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Editorial 

Artificial Intelligence (AI) is driving revolutionary advancements and is transforming 
the landscape in sports, movement, and health. Rapid advancements are continuously 
reshaping these domains. As we embark on this journey, we recognize that while 
this book offers a snapshot of significant AI applications, the evolving nature of 
technology ensures that new breakthroughs will continually emerge beyond what 
we currently grasp. With this book, we aim to empower readers with knowledge and 
enhance the understanding of the transformative potential of AI in sports, movement, 
and health. 

To begin our exploration, we delve into the broader realm of Digital Transfor-
mations: AI’s Role in Sports Science. We commence with Lenhard (Chap. 1), who 
investigates the profound impact of AI on sports science. His work delves into its role 
in digitization and mathematization while also pondering the philosophical implica-
tions inherent in this transformation. Furthermore, Lenhard unravels the effects AI 
has on scientific practices within the field. Next, Latzel and Glauner (Chap. 2) shed 
light on the future of academic writing empowered by AI. Their inquiry explores 
how AI is reshaping research and writing across various disciplines, focusing on 
sports science. Our discourse concludes with Menges (Chap. 3), who examines the 
application of AI in endurance sports. She showcases how AI-driven technologies 
are revolutionizing training and how AI assists coaches and athletes in decision-
making processes beyond training, encompassing elements such as race selection 
and strategy formulation. 

AI has the power to enhance medical and health-related aspects in sports contexts, 
which we want to focus on in the part AI in Medical and Health Aspects of Sports. 
It is important to note that the focus of this part is not on general applications in the 
healthcare sector, which encompasses a myriad of other works. Instead, within the 
scope of this book, the focus is on movement-related health aspects, which signifi-
cantly intersect with sports science. Kemmler (Chap. 4) starts the part by exploring 
cutting-edge fall prevention strategies and how AI-based fall technology revolution-
izes fall prevention for older adults. Find out how sensor-based AI concepts enhance 
safety and effectiveness in training, even in unsupervised settings. This is followed by
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Owen, Owen, and Evan’s (Chap. 5) chapter, showcasing the future of injury preven-
tion through the lens of AI technology. It is presented how AI not only enhances 
prediction accuracy but also enriches our comprehension of the multifaceted factors 
influencing sports-related injuries. Afterward, we want to have a look at doping in 
sports, a persistent issue that involves the misuse of prohibited substances to boost 
performance. In this context, the paper of Rahman and Maass (Chap. 6) explores the 
use of generative modeling to create synthetic blood sample data, aiming to enhance 
anti-doping analysis. A method is proposed not only for data augmentation but also 
to address ethical concerns regarding athletes’ biological data. 

After examining medical and health implications of AI, our attention turns to 
the realm of Human-Computer Interaction (HCI). Speicher and Berndt (Chap. 7) 
illuminate HCI’s crucial role, offering insights into how AI influences athletic perfor-
mance, injury management, and healthcare. They advocate for integrating human-
centered design principles to elevate user engagement and outcomes in the evolving 
field. Subsequently, Gillmann (Chap. 8) describes the significance of comprehending 
and visually representing uncertainty in sporting data. She provides an overview of 
how uncertainty-aware visualization can contribute to enhancing the reliability and 
decision-making process of Machine Learning (ML) predictions in sports. 

Transitioning, the discourse shifts towards Motion Capture and Feedback 
Systems. Stetter and Stein (Chap. 9) focus on the applications of ML for biome-
chanical analysis of human movements and the associated challenges. They show 
how the three major ML paradigms supervised, unsupervised, and reinforcement 
learning are used in biomechanics and how ML can support the understanding of 
human movements. Baldinger, Lippmann, and Senner (Chap. 10) give an overview 
of current technologies and applications focusing on markerless motion capture tech-
nologies. Furthermore, they complement this with findings from their studies on the 
validity of the technologies and conclude the main challenges for future research. 

Through Practical Examples of Machine Learning and Predictive Analytics, 
the final part showcases how AI is reshaping the future of sports and unlocking new 
realms of performance optimization and strategic insights. Vives, Lázaro, Guzmán, 
Crespo, and Martínez-Gallego (Chap. 11) explore the recent evolution of ML tech-
niques and their potential impact on tennis performance analysis, including a practical 
example showcasing predictive modeling results, leveraging new technologies like 
Hawk-Eye and tracking systems. The discussion then transitions to another perspec-
tive on tennis by Randrianasolo (Chap. 12), which focuses on how sports predictions 
can be revolutionized with convolutional neural networks. This is exemplified by 
forecasting outcomes without the need for extensive historical data, as demonstrated 
with Men Euro 2020 and Women US Open 2021. 

Smyth, Feely, Berndsen, Caulfield, and Lawlor (Chap. 13) explore how ML 
can enhance recreational marathon running through personalized training insights 
and race support by mobile devices and wearable sensors. Barbon Junior, Moura, 
and da Silva Torres (Chap. 14) continue delving into the potential of data-driven 
methodologies in soccer analysis, outlining a systematic pipeline for automating 
data collection, transformation, and analysis, offering insights into player interac-
tions and performance optimization through AI. Finally, McAuley, Baker, Johnston,
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and Kelly (Chap. 15) offer an overview of contemporary research utilizing AI to inter-
pret large datasets in talent identification and development processes within youth 
sport contexts, outlining the potential of AI to enhance recruitment strategies and 
highlighting key strengths, weaknesses, opportunities, and threats in this evolving 
field. 

In light of the diverse contributions presented in this book, we have amassed a 
rich collection of insights, practical applications, and perspectives poised to trans-
form the realms of sports, movement, and health. However, as we stand at this 
juncture of exploration and innovation, it is crucial to acknowledge that our under-
standing is merely a snapshot of the immense potential AI holds for these domains. 
The evolving nature of technology ensures that new breakthroughs will continually 
emerge, pushing the boundaries of what we currently grasp. 

As we reflect on the book’s content, it becomes evident that the research 
approaches and practical implementations showcased within these pages mark just 
the beginning. The real-world impact of AI on sports, movement, and health is yet 
to unfold fully. The true test lies not only in the ingenuity of AI-driven solutions but 
also in their integration into everyday practices and established knowledge. The gap 
between theory, science, and practical application must be bridged to realize the full 
potential of these technologies. 

We hope to have given our readers a first insight into the large field of AI in sports, 
movement, and health. Let us remain curious and attentive to how the future of AI 
technology will develop in the sectors and to what extent the research approaches 
described will be put into practice. 

July 2024 Carlo Dindorf 
Eva Bartaguiz 

Freya Gassmann 
Michael Fröhlich



Contents 

Part I Digital Transformations: Artificial Intelligences Role in 
Sports Science 

1 Situating Sports Science in the Movement of Digitization . . . . . . . . . . 3 
Johannes Lenhard 

2 Artificial Intelligence in Sport Scientific Creation and Writing 
Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Richard Latzel and Patrick Glauner 

3 Advancing Endurance Sports with Artificial Intelligence: 
Application-Focused Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Tessa Menges 

Part II Artificial Intelligence in Medical and Health Aspects of 
Sports 

4 Sensors, Internet of Things and Artificial Intelligence 
for the Diagnosis and Prevention of Falls and Fall-Related 
Injuries in Older People—An Exercise-Related Perspective . . . . . . . 51 
Wolfgang Kemmler 

5 Artificial Intelligence for Sport Injury Prediction . . . . . . . . . . . . . . . . . 69 
Robin Owen, Julian A. Owen, and Seren L. Evans 

6 Generative Artificial Intelligence in Anti-doping Analysis 
in Sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
Maxx Richard Rahman and Wolfgang Maass 

Part III Human-Computer Interaction 

7 A Brief Review of Artificial Intelligence for Sport Informatics 
in the Scope of Human–Computer Interaction . . . . . . . . . . . . . . . . . . . 97 
Marco Speicher and Patrick Berndt

ix



x Contents

8 Transferring Lessons Learned from Uncertainty-Aware 
Visual Analytics in Clinical Data to Predictive Sporting 
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 
Christina Gillmann 

Part IV Motion Capture and Feedback Systems 

9 Machine Learning in Biomechanics: Enhancing Human 
Movement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
Bernd J. Stetter and Thorsten Stein 

10 Artificial Intelligence-Based Motion Capture: Current 
Technologies, Applications and Challenges . . . . . . . . . . . . . . . . . . . . . . . 161 
Melanie Baldinger, Kevin Lippmann, and Veit Senner 

Part V Practical Examples of Machine Learning and Predictive 
Analytics 

11 Machine Learning in Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
Fernando Vives, Javier Lázaro, José Francisco Guzmán, 
Miguel Crespo, and Rafael Martínez-Gallego 

12 Using Convolutional Neural Network to Predict Sports . . . . . . . . . . . 193 
Arisoa S. Randrianasolo 

13 Learning to Run Marathons: On the Applications of Machine 
Learning to Recreational Marathon Running . . . . . . . . . . . . . . . . . . . . 209 
Barry Smyth, Ciara Feely, Jakim Berndsen, Brian Caulfield, 
and Aonghus Lawlor 

14 Data-Driven Methods for Soccer Analysis . . . . . . . . . . . . . . . . . . . . . . . 233 
Sylvio Barbon Junior, Felipe Arruda Moura, 
and Ricardo da Silva Torres 

15 Artificial Intelligence in Talent Identification and Development 
in Sport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 
Alexander B. T. McAuley, Joe Baker, Kathryn Johnston, 
and Adam L. Kelly



Part I 
Digital Transformations: Artificial 
Intelligences Role in Sports Science



Chapter 1 
Situating Sports Science 
in the Movement of Digitization 

Johannes Lenhard 

Abstract This chapter reflects upon how Artificial Intelligence (AI) in sports science 
is situated in the broader movement of digitization, which in turn takes a special 
place in mathematization. It addresses the question: If a field is getting into AI, what 
impact will this potentially have from a philosophical point of view? It argues that 
epistemic opacity is part-and-parcel of digitization and, all the more, of AI. This 
makes prediction an even more important criterion for scientific success, whereas 
the capability for explanation is seriously diminished. Finally, the chapter explores 
how the use of software leads to a new social organization of science. 

Keywords Sport Science · Simulation Modeling · Epistemology ·
Mathematization · Digitization 

1.1 Introduction 

Today, digitization is predominantly discussed in terms of Artificial Intelligence 
(AI). This chapter will take a step back and reflect upon how AI in sports science is 
situated in the broader movement of digitization, which in turn takes a special place 
in mathematization. This chapter does not aim at providing an overview of current 
or future applications of AI in sports science. Other contributions to this book do this 
in a competent manner. Nor will it act as a philosophical naysayer—asking whether 
AI is “new dawn or false hope” is topical in the literature (for sports science, see 
Bartlett, 2006). Rather, the text that follows explores the question: If a field—sports 
science or any other—is getting into AI, what impact will this potentially have? 

The label AI is older than recent Machine Learning (ML) methods. When the 
label was coined in 1956 at a meeting in Dartmouth, it should mainly avoid any 
association with the then popular term of cybernetics, as John McCarthy, one of the 
meeting organizers, reminded later (1988). In the 1950s, poponents of AI believed

J. Lenhard (B) 
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Kaiserslautern, 
Germany 
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4 J. Lenhard

that following explicit rules is the key to intelligence. And since the digital computer 
is a machine that can process such rules with ease and speed, AI was expected 
to overtake human intelligence in foreseeable time. It was a hard-won lesson that 
AI did not meet these expectations. Even chess computers, although the game is 
completely defined by formal rules, had somewhat limited success. When Deep 
Blue finally won against Kasparov, the long-term world champion, this was based 
not on a deeper analysis of moves, but on the large database of existing games fed 
into the machine. Attempts to master language, like generating a translation, proved 
to be a nut too hard to crack, mainly because language use persistently escaped a 
fully formalized grammar. To make a long story short, the optimism reversed and 
led to the “AI winter” of the 1980s. Actually, one can discern a first (late 1970s) 
and a second AI winter (late 1980s to early 1990s); for highly accessible accounts 
see Crevier (1993) or the entry “History of artificial intelligence” in Wikipedia. The 
field of AI re-oriented itself. A leading strand in the 1990s took acting in the world 
as the leading criterion that characterized intelligent behavior—fetching a cup of 
coffee without spilling it, rather than playing chess. This robotic turn produced new 
accounts of what characterizes intelligence, in connection with new visions of what 
AI is––or ought to become, see Pfeifer and Scheier (2001), or Brooks (2002), among 
others. 

However, while the robotic turn amounts to a modest niche for AI, the recent hype 
is more expansive and has been called the second wave of AI, rising for more than 
a decade now. The first wave of symbolic AI was oriented at symbolic rules—the 
philosopher Haugeland (1985) labeled this approach as “good old-fashioned AI” 
—GOFAI. Based on this term, Smith (2019) makes a thoughtful distinction between 
first wave (GOFAI) and second wave (connectionist, neural network) AI. Alien to 
the logical-symbolic standpoint, and almost contradictory to it, the current second 
wave is fueled by statistical approaches, with Deep Neural Networks as the paradigm 
example. Now, knowledge about rules does not count as essential. On the contrary, 
gaps in such knowledge, even gaping craters, are compensated for by statistical 
analyses of extensive datasets. In short, one can connect the second wave of AI to a 
data turn. 

A series of popular and astonishing success stories supports the second wave. Very 
likely, every reader knows how ML jumped from chess to Go with ease (showing the 
power of neural networks). Image classification made a big splash and most recently, 
Large Language Models (LLMs) exhibit proficiency in translating texts that was not 
anticipated by AI nor linguistic experts. Moreover, LLMs like ChatGPT (by the US 
company OpenAI), or other generative networks even increase the frenzy because 
many people find uses for a machine that generates text and, additionally, interfaces 
to these machines are readily available to all internet users (which does not mean 
that they come free of cost). 

All these examples have in common that the rules (for classification, for language) 
are not explicitly modeled, but implicitly defined. What makes a bird look like a 
blackbird is what the images labeled with blackbird have in common—in contrast 
to what the images labeled differently (the non-blackbirds) have “in common”. The 
same applies to language. The rules of grammar are by and large skipped. Instead, the
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machine produces sentences that are similar to sentences in the database (of course, 
the notion of similarity is far from trivial). A human translator would proceed very 
differently, or more precisely, would describe what he or she does very differently: 
translate words, know the grammar, consider phrasing etc. The ML method just 
assumes that existing translations somehow entail all this knowledge. 

In short, ML makes statistical evaluation of large datasets feasible and, if one has 
enough data, ML arrives at surprisingly good results. Recent experience with LLMs 
like ChatGPT makes the case. The universal key then is data from the domain of 
interest, not knowledge in the sense of having a good model of what happens in this 
domain. 

But wait a moment. The universality of AI (working with Deep Neural Networks) 
arises from the flexibility of these networks. Mathematically speaking, learning for 
these networks means to adjust a function that matches input–output behavior. With 
expensive computing equipment, such as employed by LLMs, literally billions of 
parameters are adjusted. To do this in a meaningful way, extremely large amounts 
of data are needed, like the 14 million hand-annotated images on ImageNet, or the 
vast libraries of text compiled by OpenAI (in a completely non-open way). Thus, the 
data turn in AI is not only a revelation of how rich implicit knowledge contained in 
data might be, at the same time, data present a new bottleneck. 

Availability and quality of data replace knowledge about rules as the bottleneck. 
The question is, which fields have adequate data available? There is no formal rule of 
how many one needs. Optimism reigns and speaking about “exciting possibilities” has 
become topical for many publications (see, for instance, Torgler, 2020). However, it is 
not straightforward to distinguish enthusiastic promises from scientific achievements. 
For instance, Perl noted that in actual practice sufficiently many data are almost never 
available (Perl 2009, 33). 

To the extent that data are the key (other than complicated theories), and that tools 
for analysis are accessible through software packages, the AI movement is attractive 
for science and commerce alike. Sports science is a case in point. For instance, 
Dindorf et al. (2023) warn that scientific research should hurry up to not lag behind 
commercial application. It is a widespread belief that AI in sports science is driven by 
commercial application at least as much as by (scientific) modeling. Overviews like 
that of Chmait and Westerbeek (2021) take  Moneyball (Lewis, 2003) as the starting 
point for AI in sports science because it provides a striking and impactful example 
of how to create data and (commercially) use them. 

The following text has three parts. Section 1.2 locates AI in the context of digi-
tization and in the broader history of mathematization. It starts with the famous 
book-of-nature verdict by Galileo and suggests that ML indicates a profound turn 
in mathematization. Section 1.3 concentrates on epistemology and argues that epis-
temic opacity is part-and-parcel of digitization and, all the more, of AI. This makes 
prediction an even more important criterion for scientific success, whereas the capa-
bility for explanation is seriously diminished. The final Sect. 1.4 explores how the 
use of software leads to a new social organization of science.
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1.2 Mathematization—Digitization—Artificial Intelligence 

First a paragraph about terminology. The terminology is complicated by the overlap of 
different traditions. AI is dealing with tasks that would count as based on intelligence 
if achieved by a human, like playing chess, finding the route back home, recognizing 
a face, or writing an essay. As was mentioned in the introduction, AI started with 
manipulating logical rules. The recent successes of AI by and large came from Deep 
Learning, i.e., from the use of multilayered Artificial Neural Networks (ANNs). At 
the same time, ML is a label that normally comprises not only these methods, but also 
Random Forests, among others. Thus, both AI and ML sometimes claim ownership 
for Deep Neural Networks. In the following, we ignore these complications and 
assume that AI refers to a set of methods that typically involve the use of multi-layer 
ANNs. 

These can exhibit extremely versatile input–output behavior, depending on the 
setting of their parameters. Mathematically, such networks approximate an unknown 
function—think of image classification that is a map from the set of images into a 
set of labels—with the help of very many adjustable parameters. Current LLMs, 
for instance, work with billions of such parameters. They are true Behemoths of 
approximation that are said to “learn” because the parameter adjustment is a process 
that is guided by a set of training data. The machinery of approximation iteratively 
finds parameter settings that match these data better and better and in this sense the 
model learns from the data. 

A most important observation is that AI does not simply help to solve problems, 
but rather influences how problems are formulated. Simply deploying computers to 
solve existing problems would fail, because the problems are usually not in the right 
form to be tackled by a computer. Thus, the intention of using AI influences how 
researchers perceive and formulate problems. Researchers aim at posing problems 
in a way that makes them amenable to AI. 

