However, its ef-
ficiency is constrained by the information contained in the selected
samples from the original dataset. Dataset Distillation has emerged
as a superior alternative, overcoming the limitations of coreset ap-
proaches. Various methods for dataset distillation exist, such as
those described in [30], [35], and [7]. Notably, DM [34] integrates
the advantages of other distillation methods while circumventing
their limitations. By avoiding costly bi-level optimization and ex-
tensive hyper-parameter tuning, DM is significantly faster and
more applicable to realistic scenarios. Despite these advancements,
distillation techniques have predominantly been explored within
the image domain and have not been thoroughly investigated for
tabular data.
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TNR: 0.52  TPR: 0.59  Corr: -0.05

Full Train Data
Inliers: 2270
Anomalies: 270

TNR: 0.99  TPR: 0.18  Corr: 0.31

Random Set
Inliers
Anomalies

TNR: 0.97  TPR: 0.42  Corr: 0.38

Herding Coreset
Inliers
Anomalies

TNR: 0.99  TPR: 0.33  Corr: 0.22

Forgetting Coreset
Inliers
Anomalies

TNR: 1.0  TPR: 0.7  Corr: 0.29

Distilled Synthetic Data
Inliers
Anomalies

Test Set
Inliers: 1370
Anomalies: 170

Figure 1: Visualization of 2D Toy Scenario. This figure illustrates four datasets generated using different methods: random
selection, coreset selection, and distillation (as described in Section 4.2, Section 3). Separate Multilayer Perceptron (MLP) models,
all with identical hyperparameters (two hidden layers with Relu activations), were trained from scratch on each dataset and
evaluated on the test set of the Toy dataset. Each subplot displays the training samples and the decision boundary formed by
the corresponding model. The x-axis of each subplot indicates the models’ performance on the test set. Notably, the model
trained on the distilled synthetic dataset exhibits superior outlier detection capabilities and achieves better separation between
inlier and outlier classes compared to the others.

In this paper, we apply dataset condensation using distribution
matching (DM) to tabular datasets used for outlier detection, aim-
ing to bridge the gap in research and demonstrate its applicability
beyond the image domain. By focusing on tabular data, we explore
the effectiveness of DM in addressing the unique challenges posed
by mixed-type features and class imbalances prevalent in outlier
detection tasks. Our study shows three properties incorporated by
the distillation process on the tabular data. Firstly, the distillation
of highly imbalanced real outlier detection datasets brings class bal-
ance into synthetic datasets. Our experimental results indicate that
class balance improves performance in distilled synthetic datasets
compared to other approaches. Additionally, the synthetic data cap-
tures critical information from the real data and represents inliers
and outliers in significantly fewer samples compared to real data.
As a result, synthetic outliers are better represented and lead to bet-
ter class separation between inliers and outliers. We demonstrate
this property of synthetic datasets by conducting experiments on
both toy and public datasets. Furthermore, generally independent
features in the real dataset become highly correlated in the syn-
thetic datasets. Due to highly correlated features these synthetic
datasets become resilient against feature pruning. Hence, model
performance does not degrade even after removing feature informa-
tion from synthetic datasets that are lacking in real datasets. Due
to such positive impacts of applying distillation, synthetic datasets
with less than 5% of the samples of the real dataset provide better
performance than real datasets and are better suited for outlier
detection tasks.

In summary, we present the following contributions:
• We uncover the hidden properties of DM for tabular data,
particularly in the context of outlier detection.

• By applying DM, we demonstrate that synthetic datasets can
outperform full datasets in certain scenarios, owing to better
outlier representation and class balancing.

• DM exhibits resilience against feature pruning, showcasing
the robustness of distilled datasets even when features are
reduced.

The remainder of this work is structured as follows: Section 2
provides a review of relevant literature, highlighting gaps in the

domain. In Section 3, we detail our approach to tabular dataset dis-
tillation. The experimental setup, model architecture, datasets used,
and evaluation measures are described in Section 4, while Section
5 presents the results and comparisons. We conclude in Section 6,
summarizing our main findings and identifying opportunities for
future research.