This point is not particular to AI, rather applies to using computer methods in 
general. In fact, it generalizes beyond the computer to all sorts of instrumentation. It 
has been part of scientific activity all the time, or better—and even more general— 
part of how humans act. They use instruments and these instruments shape the way 
they see the world and identify solvable problems. A saying of unknown origin 
captures the point: “If the only tool you have is a hammer, it is tempting to treat 
everything as if it were a nail.” (The entry “Law of the instrument” on Wikipedia 
presents a brief selection of possible origins of this saying.) The computer and, most 
recently, Deep Learning, is scientific instrumentation that exerts such influence in a 
particularly strong way. 

If one discerns the objects that populate the world from the instruments that one 
uses to investigate these objects, then the case of AI comprises (at least) two layers. 
Computers are instruments to find out something about how mathematical or formal 
structures behave. But at the same time, one can see mathematical structures as 
instruments to find out something about how objects in the world behave. Thus,
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there are two layers, or two embeddings—AI as part of digitization and digitization 
as part of mathematization. 

A most famous starting point for reasoning about mathematization is Galileo’s 
verdict that the book of nature is written in mathematical symbols. From the 
seventeenth century on, there was a forceful movement in modern science towards 
mathematization, i.e. conceiving of nature in mathematical ways (Mahoney, 1998). 
Galileo’s viewpoint rests on the metaphysical assumption that the world is as it is, 
and that one can find out some of the facts with the help of mathematical methods 
(and maybe in no other way). Importantly, the world is like a book, everything about 
nature is written there. That means, scientists are deciphering the book, not writing it. 
And since mathematical knowledge is the most certain knowledge, the great promise 
of mathematization is that certainty and truth go hand in hand. 

This promise was daring from the start, because it is more grounded in philosoph-
ical belief than in actual power. Mathematical methods require a formal framework, 
usually involving highly idealizing modeling assumptions, whereas in practical appli-
cations many factors contribute and interact. Admittedly, there are prime examples of 
idealizations that work, first of all astronomy and the movement of planets. Newton’s 
achievements maybe created the greatest success story in science, when he showed 
how laws of mechanics and gravitation plus a new mathematical method (calculus) 
could derive the elliptical orbits of the planets in full match with observational data. 
From then on, mathematization was deeply entrenched in the development of science. 
Still today, mathematical methods count as a pivotal indicator of something being 
scientific. Much has changed since the seventeenth century. A most obvious point is 
that computers redefined the arsenal of mathematical instruments. 

Let us concentrate on simulation as a major area of computer instrumentation. 
Basically, we follow the main thesis in Lenhard (2019) that “computer and simulation 
modelingreally do form a new type of mathematical modeling.” (2) Four features 
of simulation modeling together make it a novel type, namely an explorative and 
iterative type of modeling. 

Experimenting. Simulation experiments build a particular class of experiments. 
Usually, experiments are described as seeking an answer from nature. Although the 
question an experiment poses may require extensive theoretical design, like a gigantic 
tunnel full of high-tech equipment under the lake Geneva (CERN), there remains an 
important sense in which experiments are not determined by theory, even if they are 
theory-laden. In the example: does the CERN particle collider register traces of the 
Higgs particle or not? Simulation experiments are different because they evaluate the 
model behavior that results from the assumptions (and the implementation) already 
made. In a way, they question the model-plus-computation part, not nature. Although 
they differ from ordinary experiments, these computer-experiments still deserve to 
be counted as experiments because they seek an answer to a question by observing a 
designed process of open ending. For instance, running a weather model ten times and 
counting how often it rains in Kaiserslautern, in this way determining the so-called 
probability of rain. 

The exploratory variant of experimentation is particularly relevant for simulation 
modeling. Here, the focus is on the process of building a model. Often, the model is
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not only motivated by some theoretical consideration, but by how it behaves. Deep 
Learning is an excellent example. The ANN is controlled by parameter adjustments, 
but the values of these parameters usually do not have a meaning. Their value cannot 
be determined out of theoretical considerations. They are adjusted over the course 
of repeated experiments that explore the model behavior. “Model assumptions with 
effects that are hard or even impossible to survey can be tested, varied, and modified 
by applying iterative experimental procedures. Modeling and experimenting agree to 
engage in an exploratory cooperation. Such cooperation regularly employs artificial 
elements” (Lenhard, 2019, 133). 

Artificial elements. The parameterizations in Deep Learning are a prime example, 
but artificial elements are significant for almost all computational methods. Let me 
replace a full argumentation with an example. If a model is expressed in the language 
of continuous mathematics, it must be discretized before a computer can evaluate 
it. There are various approaches to discretization, all need to be designed so that 
the dynamics of the discrete model closely matches the dynamics of the original 
continuous model. “When controlling the performance of discrete models (i.e., for 
instrumentalist—though unavoidable—reasons), artificial components are included. 
Experiments are necessary to adapt the dynamics of a simulation model, because 
one cannot judge whether these artificial elements are adequate without such exper-
imental loops. This grants simulation modeling an instrumental aspect that blurs the 
representation relation and hence weakens the explanatory power” (ibid., 133). 

Plasticity. “This denotes the high level of adaptability in a simulation model’s 
dynamics. The structural core of such a model is often no more than a schema 
that requires—and allows—further specification before simulating particular patterns 
and phenomena” (ibid., 134). Again, Deep Learning is a prime example. The neural 
network usually is almost completely generic. Whether it can be used for image clas-
sification or language generation essentially depends on the data and the parameter 
assignments over the course of learning, i.e., iterated exploratory experimentation. 
Both structure and specification are necessary to determine the dynamic properties 
of a model. 

Epistemic opacity. “This arises because models are becoming more complex in 
several respects. The course of dynamic events encompasses an enormous number 
of steps, so that the overall result cannot be derived from the structure. Instead, 
it emerges from model assumptions and the parameter assignments chosen during 
runtime. Additionally, important properties of the dynamics result from the specifica-
tions and adaptations made while developing the model. This reveals a fundamental 
difference compared to the traditional concept of mathematical modeling and its 
concern with epistemic transparency” (ibid., 134). The expectation was that formal 
modeling makes graspable what happens in the model and, because the model is 
about the world, what happens in the world. In essence, this is the promise of reading 
the book of nature. With simulation modeling, and more generally computer-based 
modeling, the essential feature of the model is its flexibility. The new promise is that, 
with suitable adaptation machinery, the model can be made to match observed data 
and phenomena. And exactly the adaptation machinery creates opacity.
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These characteristics are not independent of each other, but support and rein-
force each other. Therefore, they are not just a group of features, but form a distinct 
type. Simulation modeling is carried out in an explorative and iterative manner, in a 
process that partly uses and partly compensates for the above-mentioned components 
(opacity). 

Computing instrumentation and the concept of modeling affect each other. One 
direction seems obvious. Mathematical models support the design and development 
of computers in various ways. But the other direction is at least as important: by using 
computers as an instrument, mathematical modelling is channeled. First and fore-
most, this channeling represents an epistemological shift. Traditionally, mathematical 
modeling has been performed by human subjects actively modeling to gain insight, 
control, or whatever. The channelling effect comes about because an additional tech-
nological level is added: the modelling must find a balance, namely to compensate for 
those (extra) transformations that are caused by the use of the computer - that is, as 
a rule, to neutralize them to a certain extent through further, additional constructions 
within the model. 

The ANNs used in Deep Learning have served as examples throughout the anal-
ysis. Lenhard (2019) discusses more and different examples in the same framework. 
What are typical features of ANNs? They are a special type of model because they are 
constructed almost independently from the sort of phenomenon they are supposed 
to capture. They have a very generic model structure. A simple observation is that 
these networks are often displayed, but all pictures look essentially the same. In fact, 
the structure does not represent the target phenomena. Therefore, one can call ANNs 
structurally underdetermined. At the same time, they contain an extremely large 
number of parameters whose adjustment makes the overall behavior so versatile that 
it can approximate an almost arbitrary function. In other words, the model behavior 
depends completely on the specification (of parameters). This is in strong contrast to 
the traditional idea of model construction where the structure is supposed to capture 
the phenomena and parameters are for fine-tuning. 

From a formal and abstract standpoint, iteration is the typical action connected 
with ANNs. Their construction is often meaningless, in the sense that elements in 
the construction do not have an interpretation in terms of the target domain—no 
champion of Go was necessary to build the network that—when trained over and 
over by playing games against itself—later beat the world champion reliably. All 
the more does parameter adjustment matter. And this happens iteratively, i.e. in each 
learning step each parameter is adjusted—and learning steps are themselves iterated. 
From a hardware point of view, such procedure requires to execute large masses of 
simple iterations. 

Finally, ANNs stand for a turn in mathematization. Now, mathematization is not 
about the book of nature. It is not a tool for representing the world. Instead, mathe-
matics is used as a tool to construct and control the gigantic approximation machines 
that ANNs are. Jost (2017) argues that mathematization now is concerned with the 
mathematization of tools. How can such inward-looking turn result in something 
that is successful in real-world tasks like image classification or language generation?
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Basically, these successes are grounded in a fundamentally instrumentalist approach, 
namely a statistical treatment of patterns—irrespective of what these patterns mean. 

1.3 Epistemology: Opacity and Understanding 

Black box modeling deals solely with input–output behavior, whereas its counter-
part, white box modeling, is concerned also with the inner workings of the model. 
Obviously, a black box model cannot explain why the modeled system behaves as 
it behaves. For this reason, it is a widely shared goal to replace opaque models that 
have a black box character by white box, transparent models. A good example is Perl 
(1997) who diagnoses that modeling is targeting systems of increasing complexity 
and that this complexity prohibits the sort of analysis possible with white box models. 
Perl expresses the hope that approaches like neural networks might open up a new 
way for understanding complex systems (Perl, 1997, 302). 

About 25 years ago, the opinion was widely shared that new computational 
methods might bring new ways of understanding complex systems. However, the 
quick evolution of ANNs brought predictive successes that come together with utterly 
opaque models. One can still insist on the goal of making these models transparent 
to an extent that allows one to explain their prediction. Not very astonishingly, and 
in response to the successes of ANNs, there is a recent call to develop “Explainable 
AI” (XAI). However, opacity is part-and-parcel of simulation in general (Humphreys, 
2004; Lenhard, 2019) and of Deep Learning in particular—as has been argued above. 
Up to now, XAI remains an open field for research whose success (or failure) can 
only be judged in the future. 

If one is accepting that opacity is an unwanted, but unavoidable condition for 
using AI, how does the promise of AI (and digitization in more general) look like? 
From a historical and philosophical perspective, prediction challenges the search for 
an explanation. This tension has been a constant companion to the entire discussion 
about explanation since the beginning of modernity—or actually even longer: ever 
since mathematics played any role whatsoever in considerations of epistemology and 
practice. A basic viewpoint is that the ability to predict shows something important. 
In some way, whatever is able to give good predictions has got something right about 
the world, or about that fraction of the world under investigation. And this something 
is the fundament and the true source of the predictive capability. 

Remarkably, the new methods seem to turn this upside down: Prediction happens 
on the basis of a method, or a generic model, whose representational properties are 
in question or even inaccessible. Is understanding still possible? Understanding is a 
central but somewhat vague and multifaceted notion in epistemology. A couple of 
decades ago, understanding sometimes was taken to be antonymous to explanation. 
There is a vast literature in philosophy of science dealing with explanation, whereas 
understanding is covered considerably less. Books like the one by de Regt et al. 
(2009) indicate a change—understanding now is on the agenda in philosophy of 
science.
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In a way, simulation models can provide understanding at a certain standard. 
Scientists might conduct iterated simulation experiments and create visualizations 
and in this way sound out how how the input–output dynamics looks like. In doing 
so they can orient themselves in the model—even if parts of the dynamics are not 
transparent to them. Of course, this kind of familiarity with the model does not 
meet the high epistemic demands that are normally placed on mathematical models 
(cf. Russell’s (1905) concept of knowledge by acquaintance). However, this lower 
standard is still sufficient if the aim is a controlled intervention. In other words, 
simulation models might remain epistemically opaque, but still provide means to 
control the dynamics. 

A typical example is the possible breakdown of the meridional overturning circu-
lation MOC, i.e. the Gulf Stream. Researchers investigate how the MOC behaves 
under varying conditions (in the simulation model), like temperature increase. Their 
goal is to understand how robust it is. But understanding here means the opposite of 
Feynman’s case. Whereas he wanted to know behavior without calculation, getting 
a picture of the MOC is based on large amounts of calculations. Similarly, structural 
engineering has changed its face with computational modeling. Daring constructions 
can be admired that could not have been planned without calculating their structural 
stability via computer models. Engineers understand how such constructions behave, 
but in a very pragmatic sense that does not presuppose epistemic transparency. 

Of course, one could question whether the pragmatic notion should be called 
understanding at all. We hence face two options: First, does simulation eliminate 
understanding in the practices of sciences and engineering, or second, do simulation 
practices replace a strong notion of understanding by a weaker, pragmatic notion? 
If one accepts that the complexity of simulation models makes epistemic opacity 
unavoidable, whereas at the same time, these models still are good for interventions 
and predictions, then the question is: Will this co-existence lead to a new conception 
or re-definition of scientific understanding? Devising an answer to this question still 
is a task for philosophy of science. 

Thus, the argumentation leads to a twofold claim. First, that simulations can facil-
itate acquaintance with, and orientation in, model behavior even when the model 
dynamics itself remain (partially) opaque. And secondly, simulations change math-
ematical modeling in an important way: Theory-based understanding and epistemic 
transparency recede into the background, while a kind of pragmatic understanding 
comes to the fore that is oriented towards intervention and prediction rather than 
theoretical explanation. 

1.4 Software and How Expertise is Organized 

If researchers want to use simulations or other computational methods, especially 
ML, they have to have available appropriate infrastructure. Everybody immediately 
thinks of a computer terminal, rightly so. However, in this context infrastructure 
is far more comprehensive. As a concept, infrastructure is so interesting because it
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captures, or allows to capture, how modern societies, technology, and regulation are 
interconnected, see Edwards (2002). Having it available is demanding, in terms of 
costly technology, and actually using it also demanding, in terms of what sort of 
questions should be asked in which ways. 

One of these infrastructure elements is data. The strength of ANNs unfolds when 
they statistically identify correlations. The prominent successes have a twofold root. 
Firstly, ANNs can work through amounts of data that were considered unfeasible not 
long ago. This data-digestive ability rests on a combined achievement of hardware, 
such as the use of graphical processing units, and software. Secondly, the sensitivity of 
ANNs to delicate traces of correlations is of use only when there are really many data 
available. Else all the parameters and optimization procedures remain idle, or worse, 
lead to spurious signals. This makes ANNs data-hungry. Therefore, researchers 
are strongly motivated to formulate questions about areas where massive data are 
available or can be produced. In an apt analysis, Perl (2009) had pointed out that 
ANN methods in sport science suffer from the fact that they need more data than 
are available. For a statement that computer methods will lead to data-centered 4th 
paradigm science, see Hey et al. (2009). It is surely not coincidental that this book 
comes out of Microsoft, a major company involved in data business. 

A second element is the networked character of the entire research workflow. Data 
such as comprehensive image inventories from the internet are usually not stored 
locally. One can argue that Google or other companies build gigantic computing 
centers that duplicate and store the entire internet. But this only strengthens the case, 
because ordinary researchers must connect to these data storages. Moreover, parts 
of the actual computation are often outsourced, too. When learning and adjusting 
the parameters, researchers typically work with a software suite such as Tensor-
Flow (Abadi et al., 2015) that runs on a platform maintained by Google. Thus, 
the exploratory—iterative mode of modeling—specifying the parameters in iterated 
learning steps—has been adopted by a new networked and centralized infrastructure. 
Although it is centralized, it is readily available (or those parts of it are that some 
company thinks in its interest to make available). Moreover, the exploratory part 
is automated; it consists in adjusting the parameters almost entirely independently 
from the modelers, thus contributing to opacity. 

Software should be distinguished from computing as a third element of the infras-
tructure. Classically, creating software that adequately operationalizes research ques-
tions is a key component of scientific expertise. In the 1980s and 1990s, the motto 
was that computing expertise should become part of particular fields, like sports 
science, because a division between software developer and user would no longer 
work (Lames et al., 1997, p. 30) In one sense, this motto has been fulfilled. Today, 
everyone is working with computers. However, in an important sense, something very 
different happened. Software packages became available that made it easy, or at least 
doable, for many users to do computational science without being experts in actually 
developing the software. This division of labor amounts to a fundamental shift in 
how expertise is socially organized. For example, Johnson and Lenhard describe in 
Chap. 4 of (2024) how quantum chemical simulations are employed by researchers 
who are specialists in such software, but not in quantum chemical theory. Software
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and the way in which its uses are organized are a new research topic shared by history, 
sociology and philosophy of science, see for instance Haigh (2013), Hocquet and 
Wieber (2021), Johnson and Lenhard (2024). 

In AI, a highly visible feature of social organization is that there is a host of 
competitions set up to achieve a given predictive task to the best degree or with 
the lowest failure rate (as on the platform Kaggle). Such competitions attract atten-
tion from various groups and have established an arena independent of academia 
(notwithstanding the fact that typical participants have had contact with universities). 
When data and software are provided on the internet, participants can act indepen-
dently from resources provided by a university or other academic institution. These 
competitions function as a market from which big companies recruit scientists and 
programmers. 

Importantly, the methodology together with the infrastructure create a new situ-
ation when it comes to policy and regulation. The quality of predictions depends 
on the quality of the (training) data. Because the quality of data is (still) ill defined, 
main actors take the quantity of data as a proxy. Today, data such as those that 
Tesla collects while developing its automated car count as a commercial treasure 
(not to mention Facebook and other actors in the field). Whereas the collected data 
are proprietary, government interventions such as regulating when a car has to apply 
its brakes depend on access to these data. And therefore, practice is heading for a 
conflict as far as regulatory measures—or better, their justifiability—is concerned. 

Finally, a short wrap-up concerning the point raised at the beginning of this 
chapter: If a field is getting into AI, what effects will that potentially have? Overall, 
digitization brings about new research instruments. The wide distribution and uptake 
is depending on a comprehensive infrastructure that makes the use of software 
possible also for non-experts and also directs new research toward fields and questions 
that lend themselves to these new instruments. Concretely, since data are a potential 
bottleneck, creativity is required from the researchers to address questions for which 
they have available or can produce sufficient amounts of data. Philosophically, simu-
lation and AI methods come with epistemic opacity. They yield predictions, but tend 
to be unpromising regarding explanations. 
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Chapter 2 
Artificial Intelligence in Sport Scientific 
Creation and Writing Process 

Richard Latzel and Patrick Glauner 

Abstract This chapter examines the transformative role of Artificial Intelligence 
(AI) tools in enhancing academic research and writing, with a focus on their appli-
cation within sports science. It highlights the integration of technologies such 
as ChatGPT, Grammarly, and other generative AI tools into the academic land-
scape, demonstrating their impact on improving learning environments, promoting 
academic integrity, and streamlining administrative tasks. Through a detailed explo-
ration of AI’s contributions to literature research, data management, analysis, visual-
ization, and writing support, the chapter delves into the efficiencies and depths these 
tools bring to academic work. It also addresses the limitations and challenges of AI 
integration, emphasizing the crucial balance between technological advancements 
and the indispensable value of human expertise in scholarly research. This discussion 
underscores AI’s potential to facilitate innovation in academic writing and research, 
marking a significant shift towards more efficient, insightful, and comprehensive 
scholarly work if applied properly. 

Keywords ChatGPT · AI · Scholarly Work 

Declaration of the Use of Artificial Intelligence Tools in This Book Chapter 

In the development of this book chapter, we selectively utilized Artificial Intelligence 
(AI) tools, primarily to support and enhance the writing process. This declaration 
outlines the extent and manner of AI tool integration within our work, emphasizing 
our approach to leveraging technology while ensuring the integrity and originality 
of our scholarly contribution. 

1. Literature Research: We incorporated AI tools, specifically ResearchRabbit and 
Elicit, to assist in the initial stages of literature research. These platforms facil-
itated the identification of relevant studies and provided insights that informed 
our understanding of the topic. It is important to note that while these tools
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were helpful, they complemented a broader manual research effort, ensuring a 
comprehensive and nuanced review of existing literature. 

2. Writing Assistance: The primary application of AI in the creation of this chapter 
was in the realm of writing support. Tools like ScholarAI and ChatGPT were 
used to enhance the clarity, grammar, and coherence of our text. These AI-
driven aids offered suggestions for language improvement, helping us refine 
our argumentation and presentation. However, the critical evaluation of these 
suggestions and the final writing decisions were made by us, the authors, to 
maintain the academic integrity and intellectual rigor of our work. 

3. Originality and Integrity: Despite the availability of AI-based plagiarism detec-
tion tools, we chose to ensure the originality of our content through manual veri-
fication and adherence to best practices in scholarly writing. This approach was 
guided by our commitment to academic ethics and the production of work that 
is both authentic and contributes meaningfully to the field. 

By detailing the use of AI tools in the composition of this chapter, we aim to trans-
parently acknowledge the role of technology in facilitating our academic writing 
process. The integration of AI was done with careful consideration, ensuring that it 
served to augment our capabilities as researchers and writers, rather than diminish 
the scholarly value of our contribution. The insights, interpretations, and conclusions 
presented in this chapter are the result of our professional judgment and expertise, 
underscored by a judicious application of AI for specific, supportive tasks in the 
writing process. 

2.1 Introduction 

The integration of Artificial Intelligence (AI) tools like ChatGPT, Grammarly, and 
other generative AI models into academic writing and educational platforms has 
been the subject of various studies, highlighting both their advantages and poten-
tial drawbacks. These tools have been shown to potentially enhance the learning 
environment by providing personalized tutoring, automating essay grading, facili-
tating translation, and creating interactive learning environments. AI tools have also 
been acknowledged for their role in promoting academic integrity through plagia-
rism detectors and assisting in administrative tasks like grading and feedback provi-
sion. This technological advancement has notably reduced the paperwork and work-
load for instructors, allowing them more time to dedicate to instruction and content 
dissemination (Duymaz & Tekin, 2023; Escalante et al., 2023). 

This chapter explores the benefits and limitations of AI tools for academic research 
and writing, providing insights into their practical application in sports science and 
other academic fields. It includes a brief overview of AI tools’ basic functionality 
before delving into their potential benefits in academic literature research, data 
analysis and management, and academic writing.
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2.2 Overview of Artificial Intelligence 

AI aims to automate human decision-making. AI has become one of the most transfor-
mative technologies of our time, reshaping industries, augmenting human capabil-
ities, and pushing the boundaries of what machines can do. Typical tasks include 
learning, reasoning, problem-solving, perception, and language understanding 
(Russell & Norvig, 2021). 

Historical sketch 

The journey of AI began in the mid-twentieth century, with the term “artificial 
intelligence” being coined in 1955 by John McCarthy and others in a proposal for 
the Dartmouth Conference for the following year (McCarthy et al., 1955). This 
period marked the optimistic beginnings of AI, with researchers setting ambitious 
goals for machines to mimic human intelligence. Early AI research largely focused 
on symbolic approaches, attempting to encode human knowledge into machines. 
However, the complexity of human cognition proved to be a formidable chal-
lenge, leading to the realization that achieving true AI would require more than 
just programming explicit rules. 

Machine Learning 

The rise of Machine Learning (ML) in the latter part of the twentieth century marked 
a significant shift in the AI landscape. ML is a subset of AI that focuses on developing 
algorithms that enable computers to learn from and make predictions or decisions 
based on data. This approach diverged from the rule-based methods, offering a new 
pathway to achieving AI through data-driven learning (Bishop, 2006). The field of 
ML can broadly be divided into three so-called “pillars”:

• Supervised learning: learn to predict a label y, i.e. a class (classification) or quantity 
(regression), from input data X.

• Unsupervised learning: find hidden relationships, such as clusters or lower 
dimensional representations, in the input data X.

• Reinforcement learning: learn which action to take in which state to achieve the 
best outcome. 

Deep Learning 

Deep Learning involves (Artificial) Neural Networks with many layers (hence 
“deep”) that learn representations of data with multiple levels of abstraction. This 
approach has enabled significant advances in computer vision, natural language 
processing, and other areas requiring complex feature extraction in recent years 
(Bishop & Bishop, 2024). 

Natural Language Processing 

Natural Language Processing (NLP) is a domain of AI focused on the interaction 
between computers and humans using natural language. The goal of NLP is to enable
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computers to understand, interpret, and generate human languages. Techniques in 
NLP have evolved from rule-based systems to ML and sophisticated Deep Learning 
models, significantly improving the ability of machines to process and understand 
human language. 

Large Language Models and prompt engineering 

Large Language Models (LLMs), such as ChatGPT, represent the cutting edge of 
NLP. These models are trained on vast text datasets, learning to predict the next token 
in a sequence given the preceding tokens. This training enables them to generate 
coherent and contextually relevant text, translate languages, answer questions, and 
even write code. Prompt engineering has emerged as a crucial skill in leveraging 
LLMs, involving designing inputs (prompts) that guide these models to produce 
the desired output. It requires an understanding of the model’s capabilities and 
limitations, creativity, and strategic thinking. 

2.3 Role of Artificial Intelligence-Supported Tools 
in Literature Research 

In the evolving landscape of academic research, Artificial Intelligence (AI) tools have 
emerged as pivotal instruments, reshaping the way research and analysis of data is 
conducted and findings are compiled. Some of the key advantages AI tools can offer 
in academic research are (Chubb et al., 2022; Pinzolits, 2023): 

1. Efficiency and Time Management: AI tools, when used in the right way, 
can markedly reduce the time researchers spend on literature reviews and data 
analysis. They can quickly sift through extensive databases to identify relevant 
research papers, abstracts, and even specific sections within papers that address 
particular research questions. This capability allows researchers to focus more 
on analysis and less on the time-consuming process of finding information. 

2. Comprehensive Literature Analysis: With access to vast databases of peer-
reviewed articles, AI tools enable researchers to conduct thorough literature 
reviews. Some tools offer literature mapping features that help identify related 
research, references, and recommended readings, ensuring that researchers have 
a comprehensive understanding of their topic. 

3. Detailed Research Insights: Beyond just identifying relevant papers, AI tools 
can analyze the full text of research documents. This deep dive into the content 
provides detailed insights into methodologies, results, and discussions, which are 
crucial for understanding the nuances of each study. Some tools can extract and 
summarize information from multiple research papers at once and might even 
aid in the development of a well-informed hypothesis and research design.
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4. Accessibility to Information: AI tools make it easier for researchers and students 
to access and digest complex academic material (von Garrel & Mayer, 2023). AI 
tools can answer specific questions about a paper or summarize it in less elaborate 
language, hence simplifying the process of extracting valuable information. 

However, there are some general limitations of AI tools in academic research that 
need to be considered: 

1. Quality and Relevance of Sources: While these tools can retrieve a vast amount 
of literature, the relevance and quality of sources may vary. Researchers and 
students must still apply critical thinking to assess the validity and applicability 
of the information to their specific research questions. 

2. Contextual Understanding: AI tools may not fully grasp the context or nuances 
of certain research areas, especially those involving complex human behaviors 
or subjective interpretations. This means that while they can provide data, the 
researcher must contextualize and interpret these findings within the broader 
scope of their study. 

3. Dependency and Skill Development: There is a risk that heavy reliance on AI 
tools could impact the development of traditional research skills. Researchers, 
teachers and students must balance the use of AI with the cultivation of crit-
ical thinking, analytical skills, and hands-on research experiences (BaHammam, 
2023). 

In the following, a few AI tools available today shall be briefly presented and their 
potential applicability as well as limitations for literature research outlined. 

At the time of compiling this chapter, none of the AI tools presented required 
any sort of financial transaction for use. However, it cannot be guaranteed that these 
tools will remain free of charge. Some already charge users for improved or updated 
functionalities, such as OpenAI, which offers its GPT-3.5 model free of charge but 
charges for the use of GPT-4. 

Comprehensive user guides and tutorials for the AI tools are provided on their 
official websites, and are accessible to users. Additionally, video tutorials on how to 
utilize these tools are available on online video platforms such as YouTube. 

2.3.1 ResearchRabbit 

Functionalities and Benefits: 

ResearchRabbit acts as a personal research assistant, helping researchers find relevant 
papers and stay updated with the latest research. It uses AI to learn from the user’s 
interactions and preferences and natural language processing (NLP) which allows 
users to create collections of papers and receive personalized recommendations, 
similar to the curated playlists of music streaming services. The tool also provides 
personalized digests of the latest papers related to users’ collections and offers inter-
active visualizations to explore networks of papers and co-authorships, providing



20 R. Latzel and P. Glauner

new insights and opportunities for exploration. These networks can be displayed 
as spider webs (Fig. 2.1) or as a list in chronological order (Fig. 2.2), which could 
be particularly useful in situations where researchers want to limit their search to 
a certain point in time (e.g. conducting a Meta-Analysis on a certain topic of only 
the most recent literature). Typically, the more papers are included in a project, the 
more dense the connections between these papers and the network itself. However, 
the network of relevant papers typically expands with every paper added to a project, 
hence the researcher is advised to carefully select and deselect papers in a project.

Practical Applications: 

In sports science, ResearchRabbit could be invaluable for discovering emerging 
trends and methodologies by creating collections focused on specific areas of 
interest. It is particularly useful for researchers looking to establish a comprehensive 
background for their study or seeking to identify gaps in the current literature. 

Limitations: 

While ResearchRabbit simplifies finding relevant literature, it may have a learning 
curve regarding its interface and maximizing its features. Additionally, it is more 
focused on discovery and recommendation rather than in-depth analysis of papers, 
which means researchers still need to critically evaluate the suggested literature for 
quality and relevance. Lastly, while the graphical representation of the findings does 
provide a concise visualization of the literature currently used and potentially of 
interest, one can quickly get lost in playing around with the networks. Rather than 
streamlining the search for relevant academic papers, this could lead to actually 
spending even more time searching. 

2.3.2 Elicit 

Functionalities and Benefits: 

Elicit is known for its robust literature review capabilities, facilitating the exploration 
of research questions by automatically summarizing research papers and extracting 
relevant data points. It aids in hypothesis generation and testing by analyzing vast 
amounts of literature to identify trends, gaps, and consensus within specific research 
fields. Elicit leverages language models to efficiently locate relevant academic papers, 
eliminating the need for precise keyword matching. This user-friendly interface 
allows users to engage with the tool through simple queries, making it particularly 
beneficial for early-stage researchers and students who are just beginning to navigate 
the complexities of scientific writing. This intuitive approach not only simplifies the 
research process but also enhances learning opportunities for those new to academic 
environments.
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Fig. 2.1 Once a paper is added to a project in ResearchRabbit (a), a network of similar studies is 
created (b), with more papers being added to the project, the network changes and evolves (c)
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Fig. 2.2 The network in ResearchRabbit can be displayed as a timeline as well

Practical Applications: 

For academic researchers, Elicit can streamline the initial stages of a research project 
by quickly identifying key studies, methodologies, and findings relevant to their 
research question. This can significantly reduce the time spent on literature reviews. 

Limitations: 

Elicit’s effectiveness depends on the clarity of the research question and the tool’s 
current database access. Researchers must critically assess the summaries and data 
points provided, ensuring they align with their research needs (Fig. 2.3).

2.3.3 Google Scholar 

Functionalities and Benefits: 

Google Scholar is widely used for its simple interface and comprehensive access 
to scholarly articles, thesis, books, and conference papers. It offers citation tracking 
and related-article searching functionalities, making it easier for researchers to find 
seminal works and follow citation trails. Google Scholar employs AI technologies 
similar to those used in the broader Google Search Engine. It utilizes neural mapping, 
Natural Language Processing (NLP), ML, and the Multitask Unified Model (MUM) 
to enhance its search capabilities. These technologies collectively work to refine 
search results, contextualize information, and offer concise summaries.
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Fig. 2.3 Elicit answers a research question by summarizing relevant papers

Practical Applications: 

Its broad access makes it a fundamental tool for conducting preliminary literature 
searches and citation analysis in nearly any academic field, including sports science. 
Google Scholar is particularly useful for identifying highly cited works that define a 
research area. 

Limitations: 

Google Scholar may include non-peer-reviewed sources in its search results, 
requiring researchers to verify the credibility of their sources. Furthermore, its algo-
rithm prioritizes highly cited papers, which could overshadow newer, less-cited 
research that might be equally relevant. 

2.3.4 ScholarAI 

Functionalities and Benefits: 

ScholarAI specializes in providing comprehensive access to a wide array of academic 
papers, leveraging advanced search algorithms to find relevant literature based on 
specific inquiry keywords. It offers detailed analysis capabilities, including abstract 
searches, full-text analysis for in-depth research insights, and question-answering
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features for specific papers, making it an invaluable resource for conducting precise 
academic research. To read, summarize and map literature, ScholarAI uses neural 
network technology. 

Practical Applications: 

ScholarAI can be particularly useful for sports scientists and researchers in fields 
where staying updated with the latest studies and methodologies is crucial. Its ability 
to quickly provide relevant research papers and detailed insights into study method-
ologies, results, and discussions can potentially enhance the quality and efficiency 
of literature reviews and research design. 

Limitations: 

While ScholarAI offers deep dives into specific topics and the ability to answer 
targeted questions, it requires clear, precise queries to maximize its effectiveness. 
Additionally, like other AI tools, it necessitates a critical evaluation of the provided 
literature to ensure relevance and quality, underscoring the importance of integrating 
human expertise with AI capabilities. 

2.3.5 Summary of Artificial Intelligence Tools in Literature 
Research 

The landscape of AI tools for academic research is diverse, with each tool offering 
distinct advantages to researchers. From ResearchRabbit’s personalized recommen-
dations and interactive visualizations, Elicit’s robust literature review and hypothesis 
testing capabilities, Google Scholar’s broad access to scholarly materials and citation 
tracking, to ScholarAI’s detailed research insights and targeted question-answering 
features, these tools collectively represent a powerful suite of resources that can 
potentially enhance academic research efficiency and depth. One suggested strategy 
for using AI tools in the scientific writing process begins with engaging Elicit to 
either discover a research question or refine an existing idea. After identifying perti-
nent papers (skipping the initial use of Elicit if relevant papers are already known), 
tools such as Google Scholar, Scholar AI, and ResearchRabbit can be utilized for a 
comprehensive search. Subsequently, it’s advisable to verify the scientific validity 
of these findings by consulting specialized databases like PubMed. Throughout this 
process, ResearchRabbit’s graphical representation of the literature and its integration 
with citation management programs like Zotero can be instrumental in organizing 
the literature and ensuring accurate citation in the thesis or paper draft. This approach 
streamlines the research process, leveraging the strengths of each AI tool to enhance 
the efficiency and depth of literature exploration and review. 

However, the practical application of these tools underscores the need for a 
balanced approach, combining their advanced technological capabilities with the 
researcher’s critical thinking and expertise. While AI tools offer unparalleled ease in
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sourcing relevant papers, automating literature reviews, and ensuring up-to-date cita-
tions, they are not without limitations. The potential for recommending non-relevant 
literature, the need for manual verification, and the importance of critical assessment 
remain paramount. 

In essence, the integration of AI tools into academic research workflows opens new 
horizons for efficiency, knowledge discovery, and innovation. However, their limi-
tations highlight the indispensable value of human judgment, ensuring that research 
outcomes not only benefit from the breadth and speed of AI but also reflect the depth 
and discernment that come with scholarly expertise. 

2.4 Data Management, Analysis, and Visualization 

Data management, analysis, and visualization form the backbone of AI and ML 
projects, enabling data scientists and researchers to derive insights, make informed 
decisions, and effectively communicate findings. The enormous growth in data 
volume and complexity has underscored the importance of efficient data handling 
and interpretation methods, making these disciplines critical in the context of AI 
and ML. Those data sets are substantially larger than those used in other empirical 
research projects. 

Data management 

In AI and ML projects, data management is crucial for the actual training of models, 
as the quality and quantity of data directly impact model performance. Data manage-
ment in AI and ML encompasses the practices, architectural techniques, and tools 
for achieving consistent access to data in a way that is both efficient and secure. It 
involves data collection, storage, organization, and governance. The goal is to ensure 
data quality and accessibility for analysis and processing. Effective data manage-
ment supports the iterative process of model development, enabling the refinement 
of datasets and the integration of new data sources to improve model accuracy and 
relevance. 