2 Related Work
Dataset Distillation in Images: Distilled Dataset is the task of
compressing a dataset into a smaller size version with the condition
that the performance of a model trained on both versions is as
minimal as possible. This field is inspired by knowledge distilla-
tion, in which a teacher model transfers its knowledge to a student
model that is usually a smaller version of the teacher. With this in
mind, Wang et al.[30] proposed a bi-level optimization approach
that transfers the real image dataset into a smaller version (i.e., less
than 50 images per class). Several approaches have been developed
based on matching gradients [35], distributions [34], and training
trajectories [7]. Dataset Distillation is applied not only to images
but also to multi-modal data [32], text [19], graph [17]. Medveded
et al. presented the only work exploring distilled datasets on tabular
data [20]. They used an artificial two-dimensional binary classi-
fication dataset to improve the generalization problem between
different architectures. In this work, we are interested in a wider
scenario that evaluates Distilled Datasets using outlier detection in
tabular datasets. Distilled Dataset approaches showed unexplored
attributes which are easier to analyze in these tabular datasets.
Outlier Detection on Tabular Data: Outlier detection has gath-
ered extensive attention in research across diverse fields for several
decades, with a heightened emphasis in the financial sector [22].
The use of tabular data in financial applications has recently flour-
ished, offering promising opportunities for new methodologies [5].
There are reconstruction-based approaches to detect outliers that
assume outliers are difficult to reconstruct from low-dimensional
projections. DAGMM [36] is one such approach that integrates
density estimation with both reduced representation and recon-
struction error, aiming for amore holistic outlier detection approach
that considers low-density regions in reduced spaces. Also, there
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Table 1: Description of benchmark tabular datasets used for our experiments.

Dataset Feature
Type Samples Columns Outliers

(%)Categ. Num. Encoded

Credit Default [33] Mixed 30000 10 13 146 22.10
Credit Fraud [11] Num 284807 - 29 29 0.17
Census Income [1] Mixed 299285 33 8 511 6.21
Adult Data [4] Mixed 48842 8 6 118 23.90
Bank Marketing [21] Mixed 41188 10 10 63 11.20
IEEE Fraud [16] Mixed 590540 31 400 3172 3.50

are clustering methods like Gaussian Mixture Models, and K-means
are widely used for outlier detection but face challenges with high-
dimensional data due to the curse of dimensionality. In addition,
one-class classification methods are frequently employed in out-
lier detection. These algorithms, such as one-class SVM [25], learn
a discriminative boundary around normal instances within the
dataset. Furthermore, recent methodologies extend to tasks such as
including outlier detection in accounting data [12],[27], interpreta-
tion of outliers within financial tabular datasets [26], transforming
outliers across different tabular data formats [14], federated out-
lier detection on financial tabular data [13], modeling behavioral
fraud patterns [31], and enhancing anti-money laundering efforts
[18],[23].

3 Methodology
3.1 Preliminaries
In this work, we evaluate Distilled Datasets for Outlier Detection
in Tabular Datasets. The goal is to find a synthetic dataset with
the condition that the difference between the model performances
trained on real and distilled datasets is similar. One solution is to
express this problem as a bi-level optimization which is defined
with the following equation:

S∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛S LT (𝜽S (S))

subject to 𝜽S (S) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃 LS (𝜽 ),
(1)

where LT is the training loss on the real data T , 𝜽S is a neu-
ral network expressed as a function of the synthetic data S. One
solution is the dataset condensation using distribution matching
(DM) [34] approach that optimized the distance between the mean
distribution of the real logits and synthetic logits.

E𝑣∼𝑃𝑣 ∥
1
|T |

| T |∑︁
𝑖=1

𝜓𝑣 (x𝑖 ) −
1
|S|

|S |∑︁
𝑗=1

𝜓𝑣 (s𝑗 )∥2, (2)

where 𝜓𝑣 (s𝑗 ) is a neural network with parameters 𝑣 and 𝑃𝑣 is
the distribution of network parameters.