Data analysis 

Data analysis in AI and ML involves processing and examining datasets to discover 
patterns, test hypotheses, or make inferences. It is a critical step that directly influ-
ences model development and outcomes. Techniques range from statistical analysis to 
complex ML algorithms. In the context of AI, data analysis helps in feature selection, 
where relevant variables are identified for model training. It also plays a role in eval-
uating model performance through metrics. Through data analysis, researchers can 
identify trends, outliers, and correlations that inform the development and refinement 
of AI models.
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Data visualization 

Data visualization is the graphical representation of information and data. By using 
visual elements like charts, graphs, and maps, data visualization tools provide an 
accessible way to see and understand trends, outliers, and patterns in data. In AI and 
ML, visualization is not just a tool for presenting results but also a critical component 
of exploratory data analysis (EDA). Visualizations can reveal insights into the data 
that might not be apparent from raw data alone, making it easier for stakeholders to 
understand complex models or predictions. It also aids in diagnosing issues in model 
performance by highlighting data imbalances, errors in classification, or areas where 
the model is underfitting or overfitting. 

Exploratory data analysis 

In the context of AI and ML, exploratory data analysis (EDA) is a preliminary step 
before model building, where data scientists explore the data through visualizations 
and statistics to understand and interpret its characteristics, quality, and structure. 
EDA is crucial for identifying the most relevant features, understanding the distri-
bution of data, and making informed decisions about data preprocessing and model 
selection. 

EDA uses a variety of techniques (mostly graphical) to (Tukey, 1977):

• Maximize insight into a data set;
• Uncover underlying structure;
• Extract important variables;
• Detect outliers and anomalies;
• Test underlying assumptions;
• Develop parsimonious models; and
• Determine optimal factor settings. 

Together, data management, analysis, visualization, and exploratory data analysis 
constitute essential processes in AI and ML projects. They enable the efficient 
handling of data, uncover insights that guide model development, and ensure that 
findings are communicated effectively. As AI and ML continue to evolve, the role of 
these disciplines will only grow in importance, driving advancements and innovation 
in the field. Furthermore, AI tools can be used to support those steps, e.g. DALL·E 
for visualization of data, but there are also other approaches to partially automate 
EDA (Patel et al., 2023). 

2.5 Writing Support Through Artificial Intelligence 

In the realm of academic writing, AI-powered tools such as Grammarly, ProWritin-
gAid, DeepL, and ChatGPT play pivotal roles in enhancing writing quality, refining 
grammar, spelling, and style. These tools are designed not just to correct errors 
but also to improve the overall coherence and eloquence of academic texts, making
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them beneficial for researchers, students, and academics alike. Like the other AI tools 
previously discussed, the following tools also offer free versions with basic function-
alities. However, for access to more powerful features or higher usage limits, users 
are usually required to opt for paid versions. All of the tools presented primarily use 
NLP for grammar checking, style editing and writing suggestions. 

User-friendly interfaces are provided by these tools, and their intuitive usage often 
makes specific tutorials unnecessary for basic writing support. Effective outcomes 
can be significantly enhanced by crafting appropriate prompts for ChatGPT. Addi-
tionally, the “Grammarly Handbook,” which outlines grammatical rules and provides 
examples of correct and incorrect usage, is made available on Grammarly’s own 
website, aiding users in refining their writing skills. 

Grammarly 

Grammarly stands out for its comprehensive feedback on grammar, spelling, punctu-
ation, sentence structure, style, and vocabulary enhancement. Its technology assists 
both learners and teachers by providing immediate modifications and reducing the 
workload of checking and evaluating writing. Studies have shown that Grammarly 
can significantly improve students’ writing skills by offering precise corrections 
and suggestions across various error categories. However, it is crucial to note that 
while Grammarly excels in correcting language use, it may provide misleading feed-
back, struggle with checking bibliographies, and fail to evaluate context and content 
accurately. Thus, integrating Grammarly’s feedback with careful review and crit-
ical feedback from educators is essential for achieving the best results in academic 
writing (Zinkevich & Ledeneva, 2021). 

ProWritingAid 

ProWritingAid, similar to Grammarly, offers detailed analysis of writing style, 
grammar, and errors. It provides suggestions for improvement, focusing on read-
ability, sentence length variation, and overused words, which are crucial for academic 
writing. The tool is particularly helpful in making academic writing more concise 
and impactful. However, like all AI tools, it requires the user to critically assess the 
suggestions to ensure they align with the intended message and academic standards. 

DeepL 

DeepL is renowned for its translation accuracy, which could be beneficial for 
academic writers working with sources in multiple languages or needing to translate 
their work. Beyond translation, DeepL offers suggestions for enhancing sentence 
construction, making it a valuable tool for non-native English speakers aiming to 
polish their academic writing. To achieve high-quality translations, DeepL employs 
Machine Translation (MT) based on Deep Learning and neural networks. This 
advanced approach allows DeepL to consider the entire context of a sentence, rather 
than translating word by word. This method ensures that translations are not only 
accurate but also contextually appropriate, capturing the nuances of the source text 
more effectively. However, the limitation lies in its primary function as a trans-
lator; while it ensures grammatical accuracy and fluency, the depth of stylistic or
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content-specific advice may not be as comprehensive as other dedicated writing 
aids. 

ChatGPT 

ChatGPT, powered by advanced language models, assists in generating coherent 
and contextually relevant text, making it a helpful tool for drafting and revising 
academic writing. It can provide outlines, summaries, and even detailed sections 
of academic papers. Nonetheless, users must remain vigilant about the accuracy of 
the information provided and ensure it meets the rigorous standards of academic 
integrity and originality (Homolak, 2023). 

Practical Applications and Limitations 

These AI writing tools are invaluable for enhancing the clarity, coherence, and 
correctness of academic texts. They serve as initial screening layers for grammatical 
and stylistic errors, allowing writers to focus on the content’s depth and originality. 
However, the integration of AI tools in academic writing represents a balance between 
leveraging technology for enhanced language precision and maintaining the crit-
ical, analytical approach characteristic of scholarly work. As these tools continue to 
evolve, their potential to support the academic community will undoubtedly expand. 
However, these tools should complement rather than replace the meticulous review 
processes typical of scholarly work. 

2.6 Conclusion 

The integration of AI tools into the academic research and writing process heralds 
a new era of efficiency and innovation in sports science and beyond. These tools 
offer unparalleled support in literature research, data analysis, writing assistance, 
and more, enhancing the overall quality and depth of academic work. However, 
the essence of successful AI integration lies in the symbiotic relationship between 
technology and human expertise. While AI tools can provide a foundation of effi-
ciency and accessibility, the nuanced understanding and critical analysis inherent 
to human researchers remain irreplaceable. Furthermore, efficiency and quality of 
academic writing are not always enhanced with the use of AI tools, especially in less 
experienced scholars and researchers (Bašić et al., 2023). 

As we continue to explore and expand the boundaries of knowledge, the judicious 
application of AI in academic research will undoubtedly serve as a catalyst for 
discovery and innovation. The future of sports science, enriched by AI, promises 
advancements that are not only technologically driven but also deeply rooted in the 
critical, analytical approach characteristic of scholarly work. However, the rise of 
(generative) AI tools in scientific writing calls for transparent declaration upon usage 
(Tang et al., 2023).
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Chapter 3 
Advancing Endurance Sports 
with Artificial Intelligence: 
Application-Focused Perspectives 

Tessa Menges 

Abstract As one of the key technologies in today’s society, Artificial Intelligence 
(AI) is increasingly influencing every facet of people’s daily routines, including 
sports training. This chapter explores the use of AI in endurance sports and how it 
enhances various aspects of the sporting world. AI can provide targeted assistance in 
athletes’ training through methods such as data analysis and simulation of training 
scenarios. In the context of cycling, an AI system can analyze a cyclist’s performance 
data, including factors like cadence, power output and heart rate, to identify specific 
areas for improvement. The AI can show the coach or the athlete training types 
that explicitly help the cyclist to improve his recognized weaknesses. This focused 
approach empowers cyclists to fine-tune their training regimens based on individual 
needs, ultimately contributing to heightened performance and skill refinement. In a 
professional context, where personalized training has long been the norm, the value 
lies in AI’s capacity to identify weaknesses, providing insights that may surpass 
traditional coaching methods. This new type of intelligent data analysis can support 
the coach and the athlete in the decision-making process. This applies not only to 
training but also to the selection of races or the definition of a strategy. Specific 
practical examples will also be highlighted to illustrate how AI is being used in 
sports today. The aim is to concretize the approaches of AI in sports and explain how 
these tools work. In conclusion, this chapter not only serves as a compass guiding 
readers through the exciting intersection of AI and sports but also invites reflection 
on the vast potential and transformative power of technology in shaping the future 
of athletic pursuits. 
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3.1 Introduction 

In recent years, the surge of AI has permeated various facets of human life, bringing 
about a substantial shift in our perspectives and utilization of this advanced tech-
nology (Littman et al., 2021. p. 12). The rapid growth of AI has significantly altered 
the way we approach and integrate it into our daily activities. There’s a major shift 
happening, with a greater focus on practical and useful applications of AI. This 
means AI is not just getting better; it’s becoming more about real-world use cases in 
different areas, moving away from just theoretical or experimental ideas. Figure 3.1 
captures the total number of AI patent filings from 2010 to 2021. 

The changing landscape has not only affected our understanding of sports but has 
also transformed the methods we use to improve athletic performance and refine our 
practice routines. This shift includes advancements in sports science, technology, 
and innovative training approaches, which are reshaping how we engage with and 
compete in sports (Chmait & Westerbeek, 2021). 

For example, in the past, talent scouts were faced with a labor-intensive and 
time-consuming process of manually analyzing countless videos to identify the right 
player for a team. This required a deep understanding of player nuances and team 
dynamics. However, with the advent of AI, the scouting landscape has changed. AI 
algorithms can now quickly scan large amounts of video footage to quickly analyze 
the performance of basketball players. For example, SportVU 2.0 (Stats Perform, 
Germany, Düsseldorf), which uses advanced optical tracking and computer vision, 
extracts player and ball coordinates to generate rich performance statistics. This data, 
harnessed by the latest AI analysis software, offers valuable insights into player 
strengths, weaknesses, and overall suitability for a team. Talent scouts can now use 
AI as a powerful tool to streamline the scouting process, focusing on nuanced aspects

Fig. 3.1 Number of AI patent filings in the world, 2010–2021 (Clark & Perrault, 2022, Artificial 
Intelligence index report 2022, p. 36) 
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that AI might not capture, ultimately enhancing the precision and efficiency of player 
evaluation for college and professional organizations. 

Moreover, this transformative use of AI in sports scouting draws parallels with 
the revolutionary concept of Moneyball. This concept introduced a groundbreaking 
approach to baseball team management by relying on statistical analysis to iden-
tify undervalued players around the year 2000. The common thread lies in lever-
aging data-driven insights to make strategic decisions, challenging conventional 
methods. At this time, Billy Beane, General Manager of the Oakland Athletics, 
brought about a groundbreaking change by incorporating statistical analysis into 
athlete selection. By leveraging data analytics, Beane and his team identified under-
valued players based on their statistical performance rather than traditional scouting 
methods. This strategic shift not only enabled the “Oakland-Athletics” to compete 
effectively against wealthier teams but also exposed inefficiencies in the way players 
were traditionally valued in the sports industry (Lewis, 2004). They developed them-
self a guiding compass to facilitate optimal team decision-making and benefit from 
it. 

In the pursuit of gaining a competitive edge, teams in soccer and basketball, 
inspired by the data-driven revolution exemplified by Moneyball, have implemented 
sophisticated analytics to inform decision-making. This extends beyond player 
recruitment to various aspects of team strategy, performance optimization and tactical 
planning. For instance, teams may use data analytics to analyze player movements, 
assess playing patterns, and identify effective strategies in specific game situations. 
In soccer, Rossi et al. (2018) and in basketball, Horvat et al. (2019) highlight how 
teams leverage data-driven insights for better player management, injury preven-
tion, and strategic planning during matches. While player recruitment is part of 
the equation, the broader application of data-driven decision-making encompasses 
a holistic approach to enhancing team performance and gaining a strategic advan-
tage in dynamic, fast-paced team sports. The emergence of Deep Learning (DL), 
a subgroup of Machine Learning (ML), in sports builds upon this foundation by 
introducing more advanced and nuanced methods for data analysis (Bartlett, 2006). 
It can process complex patterns and relationships in large data sets to continuously 
improve the performance of teams and individual athletes. 

DL algorithms gained popularity among computer scientists between 2006 and 
2010. This trend can be attributed not only to advances in computer hardware capabil-
ities but also to a paradigm shift within the AI community towards open collaboration 
and data sharing. The publication of extensive datasets like ImageNet by Stanford 
University and the creation of open-source ML competitions stimulated innovation 
and exploration in the area, resulting in swift progressions in AI technologies that 
are fundamental to the current sports analytics environment (Chmait & Westerbeek, 
2021). ImageNet is an image database organized according to the WordNet hierarchy, 
in which each node of the hierarchy is represented by hundreds and thousands of 
images. The project has been instrumental in advancing research in computer vision 
and DL. 

The continuous evolution of sensors and wearables is crucial for providing a 
robust data foundation that enables comprehensive tracking of athletes. This data
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serves as the basis for conducting AI analysis and provides valuable insights into 
various aspects of an athlete’s performance. The significance lies in the ability to 
gather real-time, precise, and extensive information about an athlete’s physiolog-
ical responses, movements, and overall health. By leveraging advanced sensors and 
wearables, coaches, sports scientists, and medical professionals can access a wealth 
of data, allowing for nuanced monitoring of factors such as heart rate, sleep patterns, 
and recovery metrics. The Sensor support has increased every year, equipped with 
various sensors, algorithms, and accompanying mobile apps. In the period from 2011 
to 2017, the photoplethysmograph was the second most commonly used sensor, after 
the accelerometer, for estimating heart rate (Henriksen et al., 2018). Recent advances 
in mobile sensor technologies have made it possible to use privately collected data on 
physical activity to complement existing health data collection methods in research. 
Devices such as Garmin, Whoop, Oura, and Polar can now provide data on sleep and 
other health metrics, including heart rate variability. The Australian Institute of Sport 
(Dean et al., 2022) has tested the best providers against the gold standard of sleep 
measurement (Polysomnography, PSG) and heart rate (Electrocardiogram, ECG), as 
well as heart rate variability. The data obtained was highly accurate, enabling precise 
statements to be made about the athlete’s recovery status at an affordable cost. 

Furthermore, the landscape of AI accessibility and efficiency has experienced 
notable changes. Since 2018, the cost of training an image classification system 
has decreased by 63.6%, and training times have improved by 94.4% (Zhang et al., 
2021). The research by Cao et al. (2017) introduces a key point detector for the body 
and foot, reducing inference time while maintaining accuracy. This advancement 
in human pose estimation, offering real-time capabilities, holds implications for 
diverse domains, including sports analytics and virtual environment design. As these 
developments unfold, collaborative efforts, sophisticated sensors, and increased AI 
accessibility converge to redefine the landscape of sports analytics in a dynamic and 
data-driven era. 

This chapter demonstrates specific use cases, including AI-driven performance 
analytics, injury prevention strategies, and personalized training regimens. Much 
like a compass that adapts to changing magnetic fields, AI adapts to the evolving 
dynamics of each athlete, offering tailor-made solutions for optimal performance 
and health. 

3.2 Artificial Intelligence-Based Approaches in Sport 

In the contemporary landscape of sports science and performance optimization, the 
integration of AI stands as a seminal paradigm shift. Rajšp and Fister (2020) provide 
a holistic overview about the use of data analysis in different kinds of sports. The 
literature includes studies between 2006 and 2020 to figure out 97 studies that fulfills 
the requirements. Between 2006 and 2012, there was a gradual increase in research 
studies, with one to four being published each year. However, in 2013, there was a 
significant increase, with no fewer than four studies being published annually. It is
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Fig. 3.2 Identified sports where intelligent data analysis methods have been used by Rajšp and 
Fister (2020) 

worth noting that in 2018 and 2019, there was a substantial increase in the number of 
research studies published, with 23 and 22, studies, respectively. This trend highlights 
the increasing importance and focus on intelligent sports training in academic and 
research circles (Rajšp and Fister, 2020). Figure 3.2 displays the sports that have 
been most frequently researched in studies on the use of AI. 

The distribution may be due to the popularity of these sports and their ability 
to invest in new technology. The review indicates that the majority of the studies 
analyzed were conducted in individual sports (54%), followed by team sports (28%) 
and mixed sports (17%).

• Individual Sports: These are activities where participants compete against other 
individuals rather than as part of a team. The listed examples include for example 
climbing, fitness, triathlon, running, and swimming.

• Mixed Sports: These are sports where individuals may compete both individually 
against others and, in certain competitions, as part of a duo or a team. Examples 
provided are badminton, cycling, and rowing.

• Team Sports: This category encompasses sports where individuals are consistently 
part of a larger team, competing against other teams. The identified team sports 
include basketball, cricket, football, handball, hockey, soccer, and volleyball. 

It is also notable that the individual endurance sports “running”, “cycling”, “swim-
ming” and also “triathlon” represent 21% of the research fields. This is why this 
review uses examples of cycling and running in particular. This review embarks on
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an exploration into “AI-Based Approaches in Endurance Sports,” where three empir-
ical examples serve as conduits for explaining the role AI plays in augmenting the 
competitive advantages of athletes and coaches. Analogous to a navigational instru-
ment guiding precision in uncharted territories, AI operates as a methodological 
compass, directing endeavours towards enhanced athletic prowess. 

This chapter examines the practical manifestations of AI’s efficacy in sports 
through empirical case studies. It analyzes how AI algorithms, informed by data 
analytics and ML, contribute to performance optimization, strategic decision-
making, and injury prevention in a complex way. 

3.2.1 Difference Between Artificial Intelligence, 
Machine Learning and Deep Learning 

To perceive the reasons behind the broad utilization of AI, ML, and DL, it is essential 
to examine the disparity between modern AI learning methods and conventional 
analytics approaches. Figure 3.3 outlines the connections between AI, ML, and DL. 

AI is defined as the capacity of a system to accurately interpret and learn from 
external data and apply the acquired knowledge to achieve specific goals and solve 
problems through flexible adaptation. In this context, AI is primarily used as a 
decision-making tool for large amounts of data (Kaplan & Haenlein, 2019). 

ML is a subfield of AI that employs statistical techniques to improve machine 
performance via experience. The method comprises multiple data iterations to unveil 
correlations and extract meaning from unstructured data.

Fig. 3.3 Relationships 
between Artificial 
Intelligence, Machine 
Learning and Deep Learning 
(based on Dindorf et al. 
2022, p. 9)  
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In ML, the types of algorithms used can be broadly classified into Supervised 
Learning, Unsupervised Learning, and Reinforcement Learning (Bonaccorso, 2017). 

1. Supervised Learning: This type of ML algorithm involves learning a function 
that maps an input to an output based on example input–output pairs. It infers a 
function from labeled training data consisting of a set of training examples. In 
sports, Supervised Learning could be used for predicting the outcome of games 
based on historical data where the results of past matches are known. 

2. Unsupervised Learning: Unlike Supervised Learning, Unsupervised Learning 
deals with input data without labeled responses. The system tries to learn patterns 
and structure from the data without reference to known or labeled outcomes. In 
sports, Unsupervised Learning could be utilized for player segmentation or team 
profiling based on playing styles or statistics without any predefined categories. 

3. Reinforcement Learning: This type of learning is about taking suitable action to 
maximize reward in a particular situation. It is employed by various software and 
machines to find the best possible behavior or path it should take in a specific 
situation. Through experimentation and interaction with its surroundings, an 
agent formulates a strategy that recommends the optimal course of action to 
achieve the highest long-term rewards from any given situation. This approach 
effectively becomes a decision-making strategy that adjusts and advances as the 
agent gains knowledge from new encounters. 

DL represents an advanced form of ML, delving into more intricate levels of data 
processing. The primary objective of DL is to employ algorithms in constructing 
Neural Networks are capable of solving complex problems. Neural Networks are 
models inspired by the structure and functioning of the human brain. They consist of 
layers of artificial neurons connected to each other. These connections have weights 
that are adjusted during training to improve the network. This approach is especially 
valuable for addressing issues that would otherwise demand intricate rules when 
approached through traditional methods. Notably, DL finds application in tasks such 
as speech, image, and text recognition and processing. Its ability to discern intri-
cate patterns and features within vast datasets makes it a powerful tool for tackling 
challenges that extend beyond the scope of conventional approaches. 

The following section provides examples of AI applications and explains how AI, 
ML, or DL are used in the field of cycling and running. 

3.2.2 Data-Driven Team Strategy in Road Cycling 

For the past 150 years, road cycle racing has stood as an organized and competitive 
team sport (Mignot, 2016). In this athletic endeavour, teams of cyclists engage in 
a series of races throughout the year. During these races, teammates collaborate, 
with the overall team performance determined by the first member to cross the finish 
line. The team is collectively dedicated to propelling one of its cyclists to victory as 
swiftly as possible.
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Typically consisting of around thirty cyclists, each team is limited to a smaller 
group of participants in individual races, usually ranging from 8 to 10 cyclists. The 
composition of the top ten cyclists can vary drastically depending on the course 
profile. Whether the competition course is flat or hilly can make a significant impact. 
Each competition is characterized by a distinct blend of factors, including length, 
gradients, and surfaces (e.g., asphalt with or without pebbles, and cobblestones). 
Another distinctive feature in cycling is the interplay between teams and individual 
competitors. While teamwork is crucial, only one individual can emerge victorious 
(except in events like team time trials), creating a dynamic among team members. 
The team’s coach, relying on recent workout performances and considering race-
specific conditions, selects the participants for each race (U.C. Internationale, 2022). 
The coach generally devises a scheduling plan for the upcoming season’s races, 
followed by creating a tailored workout schedule for each cyclist. Nonetheless, this 
plan frequently undergoes alterations prior to each race, and the coach might opt to 
field a different cyclist than initially planned, contingent upon the recent workout 
performances of the athletes. For instance, relevant information may include the 
athlete’s recent distance covered, history of illness or injury, and average caloric 
expenditure. 

Contemporary cyclists utilize an array of gadgets and wearable devices to track 
extensive data, including comprehensive details such as overall elevation gain, 
distance covered, heart rate measurements, cadence, power, estimated energy expen-
diture, total workout duration, and additional metrics. The raw data is transmitted to 
health and fitness software applications, which often employ ML or AI to analyze 
the data. 

The coach can monitor and assess the overall health and performance data of each 
of the 30 athletes through access to the data. AI is used to navigate through the mass 
of data and support the coach in making decisions about the allocation of cyclists to 
races. 

Sagi et al. (2022) introduces a method called RaceFit, a recommendation system 
for assigning cyclists to race stages. The goal is to determine, based on historical 
coaching decisions, which cyclists from a team are best suited for a particular race 
stage. The methodology utilizes a form of Supervised Learning approach known as 
Binary Classifier. The algorithm is trained with a dataset containing examples of the 
two classes it is meant to distinguish, such as ‘positive’ and ‘negative’. The aim is 
to teach the algorithm to recognise patterns in the training data so that it can then 
predict which of the two classes it belongs to for new, untrained data. In RaceFit, 
the Binary Classifier is used to predict a cyclist’s participation in a race stage. The 
classifier is trained using examples that match a cyclist with a stage, and the label 
indicates whether or not the cyclist participated (Fig. 3.4).

For the classification properties of the race stage (distance, elevation gain, etc.), 
cyclists characteristics (weight, height, age, and statistics from the Pro Cycling Stats 
website), and summarized workout data from the cyclist in five weeks leading up to 
the race stage were included. This is because they assumed that coaches make their 
final decisions before that week, allowing cyclists time to prepare and travel to the 
race location.
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Fig. 3.4 Most correlated features used by the algorithm RaceFIT (Sagi et al., 2022, p. 9)

The most important features used by the algorithm to predict the athletes in the 
next race are the following listed in the order of their importance:

• Total Distance in last five weeks: This is the most crucial factor, indicating how 
much distance cyclists covered in their recent workouts. It reflects their training 
intensity and helps identify those who train hard. It can also highlight cyclists 
dealing with injuries not directly reported.

• Race’s Total Distance: The distance of the upcoming race plays a significant role. 
Longer distances might require higher endurance, affecting the decision on which 
cyclists to choose.

• Workouts Total Energy: Reflects the overall energy expended in recent work-
outs, offering insights into the rider’s fitness levels. It indicates how hard the last 
workouts were for the cyclists.

• Cyclist Workouts Energy: Integrates the power produced by the cyclist in watts 
with the average duration of recent workouts. High values indicate a cyclist’s 
suitability for the upcoming race, considering both energy production and long 
distances.

• Difference in Cyclists Distance Relative to Annual Mean: Measures changes in 
a cyclist’s recent distance compared to their average annual distance. It helps 
identify both improvements and potential performance reductions, possibly due 
to recent injuries.

• Elevation Gain and Elevation Loss: Describe changes in elevation during work-
outs. As some races are in mountainous areas while others are on plains. These 
features influence the decision-making, considering the race’s terrain.

• Calories Burned During Workouts: Implies workout intensity, similar to, energy 
produced. It helps gauge the effort cyclists put into recent training sessions.

• Stage Distance: Identifies races with very long distances, requiring higher 
endurance and more energy expenditure than others.

• Geographic Constraint (Distance to Current Race Location from Last Race Loca-
tion): Reflects the distance from the cyclist’s last race location to the current race 
location. Coaches tend to assign cyclists to nearby races to minimize travel.
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The RaceFit methodology utilizes these features to provide coaches with valuable 
insights for making informed decisions about which cyclists to select for upcoming 
races. These parameters are the most significant factors in determining whether an 
athlete will participate in the race or not. 

The classification system has a 60% accuracy rate for identifying the first recom-
mended cyclist in a race out of the thirty cyclists on the team. If an additional five 
riders are required, the classifier identifies 80% of the cyclists. However, the classi-
fiers find it challenging to correctly identify the final 20% of the cyclists. This shows 
that they do not fully capture the coaches’ decisions. This suggests that RaceFit has 
the potential to identify a significant portion of coach decisions but struggles with 
the last 20%. 

For these reasons, it is important to rely on the coach’s decision in addition to the 
RaceFiT tool, especially when selecting the last 20% of the team. The tool can assist 
the coach in selecting athletes from a group of five people. It is an objective and 
precise method that can aid in the decision-making process. It is important to keep 
the selection of features as small as possible. Using too many parameters requires 
more data to achieve valid results. 

3.2.3 Prediction of Real-Time Track Cycling Performance 

Having gained insight into the classic discipline of road cycling, characterized by 
long distances and varied terrains, let’s now shift the focus to a specialized branch 
of the sport—track cycling. While road cycling often revolves around endurance 
and tactical skills, Track Cycling stands out with its short, intense races on specially 
designed velodromes. Track cycling consists of several disciplines, such as Sprint, 
Keirin, Omnium, Pursuit, and Team Sprint. Each discipline has its own unique rules 
and challenges. In Sprint, two riders compete directly against each other, while Keirin 
involves riders following a pacing vehicle before sprinting. Omnium is a multi-event 
discipline that includes races like Scratch Race and Elimination Race. The pursuit 
sees two riders starting on opposite sides of the velodrome, attempting to catch 
each other. Team Sprint is a team event with three riders per team. Analyzing and 
predicting Track Cycling events involve distinct individual physiological factors and 
strategies that differ from those in road cycling. 

For the coach, it becomes even more crucial to understand the current state of 
an individual athlete, especially when the athlete can’t rely on other team members. 
This personalized insight, coupled with real-time performance estimations during a 
Track Cycling event, empowers the coach to make informed decisions, strategically 
adjust race tactics, and optimize training plans based on the unique requirements of 
each athlete. The ability to monitor and analyze real-time data enhances the coach’s 
capacity to provide timely feedback, prevent potential overexertion, and motivate 
athletes effectively. Overall, having access to estimated real-time performance data 
amplifies the coach’s capabilities, enabling a more tailored and effective approach to 
individualized athlete development in the dynamic context of Track Cycling events.
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Sudin et al. (2018) utilizes the Fuzzy Inference System (FIS) and Adaptive Neuro-
Fuzzy Inference System (ANFIS) for performance classification, and a prediction is 
proposed. 

An FIS is based on fuzzy logic and rules derived from human experts or empir-
ical values (Blej & Azizi, 2016). The fuzzy features are represented by linguistic 
variables, such as “fast”, “slow”, “high”, and “low”. These fuzzy features are used 
in sets of rules to draw conclusions. An FIS possesses a static structure (IF–THEN 
rules), and the parameters need to be configured manually. The FIS provides the 
advantage of decreased computational workload and time. Therefore, this model is 
well-suited for integration into optimization processes and other adaptive techniques 
like Genetic Algorithm (GA) and Adaptive Neural Network (ANN) (Sudin et al., 
2018). Section 2.4 provides a detailed explanation of genetic algorithms (Fig. 3.5). 

The ANFIS is, in contrast an extension that offers an adaptive learning capability 
through the integration of ANN. ANFIS can automatically adapt the structure and 
parameters of the fuzzy model to better fit the data (Dewan et al., 2016). It combines 
the fuzzy logic of a FIS with the learning ability of a Neural Network. The adapta-
tion takes place through training with existing data, whereby the system learns the 
optimum parameters itself (Zounemat-Kermani & Teshnehlab, 2008).

Fig. 3.5 Overall diagram for FIS and ANFIS-based systems (based on Sudin et al., 2018, p. 10) 
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For example, suppose we use an ANFIS (Adaptive Neuro-Fuzzy Inference 
System) and a FIS (Fuzzy Inference System) to predict a cyclist performance in 
a race. Here are two fuzzy features that could be considered in both systems: 

1. Fitness level of the athlete (fuzzy feature): 

FIS: Linguistic variables could represent fitness level, e.g. “very fit”, “fit”, “average”. 
The fuzzy rules would define how these linguistic variables influence performance. 

ANFIS: Here, the ANFIS adaptively learns how different fitness levels influence 
performance by learning the relationships between the linguistic variables and 
performance from existing training data. 

2. Fatigue of the athlete (fuzzy characteristic): 

FIS: Linguistic variables could represent different degrees of fatigue, such as 
“rested”, “slightly fatigued”, and “fatigued”. The fuzzy rules would define how these 
levels of fatigue affect performance. 

ANFIS: Here, ANFIS adaptively learns how different degrees of fatigue affect 
performance by learning the link between the linguistic variables for fatigue and 
performance from existing data. 

In their study, Sudin et al. (2018) employed the Fuzzy Inference System to classify 
the current cycling performance state of cyclists based on their prior performance 
in an indoor cycling test. The FIS utilized body temperature, heart rate variability, 
and speed as input parameters to categorize the athletes’ performance into six levels: 
Critical, Poor, Fair, Good, Excellent, Outstanding. 

Additionally, the Adaptive Neuro-Fuzzy Inference System was employed to 
predict the future output and performance classification. Through the Adap-
tive Neuro-Fuzzy Inference System approach, the anticipated average speed for 
upcoming laps can be predicted and subsequently compared with the actual speed. 
This is used to calculate the remaining time to cross the finishing line. The predictor 
demonstrates improved performance when comparing the predicted data for the last 
lap based on input data from the previous four laps (1 out of 5) with a regression 
value of 0.87, as opposed to the last two laps based on input data from the previous 
three laps (2 out of 5) with a regression value of 0.76. 

In track cycling, the Fuzzy Inference System (FIS) simplifies performance analysis 
through manually configured rules, which are suitable for optimization processes. 
On the other hand, the Adaptive Neuro-Fuzzy Inference System (ANFIS), which 
leverages Neural Networks, excels in real-time performance prediction. This allows 
coaches to estimate future laps, optimize strategies, and enhance athlete training 
plans for more effective development.
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3.2.4 Wearables and Adaptable Training Plans 

Athlete tracking and monitoring is an area in which AI excels. Wearable devices 
fitted with AI algorithms are capable of monitoring biometric data, including heart 
rate, sleep patterns, and muscle fatigue, to offer valuable insights for coaches and 
athletes to optimize performance and recovery. 

Injury prevention is one of the vital applications of AI in sports. In the context 
of predicting sports injuries using supervised Machine Learning, wearable devices 
can be used to collect data on athletes’ movements during training and competition. 
Furthermore, by analyzing movement patterns and biomechanical data, AI models 
can identify areas that could lead to overtraining and injuries. The trackers collect 
various data like distance covered, pace, maximal speed, number of sprints, sprint 
distances, intensity, time in red zone, accelerations, and total stress load. This data 
alongside the historical medical data that is collected by physiotherapists and club 
doctors, is then tagged with instances where injuries have occurred. A Supervised 
Learning algorithm, such as a Decision Tree or Neural Network, can be trained 
on this dataset to identify patterns that often precede injuries. Zadeh et al. (2021), 
examine the applications of wearable technology in sports. Once trained, the model 
can predict the likelihood of injury given the athlete’s current data. For example, if 
a particular movement pattern or load is known to correlate with a high risk of a 
knee injury, the model can alert coaches and medical staff to a high-risk situation, 
allowing preventative measures to be taken, such as modifying training intensity or 
providing targeted interventions. 

The study by Bowen et al. (2016) investigates the correlation between physical 
workload and injury risk in elite youth football players. The study reveals that higher 
workloads are associated with an increased risk of injury. This suggests that work-
loads can serve as a metric in an AI model for injury prediction. Hullin et al. (2016) 
conducted another study that assesses the Acute Chronic Workload Ratio (ACWR) 
in Rugby League players. The ACWR is a metric used in sports science and athletic 
training to assess the balance between short-term (acute) and long-term (chronic) 
workloads. It compares the recent training load (acute workload) with the average 
training load over a longer period (chronic workload). The study found that a higher 
ACWR raises the risk of injury. This, along with other related variables, has potential 
importance in using ML for injury prediction. 

With the rise of accessibility and accurate wearable measurements, fitness apps 
are now using AI to generate personalized training recommendations and adaptive 
plans in individual sports. These plans are based on data such as heart rate, training 
metrics, sleep patterns, and exertion levels. Through data analytics, AI can recognize 
patterns and identify trends to create a customized training plan according to the 
athletes’ goal (Fister & Fister, 2019). For example, an athlete trains too intensively 
in one session, the AI will automatically adjust the next day’s training. 

For instance, enduco is a company that utilizes an athletes’ training data like 
acute stress and recovery data to recommend through an AI-based algorithm the best 
course of action for improving their performance or achieving a specific goal.
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Fig. 3.6 Workflow of a genetic algorithm (based on Ariyaratne & Silva, 2022) 

Enduco analyzed user data to make assumptions about an athlete’s training needs 
and performance development. Using optimized heuristics, the basic principles of an 
effective training plan are defined based on expert knowledge and current research. 
Heuristics address the challenges posed by time constraints, information availability, 
and processing capacity. The essence of heuristics, as described by Kahneman (2011), 
lies in their role as adaptive mechanisms that enable rapid and resource-efficient 
decision making. For example, the heuristic in enduco analyses the most appropriate 
plan for an individual athlete based on many features like intensity distribution, 
workload, and current fatigue. 

An effective training plan for a marathon should consider different intensities and 
allow for sufficient recovery periods between training sessions. For instance, it may 
be important to avoid intensive training for more than two consecutive days to prevent 
overtraining and injury. The heuristic may suggest including various intensities to 
improve maximal oxygen uptake or achieve an economical metabolic rate before the 
aerobic-anaerobic threshold. It can be supplemented by numerous rules in addition 
to these examples. 

The application of a heuristic can lead to quick, acceptable solutions but is not 
necessarily aimed at guaranteeing the best possible result. Heuristics are often subop-
timal, quick approaches based on experience. At enduco, an optimization algorithm, 
such as a Genetic Algorithm (GA), is then used. A GA is a method inspired by 
biological evolution. This approach goes through several iterations or generations, 
selecting the best training plans to influence the next generation (Ariyaratne & Silva, 
2022) (Fig. 3.6). 

Based on Ariyaratne and Silva (2022), the GA starts in with a randomly generated 
population of possible solutions to a given problem. Each solution is treated as an 
individual and is represented by a set of parameters. To evaluate the quality of the 
solutions, a fitness function is used that indicates how well each individual solves the 
problem. If the initial results are not satisfactory, selection is based on fitness, where 
those with higher fitness have a greater chance of being selected. These selected 
individuals are then crossed to produce a new generation. Through this process, 
the new generations inherit traits from their parents. Occasionally, random changes 
(mutations) may also occur to maintain some genetic diversity in the population. 