3.2 Properties of DM in Tabular Datasets
DM was originally evaluated for image classification datasets that
are balanced (i.e., each class has the same number of images) and
contain high-dimensional input space. In contrast, this work shows

empirical results regarding several properties of DM for Outlier
Detection which is defined in the following equation:

T = {(x𝑖 , y𝑖 )}𝑛𝑖=1
𝑤ℎ𝑒𝑟𝑒 x𝑖 = (𝑥1𝑖 , . . . , 𝑥

𝐷
𝑖 )

𝑥𝑑𝑖 =

{
𝑥
𝑑num
𝑖

∈ R for numerical features
𝑥
𝑑cat
𝑖

∈ {1, ...,𝐶} for categorical features
y𝑖 ∈ {𝑖𝑛𝑙𝑖𝑒𝑟, 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 }
∥𝑖𝑛𝑙𝑖𝑒𝑟 ∥ >> ∥𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∥.

(3)

Note that outlier detection has a mixed set of features (𝑥𝑑
𝑖
) be-

tween continuous and discrete and the number of inliers is much
greater than the number of outliers.

Property 1 - Class Balanced: DM inherits the option to learn
a condensed version of the actual dataset, with a specific number
of samples per class (e.g., 10, 50, or 100 samples). As a result, the
imbalanced outlier detection problem is transformed into a more
manageable balanced outlier detection task, with all features being
continuous. The following equation shows the distilled dataset
version of the outlier detection problem:

S∗ = {(x̂𝑗 , y𝑗 )}𝑚𝑗=1
𝑤ℎ𝑒𝑟𝑒 x̂𝑗 ∈ R𝐷

𝑛 >> 𝑚

∥𝑖𝑛𝑙𝑖𝑒𝑟 ∥ = ∥𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∥.

(4)

Property 2 - Outlier Representation: Another property is
related to the outlier representation, which is a better representation
than the real data samples. Fig 1 shows several empirical results that
compare trained models in different conditions. We want to point
out that the Distilled Synthetic Data reaches better results than
the three coreset approaches (balanced dataset) and Full Datasets
(imbalanced dataset). Additionally, the decision boundary of the
distilled dataset looks quite similar to the Test Set, whereas, the
decision boundaries of the other examples do not cover the outlier
area.

Property 3 - Feature Correlation: The last property shows a
correlation between features. It can be observed in Fig 1 that all
small datasets (i.e., random, herding, forgetting, and distilled) reach
a higher correlation than the full train data. We can infer that fewer
samples show a higher feature correlation. The advantage of the dis-
tilled dataset is that it contains both higher feature correlation and
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better representation. This property can be exploited for pruning
the feature space.

4 Experimental Setup
This section includes descriptions of the datasets and data pre-
processing procedures, alongside the baseline methods used for
comparison, and different evaluation metrics.

4.1 Datasets
We evaluated the DM technique using six standard financial tabular
datasets for outlier detection. Five out of six datasets contain mixed-
type features and one dataset contains only numerical features.
During data preprocessing, all categorical attributes were encoded
using the one-hot encoding method, and numerical attributes were
standardized to have a mean of 0 and a standard deviation of 1. The
one-hot encoded categorical attributes were then combined with
the standardized numerical attributes. Hence, the total number of
encoded attributes is the concatenation of categorical and numerical
attributes. Table 1 summarized the attribute features of several
datasets.

4.2 Baseline Methods
To benchmark the performance of the Tab-Distillation method, we
conducted a comparative analysis against four baselines.

• Full Dataset: This involves utilizing the entire dataset for
training and evaluation purposes. It serves as a reference
point to assess the performance of other methods by pro-
viding a comprehensive view of the data, ensuring that no
information is omitted. This approach is particularly useful
for establishing an upper bound on performance, as it lever-
ages all available data without any sampling or selection
bias.