The new generation of offspring forms the next population and replaces some of 
the previous parents. 

This cycle of selection, crossover, and mutation is repeated over many generations. 
Over time, the population improves as evolutionary mechanisms tend to favor better 
solutions (Langdon & Harman, 2014).
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Enduco the training plan is evaluated using a fitness function that considers 
compliance with the heuristic and, for example the approximation of target times 
for the marathon. The algorithm converges to a training plan that effectively fulfills 
the heuristic and maximizes the target times for the marathon. The ability to optimize 
is an important feature of AI. 

The continuous improvement of wearables and other devices is democratizing 
access to the use of AI in sports. Advanced data collection is making AI applications 
in endurance sports accessible to amateur athletes. This is leading to an increased 
willingness to use AI, as the precise data collected by improved wearables enables 
individual performance optimization and a better understanding of physical activity. 
Overall, AI in sports is becoming an integrative tool that is widely used and enhances 
athletic performance and well-being (Li & Xu, 2021). 

3.3 Advantages and Disadvantages of Artificial Intelligence 
Applications in Sports for Key Stakeholders 

The incorporation of AI in sports offers substantial advantages and poses notable 
challenges for athletes and coaches alike (Avici & Bayrakdar, 2023). Athletes expe-
rience benefits, with technological advancements contributing to significant perfor-
mance improvements, reduced injury instances, and accelerated recovery times 
through innovations in sports medicine and technology. Moreover, coaches can 
provide more objective and targeted feedback, fostering skill development among 
athletes. 

However, the increasing reliance on technology introduces potential drawbacks. 
The utilization of AI may compromise the confidentiality of sensitive information, 
raising concerns about data security and privacy. In addition, there is a risk that 
the line between personal and professional life will become blurred for athletes as 
they navigate the technological landscape. For instance, the coach can monitor the 
athlete’s rest days and advise them against engaging in any further leisure activities. 
It is important to clarify the extent to which the coach is permitted to intervene in 
the athlete’s life beyond training. 

The use of AI in sports also supports coaching strategies, as mentioned in the 
first two examples above. They have access to advanced analytics tools that enable 
them to accurately analyze athletes’ performance, identify patterns, and formulate 
more effective strategies. Informed decision-making based on comprehensive data 
analysis and real-time monitoring of athletes during training and competitions further 
enhances coaches’ capabilities. 

Despite these benefits, coaches also face challenges. To avoid misinterpreta-
tion of data, it is important for individuals to become familiar with the technology 
(Düking et al., 2020). Technical malfunctions and failures of AI systems can disrupt 
training sessions or competitions, which can negatively impact performance. Finan-
cial constraints can also be a hurdle, as access to cutting-edge technology can be a
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major burden for some teams or coaches, resulting in differences in technological 
support at different levels of competition. In addition, the collection and analysis of 
player data requires ethical guidelines to address privacy concerns and protect athlete 
confidentiality. 

3.4 Conclusion 

The use of AI in endurance sports has become more prevalent, especially in high-
performance sports. The topic of AI in sports needs to be considered in a differentiated 
way. AI is used differently depending on whether the sport is competitive or amateur. 

In high-performance sports, the proficiency of AI lies in its precise analysis of 
data, provision of personalized recommendations, and the simulation of realistic 
training scenarios. This unique skill set enables athletes and coaches to optimize 
their training routines, thereby enhancing overall performance. 

While AI offers invaluable insights, it is essential to emphasize that it should not 
entirely replace human judgment. Athletes and coaches must uphold their critical 
thinking abilities and retain responsibility for decision-making, utilizing AI as a 
supportive tool. For example, the RaceFit tool (Sect. 2.2) can only provide a good 
estimate if the team size is more than five people. There is 80% agreement with the 
trainer’s strategy. 

The effective integration of AI into sports science may necessitate expertise, 
substantial financial investment, specialized infrastructure, and individuals capable 
of accurately interpreting results, as pointed out by Hammes et al. (2022). This 
could potentially create a significant advantage for athletes and teams with greater 
resources. In the realm of amateur sports, there is an anticipation that AI will operate 
autonomously, assuming the role of the coach itself. 

In addition, the incorporation of AI into sports training methods introduces new 
and innovative approaches, as highlighted by Wei et al. (2021). For example, AI 
fitness applications use wearable data to evaluate an athlete’s current physical state. 
By combining this information with the athlete’s objectives, AI carefully analyses 
individual performance data to create tailored training programs. This personalized 
approach is valuable in helping athletes improve specific aspects of their performance. 
As Zago et al. (2021, p. 3) aptly put it: “To date, artificial intelligence does not simply 
provide new tools to study human motion. Rather the way we study human motion 
is evolving thanks to artificial intelligence.” AI in sports enables coaches to make 
better strategic decisions based on data from many different athletes. Athletes are 
also provided with solutions through the continuous improvement of data collection, 
enabling individuals to improve their performance in relation to a goal.
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Chapter 4 
Sensors, Internet of Things and Artificial 
Intelligence for the Diagnosis 
and Prevention of Falls and Fall-Related 
Injuries in Older 
People—An Exercise-Related Perspective 

Wolfgang Kemmler 

Abstract Falls are the leading cause of injury, hospitalization, and accidental death 
in older people. Many studies provide considerable evidence that the majority of 
health-related aspects of fall risk can be positively affected by physical activity 
or, even better, dedicated exercise interventions. Artificial Intelligence (AI)-based 
fall technology is the most advanced fall prevention technology currently available. 
Sensor-based AI concepts with direct feedback options significantly increase the 
safety and effectiveness of conventional training concepts or e-exercise programs 
even in non- or only partially supervised training settings. Smart technologies also 
provide closer monitoring of performance development, an aspect important for the 
subsequent alignment of the exercise intervention. However, while the predictive 
ability of present technology to determine the individual risk of fall is satisfactory, 
current AI-based approaches do not address the identification of dedicated fall risk 
factors in a way that would allow a precise response through specific exercise inter-
vention. Future research should focus on interpretable AI-based concepts that provide 
a deeper insight into the individual risk factor profile in order to generate comprehen-
sive training interventions that address several risk factors in a parallel but prioritized 
manner. 
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4.1 Relevance of Falls and Fall-Related Injuries in Older 
People 

The most important risk factor for fractures in the elderly is falls (Jarvinen et al., 
2008). More than 95% of hip fractures are caused by falls (Parkkari et al., 1999). 
Falls are a common event in older people and have a significant public health impact. 
Numerous international cohort studies with prospective data collection showed that 
about one in three independently living people aged 65 years and older fall at least 
once a year (Lord et al., 2021). With increasing age and in other settings (emer-
gency rooms, hospitals, care facilities) and/or with specific diseases/syndromes (e.g. 
dementia, Parkinson’s, stroke), significantly higher fall rates are reported (Ruben-
stein, 2006). In Germany, around five to six million fall accidents occur every year 
in people over the age of 65 years (Rapp et al., 2014). 

In parallel, falls are the leading cause of injury in older people and are associated 
with increased mortality (Gribbin et al., 2009; Sylliaas et al., 2009). Approximately 
22–60% of those affected suffer physical injuries from falls, ranging from bruises, 
cuts, sprains, and abrasions to severe fractures or cranial injuries (Lord et al., 2021). 
Falls in people aged 65 years and older are, therefore, the most common cause 
of injury-related hospitalizations (Lord et al., 2021) and traumatic brain injuries 
(Harvey & Close, 2012). 

The number of falls resulting in fractures is approx. 2–6% (Rubenstein & 
Josephson, 1992; Stubbs et al., 2014; Tinetti et al., 1988), about 1–2% of falls result 
in a fracture of the proximal femur (Stubbs et al., 2020) with its known severe 
consequences for morbidity and mortality. Of importance, with increasing age the 
number of fractures increases disproportionately to the frequency of falls (Evans, 
1992; Kannus, 1999). According to Evans (1992), the incidence of fall-related hip 
fractures increases from 200:1 to 10:1 in people between the ages of 65 and 85 years. 
This tremendous increase in the incidence rate can only be partially attributed to 
decreases in bone strength. Much more biomechanically unfavorable falls with a high 
impact on bone must be taken into account (Komisar & Robinovitch, 2021; Sturnieks, 
2021). 

Falls with and without injury are determinants of loss of function in basic and 
instrumental activities of daily living (Kiel et al., 1991; Tinetti & Williams, 1997). 
Falls and repeated falls are important predictors of moving to residential care facilities 
(Donald & Bulpitt, 1999; Kiel et al., 1991; Tinetti & Williams, 1997). 

In addition to physical injuries, the psychological consequences of falls or the 
anticipation of them are limiting for the individual. Up to 92% of people who have 
fallen (and more than 50% of older people who have not fallen!) develop a Fear 
of Falling (FoF) (Aoyagi, 1998; Scheffer et al., 2008). Of note, FoF is associated 
with poorer physical, mobility, and cognitive performance (Donoghue et al., 2013; 
Vellas et al., 1997). As a major consequence, activities are restricted, resulting in 
a downward spiral of inactivity, deconditioning, loss of confidence: all leading to 
a further increased risk of falls (Wijlhuizen et al., 2007). Physical, psychological, 
and social consequences of falls can significantly reduce the quality of life of older
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people (Schoene et al., 2019). Apart from the far-reaching individual consequences, 
the 4.3 million fragility fractures incur costs for the European health care systems of 
Euro 56 billion a year (Kanis et al., 2021). 

4.2 Exercise Effects on Falls and Fall Related Fractures 

Recent reviews of exercise interventions and falls in older adults (e.g. Sherrington 
et al., 2019; Wang et al., 2020; Zhao et al., 2019) have reported significant reduc-
tions of falls and fall-related injuries. The Cochrane Review by Sherrington et al. 
(2019) listed a relative fall risk reduction of 23% (95%-CI: 17–29%). Fall-related 
fractures were reduced by 27% (95%-CI: 5–44%) and fall-related medical treatment 
by 39% (95%-CI: 21–53%). Perhaps due to the limited statistical power, exercise 
effects on falls and fall-related injuries were less prominent in people with specific 
limitations and/or diseases. While structured exercise significantly reduces the rate 
of falls by 30 and 53% in people with cognitive impairments and Morbus Parkinson, 
respectively, no reduction of fall rate (RR: 1.01; 95%-CI: 0.90–1.14) was reported 
for stroke patients or after recent hospitalization however (RaR 1.16; 95%-CI: 0.88– 
1.52, 3 studies) (Li et al., 2021; Sherrington et al., 2017). Even more important for a 
more individualized exercise approach, the effectiveness of exercise on fall reduction 
differs with respect to the setting in which it is applied (i.e. specialized fall clinic 
vs. non-supervised home application). Without a doubt, adherence to the exercise 
program plays a crucial role in its effectiveness. Thus, the successful implementation 
of exercise programs for different settings should carefully consider how to achieve 
and maintain adequate adherence rates. 

4.3 Determinants of Exercise Training in the Area of Falls 
and Fall-Related injuries—risk Factors for Falls 

The occurrence of falls is multifactorial and the combined result of different factors. 
About 400 different factors have been identified as contributing to a fall in the elderly 
(Skelton & Dinan, 1999). These can be categorized into factors related to (a) behavior, 
(b) health, and (c) environment. There is considerable evidence that a large number 
of health-related aspects of fall risk could be positively affected by physical activity 
or exercise. Table 4.1 displays potentially modifiable risk factors categorized into 
risk factor domains (DVO, 2024).

As can be seen from Table 4.1, the large number and the complexity of fall risk 
factors indicate the need for comprehensive assessments, scarcely manageable with 
the present conventional tools comprising observations, simple tests, questionnaires, 
interviews and their manual acquisition and interpretation. Connected smart devices, 
apps, monitoring technologies, and wireless communication ideally supported by
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Table 4.1 Risk factors for falls and fall-related injuries potentially modifiable by exercise programs 
(DVO, 2024; Lord et al.,  2021) 

Risk-factor domain Risk-Factors 

Postural stability and gait characteristics • Reduced simple and choice reaction time 
• Inadequate reactive stepping performance 
• Impaired stability while standing 
• Impaired stability while leaning or reaching 
• Impaired sit-to-stand transfer 
• Reduced gait velocity 
• Changes in gait pattern (e.g. reduced step length, 
cadence) 

• Increased gait variability (cadence/step length) 
• Impaired voluntary/choice stepping performance 
• Arrhythmic head, trunk and pelvis acceleration 
during gait 

• Reduced hip extension, increased knee/hip flexion 
during gait 

Center of mass shifts (ventral) • Hyperkyphosis 
• Vertebral fractures 
• Assistive device 

Sensoric function • Impaired vision and eye disease (e.g. glaucoma, 
macular degeneration) 

• Impaired vestibular function (e.g. vestibulospinal 
reflexes) 

• Impaired peripheral sensation 
• Impaired proprioception 

Neuromotor function • Reduced maximum strength 
• Reduced maximum power 
• Reduced strength endurance 
• Reduced aerobic endurance 
• Reduced simple reaction time 
• Reduced choice reaction time 

Cognitive function • Enhanced executive dysfunction 
• Reduced information processing speed (IPS) 

Psychologic aspects • Increased concern about falls (e.g. fear of falling) 
• Depressive symptoms 

Cardiovascular/cardiometabolic function • Syncope, dizziness, heart rate, blood pressure 
fluctuations 

• Reduced fatigue resistance, rapid fatigability 
• Fall-relevant medication/polypharmacy (e.g. 
antihypertensiva)

Artificial Intelligence (AI) methods might be a reliable solution not only for the 
detection of falls but also for the identification of individual risk factors that can be 
addressed by individualized smart technology and AI-assisted exercise programs in 
different settings. However, before looking at these issues of individual risk factor 
assessment, the area of fall detection by new technologies will be briefly addressed
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as a blueprint for the growing relevance and increased evidence for the use of smart 
technology, Internet of Things (IoT), and AI in the area of falls in older people. 

4.4 Detecting Falls by Smart Technology and Artificial 
Intelligence 

Fall Detection Systems (FDS) might be the currently most addressed and advanced 
technologies in the area of fall research related to wireless technology, smart tech-
nology, and AI techniques (Gharghan & Hashim, 2024). The high relevance of FDS 
is based on the finding that 50–80% of fallers are unable to get up independently after 
a fall (Fleming & Brayne, 2008; Tinetti et al., 1993). Where no external help is to 
hand, longer prone times are associated with serious consequences, e.g. dehydration, 
injuries, admission to hospital, subsequent moves into long term care, or even death 
(Fleming & Brayne, 2008; Tinetti et al., 1993). Of importance, about 80% of fallers 
cannot or do not activate personal response alarms to summon help (Fleming & 
Brayne, 2008). FDS components include sensor modules, methods of data acquisi-
tion, data procession and feature extraction (i.e., reduction of information to a few 
core information/outcomes), falls detection per se, and alarm systems to get help from 
family members, caregivers, or emergency services. Nevertheless, there is no stan-
dard solution for fall detection yet (Vasoya et al., 2023), but a large variety of wearable 
single or multiple sensors (e.g., accelerometer, gyroscope, pressure, contact, heart 
rate, GPS/location, camera) or ambient sensors (e.g., kinetic/depth camera, pres-
sure, microphones, ultrasonic, infrared, radar) (Gharghan & Hashim, 2024). The 
implementation of AI-based Machine (ML) or Deep Learning (DL) techniques is 
particularly important in the step of data procession and feature extraction. In the 
past few years, several studies have confirmed the high performance of different ML 
and particularly DL techniques (review in (Gharghan & Hashim, 2024)) for detecting 
falls in older people. In detail, AI-powered FDS have demonstrated sensitivity of up 
to 98% and a specificity of up to 99%, indicating their accuracy in identifying falls 
(Alharbi et al., 2023). While the high accuracy, specificity, sensitivity, and precision 
of AI technology metrics for the detection of a fall is undisputed, few systems have 
been tested under real-world conditions. Nevertheless, and although FDS focuses on 
a dichotomous outcome (i.e., “fall or not”), many features of sensor technology, IoT, 
and AI might be transferable to the more challenging identification of individual risk 
factors that can be addressed by exercise programs.
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4.5 Identification and Consideration of Risk Factors 
for Falls and Fall-Related Injuries Potentially 
Modifiable by Exercise Programs 

4.5.1 Sensor Technology 

A large variety of simple and low-tech tools and tests are available for assessing fall 
risk factors related to health and physical fitness (Scott et al., 2007). Unfortunately, 
these tests are frequently not applied in clinical practice or during ongoing exercise 
interventions due to a lack of time, limited personnel resources, or lack of accuracy 
under (field-) test conditions. A good example of the latter aspect might be the 
habitual gait speed test in older people with a high variation of voluntary gait velocity. 
Using smart technologies not only offers the advantage of saving time and human 
resources and thus providing much denser monitoring of fall risk factors but also 
allows much more discrete data sampling, in some cases largely independent of 
participant voluntary compliance. Wearables enable the capturing of data during the 
user’s daily activities, such as gait characteristics, without being exposed to sampling 
problems. 