• Random Selection: In this baseline method, a random sub-
set of the dataset is selected for training. This technique
involves reducing the size of the dataset by randomly se-
lecting a subset of instances from the original dataset. The
primary goal is to create a smaller, more manageable dataset
for training, which can help mitigate the computational bur-
den while still capturing the essential characteristics of the
data. During the selection, class balance is maintained to
make a fair comparison with the model performance on the
distilled dataset.

• Herding [6], [10], [24]: This method iteratively selects data
points that minimize the maximum discrepancy between the
empirical distribution of the subset and the target distribu-
tion, ensuring that the selected subset preserves the essential
statistical properties of the full data.

• Forgetting [29]: The forgetting coreset method tracks how
often each training sample is learned and subsequently for-
gotten during network training. Samples that are less fre-
quently forgotten are deemed less informative and can be
excluded from the coreset.

We have also compared the Tab-Distillation to two standard
resampling methods listed below

• SMOTE [9]: Synthetic Minority Over-sampling Technique is
a data augmentation method used to address class imbalance
in datasets. It generates synthetic examples of the minority
class (outliers) by interpolating between existing samples,
effectively increasing its representation in the dataset. This
technique helps prevent overfitting and improves classifier
performance by promoting a more balanced decision bound-
ary.

• TomekLinks [28]: It is an undersampling technique aimed
at cleaning class boundaries by identifying and removing
ambiguous instances. A Tomek Link exists between two
samples of opposite classes if they are each other’s nearest
neighbors; removing the majority class (inliers) instance in
such pairs reduces class overlap, improving class separability.
This method enhances classifier performance by refining the
decision boundary and mitigating noise.

4.3 Hyperparameters
In this study, we employed a Multilayer Perceptron (MLP) to learn
synthetic sets across all datasets. For each original dataset, optimal
hyperparameters were determined through an exhaustive search
and then a specific architecture was selected, characterized by a
unique combination of the number of neurons and layers. The ex-
haustive search includes the following ranges: number of neurons
[4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048], number of hidden layers
[2, 3, 5], activation function [Sigmoid, Relu, Leaky_Relu], batch size
[32, 64, 128, 512] and optimizers [SGD, Adam]. The model archi-
tecture for each dataset is as follows: Credit Default (64,32), Credit
Fraud (32, 16), Census Income (256,128,64), Adult Data (64,32), Bank
Marketing (32,16), and IEEE Fraud (2048,1024,512,256,128). Sigmoid
activation functions were utilized, and model parameters were opti-
mized using the Stochastic Gradient Descent (SGD) optimizer with
a momentum factor set to 0.9. A fixed learning rate of 1.0 was used
for optimizing synthetic samples for learning scenarios with 10, 50,
and 100 samples per class (SPC) across all datasets. The synthetic
samples were trained for the following number of iterations: 7000
for Credit Default, 8000 for Credit Fraud, 10000 for Census Income,
6000 for Adult Data, 14000 for Bank Marketing, and 20000 for IEEE
Fraud datasets. Synthetic samples were initialized using random
real samples with corresponding labels. For the evaluation of syn-
thetic data, we used the same MLP hyperparameters as those used
during distillation, except for a learning rate of 0.01 and a training
duration of 300 epochs.

4.4 Evaluation Metrics
To evaluate the quality of the DM technique, we employed four
distinct metrics to measure the detection rate. Given those datasets
for outlier detection often exhibit highly imbalanced class ratios,
dominated by inliers, we used Mean Accuracy across classes. This
metric provides a balanced measure of performance across both the
classes, ensuring it is not overly biased towards the dominant class
in particular outlier detection cases. Additionally, to quantitatively
assess the outlier detection performance of the models, we utilized
the ‘F1-Score’, the area under the precision-recall curve (‘PR-AUC’),
‘TNR’ and ‘TPR’ all of which are standard metrics in the domain of
outlier detection.
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Figure 2: Comparison of Feature CorrelationMatrix between Synthetic and Full Datasets: Each subplot represents the correlation
matrix of features in the dataset. The matrix of the distilled synthetic dataset contains higher feature correlation values
compared to full datasets across all six benchmark tabular datasets for outlier detection.