Reviewing the literature, several novel sensing technologies have been used to 
assess fall risk in older adults (Sun & Sosnoff, 2018). The sensor techniques used for 
fall detection can be classified into wearable and ambient or environmental sensors. 
Environmental sensor technologies are based predominately on video/depth cameras, 
pressure sensors, and motion sensors. More flexible and less elaborate wearable 
sensor-based technologies for fall risk assessment in older adults, which include 
inertial sensors, smartphone, video/sensitive depth camera, pressure sensors, can effi-
ciently capture and analyze movement data and provide an easy-to-implement objec-
tive fall risk assessment (Sun & Sosnoff, 2018). Briefly introducing the tools, inertial 
sensors as the predominately used sensor type in fall risk assessment so far (Sun & 
Sosnoff, 2018), rely on accelerometers and gyroscopes and focus predominately on 
gait characteristics. Pressure-sensing platforms (e.g. Wii board) enable the sampling 
of postural stability and step/gait characteristics. Video/depth cameras provide fast 
and marker-less 3D motion tracking. Motion-ambient sensing, using infrared/passive 
infrared, ultrasound, laser, or radar, for example, usually tracks movement charac-
teristics of different body segments to quantify the movement pattern. Mobile/smart 
phones with inertial sensors and sensitive depth cameras predominately focus on 
gait and postural stability characteristics at the moment, although other biometrical 
parameters (Table 4.1) can also be addressed to determine power, endurance, fatigue 
resistance using technologies already integrated into conventional smart phones. 
Wearable and ambient/environmental sensors connected in IoT systems are applied 
in the smart home approach that focuses on comprehensive behavior-based analysis 
of daily living activities and human activity recognition in frail older people.
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4.5.2 Sensors Used in Functional Tests of Falls Risk 

Sensors are increasingly being used to improve the validity and reliability of estab-
lished functional tests and to derive new parameters for the discrimination of fall risk 
factors. As an example, a recent study (Abdollahi et al., 2024) of fall risk assessment 
in stroke survivors determined the prediction accuracy of four common functional 
tests with and without dual tasking supported by a machine learning model that 
used motion data from inertial sensors. In detail, the 30s balance test with eyes 
open/closed, Timed Up and Go (TUG), 10 m habitual gait speed, and the Sit-To-
Stand test (STS) were applied with and without cognitive load (count-down from 
200), while eight motion sensors with integrated 3D accelerometers, 3D gyroscopes 
and 3D magnetometers extracted a total of 92 spatiotemporal parameters. Data was 
transmitted wirelessly to customized MATLAB software for data processing and 
feature extraction. Applying three machine learning techniques (i.e. Support Vector 
Machine, Logistic Regression, Random Forest (RF)) known to demonstrate high 
performance during motion testing (Halilaj et al., 2018), the study revealed the 
highest prediction accuracy (91%) for fall discrimination when applying the RF 
model for data sampled during dual task balance and TUG. Further, a single motion 
sensor placed on the thorax shows similar high precision during the TUG and STS 
compared with the multiple sensor approach. Lin et al. (Lin & Wai, 2021) used  
the TUG test and handgrip strength i.e. current sarcopenia criteria according to the 
Asian Working Group of Sarcopenia (AWGS) (Chen et al., 2014), to determine fall 
risk in community-dwelling older adults. Gesture detection of gait and balance was 
conducted via AI using wearable sensors, doppler technology, 2D/3D cameras, and 
floor sensors. Adaptive modification of the interventional program over 3 months 
resulted in significant increases in gait speed (31%). 

4.6 Artificial Intelligence-Based Approaches 
to Determining Fall Risk 

Several AI-based approaches to fall prevention and prediction of fall risk in older 
people have been conducted during the last few years (Mohan et al., 2024). Although 
AI and ML techniques were also applied to determine the risk of falling, e.g. based on 
emotional risk factors, i.e. depression, coping strategies, anxiety, and FoF (Mohan 
et al., 2024), most fall prevention/prediction approaches focus on posture or gait 
characteristics. Indeed, due to their complexity, human posture and gait research, in 
particular, is subjected to AI or, more precisely, machine or deep learning techniques 
(Mohan et al., 2024). Liang et al. (2024), who aimed to classify fall risk in older 
people using an ML and Explainable AI (XAI) approach, relied on tracker-based 
posturographic/body sway parameters under different stance conditions. However, 
while the model shows high agreement with the TUG test, the discriminating ability 
to separate people with vs. without a previous fall history was unsatisfying. Based on
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this result that implies that the stance condition reflects mobility balance better than 
the much more complex falls with their numerous intrinsic and extrinsic risk factors, 
the authors (Liang et al., 2024) concluded that more comprehensive information 
on individual fall risk should be added to increase the accuracy of the AI-based 
fall risk assessment. In this context, the LINDERA mobility analysis applied an 
AI-based algorithm (Stamm & Heimann-Steinert, 2020) based on video analysis of 
individuals’ gait but also a standardized questionnaire to determine fall risk on a score 
from 0 to 100 points. Using data from 242 senior citizens, on average 85 years old, 
Rabe et al. (2020) reported a high discriminative ability to distinguish fallers from 
non-fallers, irrespective of the learning model (e.g., Gaussian Naive Bayes Mode, 
Support Vector Classification or RF Model) used. Another study (Strutz et al., 2022), 
which compared the LINDERA concept with reference standard tests (i.e. TUG, Berg 
Balanced Scale, Tinetti Test) in older people, reported moderate-high correlations r 
= 0.46–0.59 with narrow limits of agreement. In contrast to other fall risk apps (e.g. 
FallSA (Singh et al., 2021), Apple iOS 15), LINDERA is deemed a medical device, 
thus facilitating its application in healthcare settings. 

In summary, AI-based fall technology is the most advanced fall prevention tech-
nology currently available. But although the predictive ability of present technology 
to determine the individual risk of fall is satisfactory, it currently fails to identify dedi-
cated risk factors related to postural stability listed in Table 4.1. This is important, 
however, for defining specific training aims realized by dedicated exercise programs. 
Nonetheless, the application of time-effective, inexpensive, and resource saving AI-
based technology enables a dense monitoring of changes in fall risk and thus allows 
verification of the effects of exercise programs on individual fall risk by healthcare 
or exercise professionals or users themselves. 

4.7 Effectiveness of e-interventions on Falls and Fall-Risk 
Factors 

Many e-interventions for fall prevention include IoT technology with ambient 
sensors, mobile phones, tablets, or computers. These e-interventions can be roughly 
classified into six categories: telehealth, exergames (i.e., gamified exercise), cogni-
tive training, (non-conventional) balance training, smart home systems, and social-
ized exercise. Highly relevant for the present topic, exergames typically use motion 
sensing technology and simultaneously address physical and cognitive aspects of 
balance. Due to the complex interaction of executive, attentional, and motor aspects 
of balance along with increased adherence thanks to its entertainment and engaging 
character, exergaming is regarded as offering a high fall-reducing potential (van het 
Reve & de Bruin, 2014). Exergames combined with telehealth are a frequent constel-
lation in fall prevention settings. A recent systematic review and meta-analysis (Leal 
et al., 2023) reported significant effects on fall risk in older people (community 
dwelling or nursing home residents) compared with controls without intervention or
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even with conventional exercise training. Cognitive training, predominately applied 
under physically inactive conditions, focuses on executive function (Smith-Ray et al., 
2014) and is frequently combined with conventional exercise. There is some evidence 
for a fall-reducing effect of cognitive training (Blackwood et al., 2016). Moreover it 
can be provided safely and with minimal supervision at home. However, while cogni-
tive training alone did not affect falls or fall-related functional parameters (Smith-
Ray et al., 2015), combined exercise and cognitive training does improve specific 
factors associated with falls, such as gait speed, cognitive function, and balance—at 
least in people with mild cognitive impairments (Lipardo et al., 2017). Socialized 
training includes exercise programs applied in virtual gyms specifically tailored to 
the needs and abilities of the participants, such as tablet-based balance, strength, or 
power training with motivational aspects and feedback systems. Participants exer-
cised online in groups or were able to link to other people presently exercising. 
Amongst others, Harrison et al. (2024) provided evidence for the favorable effect 
of virtual classes (ballet or wellness) on fall-related risk factors (e.g. gait, balance, 
quality of life) in older women. Zhao et al. (2023), who addressed the effects of a 
12-month Virtual Reality (VR) training 3 × 50 min/week on fall prevention and Bone 
Mineral Density (BMD) in hospitalized older people, reported significant effects on 
balance, TUG performance, functional gait assessment and, of note, BMD at the 
lumbar spine and femoral neck compared with a control group which conducted a 3 
× 50 min/week low-intensity resistance type exercise. A recent scoping review on 
VR in effect concluded that VR, be it immersive and non-immersive, “is a valuable 
tool for promoting physical exercise in older adults, helping to prevent recurrent 
accidental falls” (Ortiz-Mallasén et al., 2024). Finally, non-conventional balance 
training using inertial sensors focuses on balance control by providing feedback 
to correct posture. However, the effects of non-conventional balance training were 
rarely addressed by randomized controlled trials (Chan et al., 2021). Hagedorn and 
Holm (2010), who compared the effects of a 12-week multi-purpose exercise-training 
with traditional balance training versus computer feedback balance training, failed 
to determine significantly superior effects of the computer feedback setting on fall-
related outcomes in frail elderly people. Although the effects ranged at a similarly 
positive level, computer feedback balance training does offer new perspectives for a 
non-supervised home training program that can be carried out widely independently. 

In summary, there is considerable evidence for the favorable effects of e-
interventions on falls and fall-related abilities roughly in the range of conven-
tional supervised exercise. But, unlike the latter intervention, e-interventions can 
be easily performed as home-training. Considering the aspect that many older 
people are unable or unwilling to (permanently) participate in supervised facility-
based programs (Cohen-Mansfield et al., 2003; Franco et al., 2015), home-based e-
interventions, supervised or not, might be a feasible training option for these people. 
Additionally, the zero charges or at least lower expenses for instructors, personnel, 
and locations, as well as potential lockdowns and/or isolation of particularly older 
people under epidemic conditions, underscore the increasing relevance of home-
based exercise programs not only but particularly in a fall prevention concept for 
older people.
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4.8 Advanced Application of Artificial Intelligence 
in Exercise Training for Fall Prevention 

4.8.1 Prediction of Fall Risk and Categorization of Training 
Aims 

An accurate assessment of an individual’s fall risk is crucial for risk categorization and 
subsequent allocation to dedicated training courses. As an example, the present S3 
guideline on “exercise and fracture prevention” suggests a risk factor categorization 
that includes bone strength and fall risk as the starting point for the individualized 
assignment of primary and secondary training objectives (Mohebbi et al., 2023). 
The focus of training intervention is now shifting from a “bone (strength)-oriented 
exercise strategy to fall prevention in people with a higher tendency to fall. Never-
theless, the present guideline remains unclear as to when a dedicated fall prevention 
program should be implemented in the intervention (Mohebbi et al., 2023). Consid-
ering the predictive ability of current technology to determine the individual risk 
of falls, more individualized exercise training—at least with respect to the priori-
tized training aim—should be possible. The aforementioned LINDERA “app”, for 
example, which ranks the fall risk on a score from 0 to 100 points, might be helpful 
in the allocation of people to dedicated core training aims. Since the LINDERA 
app is a medical device increasingly used by health professionals, including general 
and specialized practitioners, the allocation of patients with increased fall risk to 
dedicated exercise programs will be supported by the German healthcare system 
(i.e. “Rehabilitionssport” or “Funktionstraining” according to §64 SGB IX) (Beck & 
Sahar, 2020). 

4.8.2 Identification of Fall Risk Factors and Specific 
Accentuation of the Training Contents 

Adding non-exercise specific modifiable risk factors (e.g. home environment, 
footwear) to the number of modifiable fall risk factors that can be addressed by 
physical exercise training (Table 4.1) will result in an almost unmanageable number 
of fall risk factors. In this context, sensors, IoT, and AI applied in a closely moni-
tored, e.g. smart home, setting can be helpful for identifying and reducing general 
fall-risk factors (Mohan et al., 2024). However, the currently available sensor-based 
AI solutions for fall prevention do not provide the information that allows the dedi-
cated risk factors listed in Table 4.1 to be specifically addressed by suitable exercise 
interventions. In fact, most AI-based approaches focus on a single or a few categories 
or risk factor domains, predominately posture or gait characteristics, to determine 
or categorize the fall risk as such. However, no information on the relevance of the 
inherent specific risk factor (e.g. reduced choice reaction time, reduced gait velocity)
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has been provided yet. Given that the training-specific targeting of these risk factors 
varies widely, a more detailed, interpretable result would be helpful for designing a 
more tailored exercise training package. In parallel, as already mentioned, most AI-
based approaches focus on posture and gait characteristics and include information on 
general risk factors at best. In this context, a more comprehensive inclusion of other 
risk factor domains significantly modifiable by exercise programs will be helpful for 
the stratification of the training contents. Apart from the highly modifiable and validly 
quantifiable neuromotor risk factor domain, other domains involving sensoric, cogni-
tive, psychologic, and cardiovascular/cardiometabolic risk factors should be included 
in the analysis in order to generate a comprehensive training schedule covering several 
risk factors in parallel, albeit in a prioritized manner. Particularly, the cardiovascular/ 
cardiometabolic risk factor categorization is easily accessible by wearable sensors 
and/or smartphone solutions and is frequently addressed by AI solutions (Maurya 
et al., 2021). On the other hand, data showing the relative relevance of anxiety or 
FoF, for example, will be helpful for specifying the setting and type of the exer-
cise program (Schoene et al., 2023). Thus, an AI-based risk factor stratification that 
provides an interpretable hierarchy of the most relevant individual fall-risk factors 
will be beneficial for determining training contents and methods more stringently 
and time efficiently. 

4.8.3 Implementation in the Training Process 

A key decision in training programs is the setting of the exercise program, i.e., in 
general, “facility-based” or “home-based”. In the past, several studies have under-
scored the superiority of the usually supervised facility-based programs versus non-
supervised home exercise programs (Fisher et al., 2021; Hoffmann et al., 2022). 
Applying the Otago Exercise Program, Kyrdalen et al. (2014) reported significantly 
higher effects on fall-related outcomes after supervised group training compared 
to the usual home training setting of Otago. Several aspects might contribute to 
this result however, the most striking limitation of non-supervised exercise in an 
at-home program might be the frequent lack of progression, particularly with respect 
to exercise intensity (Fisher et al., 2021). But now, the large and increasing variety 
of e-(exercise) programs with feedback systems or simple remote and online settings 
ensure adequate supervision of home exercise training. Moreover, feedback systems 
that enable accurate monitoring of the user’s performance development and hence 
guide implementation intensity progression will also increase the effectiveness and 
safety of home exercise programs. This enhanced safety of home training programs, at 
least with respect to fall risk, proper movement, and cardiovascular/cardiometabolic 
side effects offered by connected wearable sensors, might serve to boost acceptance 
of the resource-saving and popular home training setting in the community. In terms 
of exercise intensity, wearable sensors provide guidance on adequate intensity in the 
area of cardiovascular fitness. In parallel, the “repetition in reserve” concept (Zourdos 
et al., 2016) combined with advanced movement sensors can be applied to prescribe
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and monitor exercise intensity in the area of strength and power-training, e.g. via 
velocity based resistance exercise (Lopez et al., 2023). Another issue closely related 
to the effectiveness of the training protocol is low adherence to the pre-specified 
exercise frequency. Alarm systems included in sensors that record physical activity 
and exercise are feasible responses to this problem. 

Looking ahead and considering the rapid progress in this field, future sensor 
based AI-technology on fall prevention might soon be able to (1) identify and 
stratify the most relevant risk factors for falls, (2) generate optimized training 
strategies and detailed exercise programs for individual users, (3) apply dedicated 
e-programs with monitoring of individual training sessions for effectiveness and 
safety, (4) provide a progression of intensity once predefined thresholds are reached 
so as to ensure consistent overload, (5) properly apply advanced training princi-
ples (e.g. reversibility, variation, periodization) during the intervention (Donath & 
Faude, 2020), (6) deliver detailed information on exercise-induced changes of fall 
risk and lastly (7) adapt training programs to respond to lacking efficiency on relevant 
risk factors. Nevertheless, progress in the effectiveness and safety of home training 
programs will not necessarily replace supervised facility-based programs. Thanks 
to the training equipment they offer, facility-based training programs can address 
many training aims much more reliably, safely, and effectively compared with the 
tools available at home. This goes not only for resistance devices with their safe posi-
tioning, quantifiable intensity or load selection, and easy to handle intensity progres-
sion but in particular also for the scarcely available and highly effective (Devasa-
hayam et al., 2023) perturbation-based balance devices (e.g. perturbating treadmills) 
“which apply repeated, externally applied mechanical perturbations to trigger rapid 
reactions to regain postural stability in a safe and controlled environment” (McCrum 
et al., 2022). On the other hand, sensor-based direct feedback systems, along with 
the AI-based algorithms installed in new generation training devices, will enable the 
addressing of prespecified training aims with enhanced safety and effectiveness and, 
at the same time, reduce the personnel demands of the intervention. 

4.9 Conclusion 

By way of conclusion, AI-based technology for fall prevention might play an increas-
ingly crucial role in healthcare concepts for the elderly, which, due to the increasingly 
scarce personal resources, could specifically include exercise interventions.
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Chapter 5 
Artificial Intelligence for Sport Injury 
Prediction 

Robin Owen, Julian A. Owen, and Seren L. Evans 

Abstract Preventing injury is a core facilitator of success in sport. Thus, vast sums 
of money are invested into achieving this. However, sport injury is still seen as equal 
parts “art” and science. Despite the best efforts of individuals, teams, and national 
bodies to apply scientifically-derived injury prevention strategies, millions of athletes 
still get injured in sport every year. Evidently, sport injury prediction is a field, which 
has scope for improvement. One potential way of advancing the field is the use 
of Artificial Intelligence (AI). It offers an opportunity to: (1) treat sporting injury 
as the complex phenomenon it appears to be; (2) consider the non-linear context 
surrounding athlete injuries; and (3) provide a supplement to practitioner reasoning, 
to facilitate quicker decisions. The present book chapter evaluates previous research 
studies’ use of AI for injury prediction, assesses the unique advantages offered by 
AI-based analyses, and discusses challenges when attempting to utilise AI for injury 
prediction. Overall, the use of AI for sport injury prediction offers a fascinating 
opportunity. It may one day create a revolution in the field, improving not only 
prediction itself but also our understanding of the complex interactive factors, which 
govern injury in sport. 

Keywords Machine Learning · Pattern Recognition · Sport Injury · Injury 
Prevention 

5.1 Sport Injury—The Context 

It is well established that participation in sports offers numerous physical and mental 
health benefits alongside providing opportunities for social interaction and the devel-
opment of positive psychosocial health (Eime et al., 2013). However, the benefits
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of sport participation are accompanied by a significant sport-related injury burden 
in both elite and recreational athletes (Emery et al., 2007; Jacobsson et al., 2012). 
Despite this, there is a relative paucity of research evaluating the efficacy of injury 
prevention strategies (Conn et al., 2003). 

The exact number of sports injuries worldwide each year is challenging to deter-
mine precisely due to variations in reporting systems, definitions of sports injuries, 
and the vast range of sports and activities involved. Estimates suggest that sport-
related injuries are common, with millions of people suffering from injuries each 
year, ranging from minor sprains and strains to more severe fractures, concussions, 
and other traumatic injuries. In context, an estimated seven million Americans and 
almost six million Europeans receive medical attention annually for sport-related 
injuries (Conn et al., 2003; Kisser & Bauer, 2012). Roughly one in five school chil-
dren miss at least one day of school, while one in three working adults loses at least 
one workday yearly due to sport-related injuries (Conn et al., 2003; Emery et al., 
2006). 