Table 2: Comparison of model performance trained on random set (R), herding coreset (H), forgetting coreset (F), Distilled
Synthetic Set (DM), and full dataset (Full): DM outperforms other baselines such as R, H, F and performs as good as Full across
six datasets and different metrics. In a few cases when the SPC is 100 (marked by underline), DM outperforms the Full.

Datasets SPC Mean Accuracy F1-Score PR-AUC

R H F DM Full R H F DM Full R H F DM Full

Credit
Default

10 0.535 0.498 0.506 0.634
0.664

0.324 0.355 0.349 0.423
0.453

0.274 0.238 0.276 0.425
0.45550 0.524 0.525 0.540 0.621 0.367 0.349 0.386 0.411 0.288 0.283 0.309 0.459

100 0.539 0.528 0.547 0.671 0.381 0.351 0.367 0.466 0.365 0.329 0.283 0.504

Credit
Fraud

10 0.929 0.296 0.338 0.944
0.865

0.277 0.003 0.002 0.464
0.313

0.728 0.040 0.006 0.781
0.79950 0.913 0.913 0.912 0.938 0.217 0.354 0.254 0.383 0.747 0.728 0.206 0.754

100 0.888 0.913 0.917 0.939 0.308 0.410 0.119 0.415 0.745 0.699 0.255 0.779

Census
Income

10 0.680 0.515 0.517 0.735
0.761

0.207 0.057 0.127 0.330
0.385

0.156 0.125 0.079 0.337
0.41650 0.586 0.484 0.701 0.759 0.104 0.088 0.245 0.242 0.164 0.074 0.292 0.342

100 0.604 0.516 0.574 0.791 0.127 0.106 0.144 0.398 0.260 0.123 0.093 0.402

Adult
Data

10 0.686 0.512 0.469 0.780
0.790

0.051 0.040 0.295 0.614
0.637

0.478 0.496 0.257 0.662
0.70150 0.665 0.544 0.441 0.800 0.151 0.304 0.583 0.629 0.460 0.568 0.263 0.658

100 0.667 0.504 0.473 0.794 0.158 0.235 0.225 0.631 0.476 0.544 0.265 0.693

Bank
Marke
ting

10 0.699 0.663 0.575 0.802
0.810

0.356 0.281 0.236 0.470
0.499

0.395 0.466 0.347 0.536
0.61850 0.722 0.485 0.775 0.813 0.334 0.176 0.256 0.494 0.488 0.299 0.526 0.586

100 0.673 0.597 0.734 0.853 0.363 0.257 0.290 0.535 0.371 0.337 0.377 0.621

IEEE
Fraud

10 0.479 0.479 0.622 0.632
0.501

0.064 0.246 0.161 0.260
0.1

0.116 0.248 0.087 0.222
0.40850 0.499 0.499 0.651 0.675 0.067 0.067 0.181 0.201 0.040 0.242 0.088 0.249

100 0.506 0.496 0.499 0.657 0.068 0.067 0.067 0.209 0.173 0.247 0.121 0.217

TNR =
True Negatives

True Negatives + False Positives
(5)

TPR =
True Positives

True Positives + False Negatives
(6)

5 Experiments and Results
This section presents a comprehensive overview of the experiments
conducted. It details the results of each experiment, providing in-
sights into the effectiveness of our approach through different eval-
uation measures.

5.1 Performance Comparison
In this scenario, we first distill several synthetic sets with 10, 50,
and 100 samples per class for all datasets using the MLP model
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Table 3: Comparison of model performance trained on oversampling method SMOTE, undersampling method TomekLinks,
Distilled Synthetic Set (DM) with SPC=100, and full dataset (Full): DM outperforms other resamplingmethods onMean Accuracy
metric.

Datasets Methods Inliers Outliers Mean Accuracy F1-Score PR-AUC

Credit
Default

Full 16355 4645 0.664 0.453 0.455
SMOTE 16355 16355 0.620 0.408 0.379
TomekLinks 15131 4645 0.634 0.431 0.418
DM 100 100 0.671 0.466 0.504

Credit
Fraud

Full 199020 344 0.865 0.313 0.799
SMOTE 199020 199020 0.871 0.519 0.752
TomekLinks 199002 344 0.888 0.495 0.803
DM 100 100 0.939 0.415 0.779

Census
Income

Full 196501 12998 0.761 0.385 0.416
SMOTE 196501 196501 0.727 0.498 0.503
TomekLinks 194139 12998 0.742 0.519 0.526
DM 100 100 0.791 0.398 0.402

Adult
Data

Full 26008 8181 0.790 0.637 0.701
SMOTE 26008 26008 0.788 0.647 0.699
TomekLinks 24460 8181 0.762 0.641 0.722
DM 100 100 0.794 0.631 0.693

Bank
Marketing

Full 25583 3248 0.810 0.499 0.618
SMOTE 25583 25583 0.813 0.533 0.547
TomekLinks 24852 3248 0.767 0.530 0.598
DM 100 100 0.853 0.535 0.621

IEEE
Fraud

Full 398914 14464 0.501 0.1 0.408
SMOTE 398914 398914 0.524 0.198 0.415
TomekLinks 397151 14464 0.528 0.237 0.426
DM 100 100 0.657 0.209 0.217

described in Section 4.3. These synthetic sets were then utilized to
train randomly initialized MLP models from scratch, which were
subsequently evaluated on real test data. This experiment was
repeated five times, and the average performance of the models
across all five runs was reported. Our method was compared against
the full dataset and three standard coreset selection methods as
detailed in Section 4.2. For these comparisons, the MLP models
were trained using the training sets of the baseline methods and
tested on real test data.

The results of this experiment are presented in Table 2. Models
trained on the synthetic datasets demonstrated a clear superior-
ity over those trained with coreset selection methods. Across all
datasets and three different evaluation metrics, the models trained
with synthetic datasets consistently outperformed the baselines
in outlier classification. This superior performance can be attrib-
uted to the fact that synthetic training data have balanced class
ratios and are not confined to real sample sets, whereas baseline
methods use subsets of real samples. Notably, models trained with
synthetic datasets comprising 100 samples per class often outper-
formed those trained on the full training set. Models trained on the
full datasets suffer from class imbalance, where dominant classes
overshadow others. This issue is mitigated in models trained on
synthetic datasets. We also compared the performance of the model

trained on DM with SPC=100 against standard resampling methods
like SMOTE [9] and TomekLinks [28]. Models trained using DM
outperformed SMOTE and TomekLinks on mean accuracy metric
across all six datasets.

5.2 Improved Class Separation Between Inliers
and Outliers

To analyze the performance enhancement of models trained on syn-
thetic data compared to those trained on the full dataset (discussed
in Section 5.1), we investigated the representations of synthetic
inlier and outlier samples separately. Initially, we calculated the
density of the inlier and outlier samples separately. The density of
a cluster was defined as the average distance of each point in the
cluster from its center. This metric provides insight into the spread
and compactness of the samples within each class. Subsequently,
we computed the True Positive Rate (TPR) of the models on a real
test set. Here, TPR represents the proportion of correctly predicted
outliers (positive class). We conducted a similar analysis on the full
dataset for comparison.

The results of this experiment are presented in Table 4. Our find-
ings indicate that outlier samples in the synthetic dataset are more
sparsely distributed compared to those in the full dataset. During
the distillation process, the synthetic dataset effectively captures
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Table 4: Lower the density measure output, more denser the
samples. Outliers in distilled synthetic datasets are sparser
than outliers in the full dataset. Also better TPR in the dis-
tilled dataset than full set. The distilled set with fewer sam-
ples represents outliers better than the Full dataset and also
better decision boundary between inliers and outliers re-
sulted in better TPR. Showing results for SPC=100.

Dataset Density in
Outliers TPR

Credit Default

Full 3.570 0.684
Herding 3.250 0.698
Forgetting 2.917 0.673
DM 3.752 0.757

Credit Fraud

Full 16.509 0.754
Herding 16.700 0.832
Forgetting 16.414 0.845
DM 16.965 0.867

Census Income

Full 5.564 0.743
Herding 4.385 0.231
Forgetting 5.168 0.614
DM 6.043 0.893

Adult Data

Full 3.098 0.757
Herding 2.291 0.323
Forgetting 2.597 0.493
DM 3.961 0.822

Bank Marketing

Full 4.771 0.794
Herding 3.206 0.713
Forgetting 3.860 0.535
DM 4.863 0.838

IEEE Fraud

Full 2.172 0.011
Herding 0.769 0.159
Forgetting 2.345 0.246
DM 2.885 0.349

the critical information from the outlier samples, representing a
broader range of the outlier space. This results in a better repre-
sentation of outliers and a clearer separation between inliers and
outliers in the synthetic dataset compared to the full dataset. We
can see the same outcome from the toy dataset visualization shown
in Figure 1. Consequently, models trained on the synthetic dataset
exhibit a higher TPR than those trained on the full dataset shown in
Table 4, demonstrating superior performance in identifying outliers.
This improved performance underscores the efficacy of using syn-
thetic data for training models in scenarios where distinguishing
between inliers and outliers is crucial.

5.3 Pruning
In this experiment, we evaluate the resiliency of the synthetic data
for feature pruning. Resiliency here refers to the ability of the syn-
thetic data to maintain performance despite the pruning of part of
its feature information. To assess this property, we begin by selec-
tively removing information from specific features in the synthetic

dataset. This involves randomly selecting columns and replacing
their original values with zeros. The modified dataset is then used
to train an MLP model from scratch, which is subsequently tested
on the real test set (without pruning). We conduct this process for
varying percentages of column removal—0%, 10%, 25%, 50%, and
75%—to observe how performance degrades as more information is
removed. At each interval, the model’s performance is evaluated
using the F1-Score, the harmonic mean of precision and recall, and
is particularly suitable for outlier detection tasks. To provide a com-
prehensive comparison, we also check the resiliency of the original
full dataset by applying the same procedure.

Figure 3 illustrates the results, with the x-axis representing the
percentage of pruned columns and the y-axis showing the F1-Score.
Across all six datasets, synthetic datasets exhibit greater resiliency
against column-wise information removal compared to full datasets.
This holds true for different samples per class (10/50/100), where
the performance drop from 0% to 75% column pruning is minimal
for synthetic datasets compared to full datasets. In some cases, such
as ‘Credit Default’, ‘IEEE Fraud’, and ‘Census Income’, removing
just 10-25% of columns from the full dataset results in the model’s
F1-Score dropping to zero. The high correlation between features
in synthetic datasets, a result of the distillation process in tabular
datasets, is a key factor contributing to this behavior. To verify that
we also computed the correlation between features of synthetic
datasets and then compared it against feature correlation of full
datasets. We can visualize the comparison of the feature correlation
matrix in Figure 2. By comparing the feature correlation matrix of
synthetic and full sets, the features in the synthetic datasets are
more correlated than in the full datasets for all six datasets. These
results complement the outcome in Figure 3. This property suggests
a potential for privacy preservation in synthetic datasets while not
losing their utility.

5.4 Cross-Model Generalization
One potential practical application of data distillation is the accel-
erated training of multiple models with varied initializations to an
acceptable level of performance. Consequently, the synthetic data
must generalize well across different algorithms. To investigate this
aspect, we conducted experiments by training models of various
algorithms on each distilled dataset. In this study, we implement a
more rigorous cross-model experiment, utilizing 100 samples per
class across all six datasets. As shown in Table 5, the synthetic data
are initially learned with an MLP and subsequently evaluated on
different models by training them from scratch and testing them
on real test data. We evaluate the performance using several stan-
dard algorithms, including Random Forest (RF), Decision Tree (DT),
Logistic Regression (LR), Gradient Boosting (GB), and Naive Bayes
(NB).

Table 5 demonstrates that the highest performance is achieved
when the synthetic dataset is both learned and evaluated using
the same model i.e., MLP. In three out of six datasets, the MLP
attains the best PR-AUC score for outlier detection. However, in
the remaining three datasets, different algorithms outperform the
MLP in detecting outliers. Notably, in the ‘Census Income’ dataset,
the top three algorithms are not MLPs. These findings suggest
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Figure 3: Robustness of Synthetic vs. Full Datasets. This figure illustrates the robustness of synthetic datasets under varying
degrees of column-wise information removal, measured by the F1-Score. The x-axis shows the percentage of columns removed
(0%, 10%, 25%, 50%, 75%), and the y-axis represents the F1-Score. Synthetic datasets maintain higher F1-Scores compared to full
datasets, which exhibit significant performance drops with even minimal column removal. This improved robustness is due to
higher feature correlation in synthetic datasets, as shown in Figure 2, indicating their effectiveness in preserving performance
despite data degradation.

that synthetic samples generated through distillation exhibit good
generalization performance across various models.

Table 5: Cross-Model Generalization of Synthetic Set
(SPC=100): Outlier Detection Results (PR-AUC) using Other
Supervised Models. RF: Random Forest, DT: Decision Tree,
LR: Logistic Regression, GB: Gradient Boosting, NB: Naive
Bayes. MLP the model that is been used for learning and
evaluating the synthetic dataset archives the best results in
three out of six datasets.

Dataset MLP RF DT LR GB NB

Credit Default 0.504 0.322 0.358 0.523 0.469 0.592
Credit Fraud 0.779 0.691 0.464 0.429 0.269 0.422
Census Income 0.402 0.132 0.531 0.462 0.143 0.500
Adult Data 0.693 0.388 0.619 0.712 0.279 0.599
Bank Marketing 0.621 0.229 0.140 0.560 0.140 0.543
IEEE Fraud 0.217 0.061 0.212 0.202 0.063 0.141

6 Conclusion
This study demonstrates that dataset condensation using distribu-
tion matching (DM) applied to tabular data significantly enhances
outlier detection by addressing class imbalance, improving class
separation, pruning resiliency, and cross-model generalization. Syn-
thetic datasets generated through DM consistently outperformed
traditional coreset selection methods and full datasets by offering
balanced class ratios, better representation, and clearer separation
of inliers and outliers. Furthermore, synthetic datasets exhibited
remarkable resiliency to feature-wise information removal, main-
taining high-performance levels even with significant data reduc-
tion. Additionally, these synthetic datasets generalized well across
various machine learning models, demonstrating versatility and
practical applicability for different algorithms. The study’s findings
underscore the effectiveness of dataset distillation in creating effi-
cient and reliable models for outlier detection in industries reliant
on tabular data, thereby extending the benefits of this technique
beyond the image domain and paving the way for broader adoption
in various industrial applications.
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7 Future Work
Future research will explore other distillation methods for tabular
data to further enhance model performance and efficiency. Investi-
gating alternative approaches could uncover new techniques that
offer even greater benefits for outlier detection. Additionally, lever-
aging the feature pruning capability of synthetic datasets presents
a promising avenue for privacy preservation. By ensuring that mod-
els perform well even with reduced data fidelity, we can develop
methods to protect sensitive information without compromising
utility. Future studies will also focus on applying these findings to
a broader range of industrial applications, ensuring the scalabil-
ity and versatility of dataset distillation techniques in real-world
settings.
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