Advancements in comprehending the financial strain and allocating resources 
toward preventing sports injuries have been constrained, partly due to difficul-
ties in clearly defining the extent, breadth, and financial implications of the sports 
injury issue. An Australian research study approximated the burden of sports-related 
injuries over a span of seven years to amount to $265 million Australian dollars 
(Finch et al., 2015). In Europe, the economic assessment of health expenditures, 
considering both the savings generated through sports participation and the losses 
incurred due to injuries, suggests that 40–50% of the economic advantage is eroded 
by sports-related injuries (BASBO, 2001; Weiß, 2000). Many of these estimates of 
the direct costs represent medical related treatment costs and ignore the indirect 
costs, which include the immediate and future loss of income costs due to injury. 
Therefore, the financial cost of sport-injury is likely underestimated as indirect costs 
can account for approximately 46–71% of the total costs associated with injuries 
(Lacny et al., 2014). 

The repercussions of sports injuries extend beyond mere physical and financial 
implications. It is widely acknowledged that there exists a significant emotional and 
psychological toll on athletes’ mental health and well-being. This toll often manifests 
in the form of depression, stress, anger, and diminished self-esteem, especially among 
competitive athletes or those severely injured (Smith, 1996). Therefore, as sport and 
physical activity continues to be promoted as part of a healthy lifestyle, sport-related 
injuries are becoming an important public health concern. 

In competitive sports, the adverse effects of injuries are typically more 
pronounced. It is recognised that the burden of injuries escalates with the level of 
competition, primarily due to greater exposure to rigorous training and competitions, 
leading to increased physical and psychological strain. Professional and national 
sports organisations are obligated to ensure the well-being of their athletes; hence, 
prioritising athlete welfare is crucial. Lowering the burden of injuries also becomes 
a notable advantage for team success, which influences commercial revenues.
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Injury prediction should be a key component for injury prevention, since the 
successful identification of injury predictors forms the basis for effective preven-
tive measures. Traditionally, research focusing on the prevention of sports injury is 
based on the “sequence of prevention”, which includes injury audit (surveillance) to 
establish the extent and nature of the problem, identification of risk factors, and imple-
mentation of relevant prevention strategies based on these findings (van Mechelen 
et al., 1992). This epidemiological approach is useful as it allows researchers to iden-
tify the risk of injury (injury incidence or rate and injury burden), prevalence, and 
risk factors associated with injury within different sports and populations and helps 
to identify patterns and trends, contributing to injury occurrence. This approach has 
often attested that single risk factors account for the occurrence of an injury. Although 
this approach has uncovered numerous potential predictors of injuries using conven-
tional statistical methods like logistic regression. Unsurprisingly, these methods have 
not consistently identified risk factors (Bekker & Clark, 2016). These inconsistencies 
underscore the complexity inherent in most human health conditions. 

Fundamentally, sports injury is a multifaceted phenomenon influenced by various 
modifiable and non-modifiable risk factors, including biomechanical, physiological, 
psychological, environmental, and sociocultural aspects. To understand injury risk, 
we must analyse the forces, loads, and motions involved in sports activities to under-
stand how they contribute to tissue stress, strain, and injury. We must consider the 
psychological factors that can modulate the physiological responses to stress and 
influence injury vulnerability. We must also include context and consider the influ-
ence of societal values, gender roles, coach-athlete relationships, peer interactions, 
and institutional practices on athlete behaviour, risk-taking, and injury reporting. 

Since the “sequence of prevention” was first suggested, several models have been 
developed to conceptualise the complexities surrounding sports injury occurrence 
and that the injury has a non-linear behaviour (Bekker & Clark, 2016; Bittencourt 
et al., 2016; Meeuwisse, 1994; Meeuwisse et al., 2007). These models suggest that 
the multifaceted and intricate nature of sports injuries does not stem solely from the 
linear combination of isolated predictive factors but rather from the interplay often 
referred to as “the web of determinants” (Philippe & Mansi, 1998). These determi-
nants may be interconnected in a nonlinear fashion, meaning that slight changes in 
a few determinants can result in significant and occasionally unforeseen outcomes. 
To comprehensively understand the complex origins of sports injuries, a complex 
systems approach is essential. 

5.2 The Current State of Artificial Intelligence for Injury 
Prediction 

As outlined, it is well established that sports injuries are multifactorial in nature, and 
very rarely are attributed to a singular variable in the line of causation; rather, sports 
injuries arise from multiple interactions between both modifiable (i.e. training load,
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strength) and non-modifiable determinants (i.e. age, previous injury history) and their 
non-linear fluctuations over time (Bittencourt et al., 2016; Hulme & Finch, 2015). 
Therefore, to accurately determine the complexity of their origin, sports injury predic-
tion requires a complex systems approach to better understand how these intricate 
interactions lead to injury. 

Recent advancements of Artificial Intelligence (AI) based analysis (including 
machine learning and pattern recognition) have lead to its introduction into the realm 
of sports medicine research (Ruddy et al., 2018; Van Eetvelde et al., 2021), allowing 
for a more robust analysis of large quantities of data to formulate prediction models 
of injury (Sigurdson & Chan, 2021). AI can be designed to process imbalanced 
datasets, which is commonplace in sports injury research as, typically there will be 
more athletes not sustaining an injury when compared to those sustaining an injury 
(Lopez-Valenciano et al., 2018; Van Eetvelde et al., 2021). Furthermore, utilising 
AI for sports injury research allows for the inclusion of both modifiable and non-
modifiable risk factors as input features and can be used to evaluate their effectiveness 
in predicting injury as a binary classification outcome (injury versus no injury). 

Caution is needed that we are not reverting back to over-simplistic, reductionist 
views of injuries, such as injuries occuring due to singular inciting events. Models 
which have previously been generated for targeted injury diagnoses (e.g., lower 
extremity injuries, lateral ankle sprains) may be of greater sensitivity within multi-
variate modelling when compared to grouping all injuries together, producing more 
interpretable and unambiguous findings for injury incidence (Henriquez et al., 2020). 

Various predictive variables of sports injury have, therefore, emerged across a 
range of sports as a result of AI-based analyses. Within Australian Football, risk 
factors such as age, stature, body mass, playing position, and previous lower limb 
injury history were identified as predictors of hamstring strain injury, with an associ-
ated accuracy of 85% across algorithms (Ruddy et al., 2018); namely, Naive Bayes, 
Logistic Regression, Random Forest, Support Vector Machine, and Neural Network, 
which have qualities of probabilistic classification and the ability to model complex, 
non-linear interactions within multiple predictor variables (John & Langley, 1995; 
Keerthi et al., 2006; Quinlan, 1993). Utilising a similar approach with random forest 
algorithms in identifying lower limb musculoskeletal injuries amongst National 
Collegiate Athletic Association (NCAA) athletes, Rommers et al. (2020) identi-
fied hip-based strength metrics, demographic and balance variables as indicators for 
future injury. Furthermore, adopting a subgroup discovery approach which allows 
for the analysis of subsets of individuals who share common attributes for injury 
risk from input features (Herrera et al., 2011), de Leeuw et al. (2022) discovered 
that predictors of injury within elite male volleyball were fatigue, overuse, sleep, 
muscle soreness, and training exertion. Physical attributes such as height and weight, 
alongside strength, flexibility, speed, agility, and endurance features, achieved 85% 
precision using XGBoost in assessing injury predictors within elite youth football 
(Rommers et al., 2020). Pattern recognition analyses, therefore, show initial potential 
to provide a feasible statistical method of forecasting injuries in sport whilst being 
able to account for (1) modifiable and non-modifiable risk factors, (2) the time-series 
nature of athlete training data, (3) whilst also considering their nonlinear interactions.
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5.3 Advantages of Using Artificial Intelligence for Injury 
Prediction 

Natural sciences, such as injury prediction in sport, traditionally adhere to explana-
tory positivist views where understanding and generalisation of phenomena require 
the testing of clearly defined hypotheses (i.e., predictions) using tightly controlled 
methods (Kuhn, 2012). This approach inherently encourages a “reductionist” 
approach to research, wherein testing theoretically-based and limited-in-number 
predictors of phenomena is considered superior. Indeed, injury prediction research 
has predominantly adhered to these principles (Bekker & Clark, 2016; Bittencourt 
et al., 2016). However, such approaches induce a case of “survivor bias”; factors are 
prioritised for consideration if their relationship with injury is either known or can 
be clearly predicted (Lockwood, 2021). Consequently, this may prohibit the iden-
tification of new, as-of-yet unknown, factors which may affect injury in sport (Tee 
et al., 2020). Similarly, once a certain number of predictors is reached, it can make 
it difficult for researchers to fully grasp their interaction. 

Concerted efforts to broaden understanding of sports injury are of particular 
importance given recent calls to consider sports injury as a complex phenomenon, 
affected by many variables and interactions (Fonseca et al., 2020; Tee et al., 2020). 
Explanatory positivist approaches to-date have laid the foundations for identifying 
modifiable and non-modifiable risk factors of injury in sport (Bahr, 2016; Rossi 
et al., 2021), but limitations arise from the typical utilisation of mono-dimensional 
approaches. Variables are often treated as static, absolute at one point in time, and 
subsequently ignore the complex underlying pattern of sports injuries and time-
series nature of athlete status (Rossi et al., 2021). This “static” attitude to predictors, 
combined with assumptions of linear relationships between singular variables and 
injury, means that current approaches with high explanatory power do not always 
translate to high predictive power in relation to injury risk (Jauhianen et al., 2021; 
Shmueli, 2010). 

Therefore, a possible means to deepening understanding of injury predictors 
are AI-assisted analyses. AI is particularly suited to complex problems, given its 
ability to: process large volumes of data; comprise partial automation to reduce time 
cost; provide non-linear assessment of multiple interactions; and discover useful 
hidden patterns in data (Pham et al., 2020; Zhuang et al., 2017). Accordingly, sports 
injury researchers are beginning to utilise artificial neural networks, support vector 
machines, gradient boosting machines, and decision tree methods (Bullock et al., 
2022). Although pursuing complex analytical procedures such as these goes against 
fundamental scientific principles (e.g., Occam’s Razor, wherein the simplest expla-
nations are regarded as the most plausible, and should thus be pursued; Blumer et al., 
1987), injury risk appears to be highly complex by nature (Fonseca et al., 2020; Tee  
et al., 2020) and may thus benefit from AI-assisted analyses. Specifically, AI-based 
approaches could demonstrate a better capacity for interpreting the highly complex 
and non-linear contexts surrounding each case despite their seeming contradiction 
with established explanatory conventions (Tee et al., 2020).
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5.4 Training and Testing an Artificial Intelligence 
for Injury Prediction 

Just like the athletes themselves, AI models require rigorous training and testing 
(Kanal & Chandrasekaran, 1971). “Training” entails calibrating the underlying 
parameters which AI models use to produce outputs from inputs. “Testing” entails 
evaluating the effectiveness of these models, often using a different dataset to 
that used in training. There are many testing/training methods, such as supervised 
learning, unsupervised learning, and reinforcement learning; however, a common-
ality among them all is a requirement for large volumes of representative data to 
create models which provide accurate outputs (L’heureux et al., 2017). Although the 
quantity and quality of training/testing data is only one of many factors which can 
cause undesirable bias in models, it is one of the key determinants (see Prediction 
model Risk of Bias Assessment Tool; Wolff et al., 2019). If an AI model is subject 
to insufficient volumes of relevant data during training, it is likely that these models 
will contain bias, which can lead to inaccurate outputs. 

A recent systematic review found that 98% of AI-based analyses used to predict 
sporting injuries were at high or unclear risk of bias (Bullock et al., 2022). In part, 
this is a product of the additional challenges the field has when it comes to testing and 
training models; contexts surrounding injury are dynamic and not interchangeable 
(Tee et al., 2020). Injury can be affected by more than just match play and training 
load. It is highly dependent on the context surrounding an athlete. Historical, political, 
social, economic, scientific, cultural, and organisational factors can all affect injury 
likelihood and the effectiveness of preventative methods. For example, playing on 
hard ground out of geographical/economic necessity can increase injury likelihood 
(Chalmers et al., 2012). Relatedly, the contexts surrounding injury are dynamic rather 
than static. For example, Between 1998 and 2010, rugby union forwards have become 
22% heavier, 8% taller, and 18% stronger (Lombard et al., 2015). Likewise, changes 
in coaching and backroom staff can produce profound changes to an athlete’s recovery 
protocols from one year to the next (Galdino et al., 2023). A result of the complex 
and dynamic factors surrounding sports injury is that it makes it challenging for a 
single research team to collect sufficient predictors as well as sufficient volumes of 
data to optimally train and test AI models. 

Given the challenges faced when attempting to apply AI methods to sports injury, 
it is not surprising that previous studies have been criticised for their generalisability 
and application to applied contexts (see Bullock et al., 2022). Specifically, it has 
been suggested that even in AI-based studies featuring low risk of bias, modest 
predictive performance of models means that there may be no injury prediction 
models which can be confidently recommended for applied practice. Going forward, 
it may be necessary for researchers to embrace the open science to collaborate and 
compile sufficiently detailed datasets. Such Open Science approaches entail inten-
tional sharing of data (and failing that, making data freely accessible) to better build 
on previous studies (Vicente-Saez & Martinez-Fuentes, 2018). Precedent for the rapid 
advancement of AI given sufficient access to detailed datasets for testing/training can
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be seen in text-to-text applications such as ChatGPT, where access to a large corpus 
of written work throughout history has allowed impressively accurate predictions 
of desired text, based on user inputs (Wu et al., 2023). Researchers investigating 
sports injury should aim to work together to further elucidate underlying complex 
interactions of predictors. 

5.5 Practical Implications: Pitfalls and Solutions 

Although AI has the potential to become a powerful tool in injury prediction (Bullock 
et al., 2022), its underlying mechanisms may be too complex for applied practi-
tioners to find useful/comprehensible themselves. Therefore, AI-based approaches 
may further increase the researcher-practitioner gap. This researcher-practitioner gap 
occurs when scientifically derived knowledge is not applied by practitioners in the 
field (Lenfant, 2003). The present wealth of different AI-based approaches, complex 
statistical metrics, and frequent requirement to modify computer code, means that 
a majority of applied practitioners may struggle to use AI models in any capacity 
other than standardised “plug and play” packages (Bullock et al., 2022). However, 
even if “plug and play” packages are made available to applied practitioners, current 
sports injury models’ high likelihood of bias (Bullock et al., 2022) run a high risk of 
incorrect application. In such high risk situations, it has been shown that individuals 
tend to rely on their own judgement and avoid applying these high risk methods, 
further widening the researcher-practitioner gap (Jøsang & Presti, 2004; Papenmeier 
et al., 2022). Therefore, in addition to producing accurate injury prediction models, 
another key barrier may be to overcome the researcher-practitioner gap. 

The utilisation of AI-based analyses in injury prediction studies is often hindered 
by limited data inclusion, restricting analysis to a narrow scope of variables. For 
instance, some studies only incorporate physical performance metrics (Rommers 
et al., 2020), perhaps constraining predictive accuracy. However, the potential for 
heightened precision remains, suggesting an opportunity for enhancement through 
integrating more extensive datasets (Verhagen & Bolling, 2015). By refining the 
focus of injury prediction using advanced AI methodologies, such as targeting 
specific injury types prevalent within distinct athletic cohorts—such as hamstring 
strains in elite football or anterior cruciate ligament injuries in female athletes— 
the applicability of these models to real-world practice can be improved (Rommers 
et al., 2020; Van Eetvelde et al., 2021). This may provide practitioners with more 
robust datasets, enabling the implementation of more effective and targeted injury 
prevention strategies. 

That said, to create more accurate prediction models, reduce bias, promote prac-
titioner uptake, and reduce the researcher-practitioner gap, theoretically driven vari-
ables of injury risk factors still require prioritisation when deciding on input features 
during preprocessing stages of AI analyses. To illustrate, a strong relationship exists 
between the amount of ice cream sold and shark attack incidences, and it may even be 
possible to predict the number of shark attacks that will occur based on the number
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of ice creams sold. However, in reality, no amount of regulating ice cream sales will 
have an effect on the number of shark attacks; ice cream sales are epiphenomenal to 
shark attacks and is likely a byproduct of another process, such as warmer weather 
resulting in more demand for ice cream and people visiting the beach. Regulating the 
waters with more coastal surveillance and warnings for surfers is likely to be more 
effective in reducing the number of shark attacks. The point is, utilising variables 
that are theoretically linked to sports injury will reduce the likelihood of erroneous 
discoveries, which would affect the interpretability and reliability of the models. 

5.6 Conclusion 

AI-based approaches to sports injury prediction provide many opportunities to 
advance the field. Firstly, it has the capacity to treat sporting injury as the complex 
phenomenon it appears to be. Secondly, it allows for consideration of the non-
linear context surrounding athlete injuries, which previous reductionist statistical 
approaches were forced to omit. Lastly, it can provide a supplement to practitioner 
reasoning, to facilitate quicker decisions. However, one should not overlook the chal-
lenges of using AI. Training effective AI requires large and representative datasets, 
which has been a key barrier faced in sports injury research. Additionally, until accu-
rate models become available as “plug and play” solutions, they may be prohibitively 
complex/novel for applied practitioners to use; thus potentially widening researcher-
practitioner gaps. If these challenges are overcome though, AI may one day revo-
lutionise not only sports injury prediction accuracy, but also our understanding of 
underlying factors and their interaction. 

Prediction models may, therefore prompt early intervention and manipulation 
of variables which are known to have an effect on injury risk however unless the 
relationship is causal, manipulating certain metrics does not mean that injury risk 
will be altered (Hernan et al., 2019); therefore, assuming that manipulating certain 
variables reduces the risk of injury is the equivalent of banning ice cream sales to 
prevent shark attacks (Impellizzeri et al., 2020). When handling data regarding injury 
prediction and prevention, identifying the optimal set of risk factors for athletes at 
greater risk of injury would prove invaluable for coaches, medical practitioners, and 
for the overall well-being of athletes. Achieving this necessitates a tailored approach 
to athlete monitoring practices and addressing key performance indicators tailored 
to the demands of each individual sport. Within the realm of sports, the cost of 
injury—weighing the costs of medical procedures, rehabilitation, player time loss 
due to injury, and its impact of team success against the benefits of injury reduction— 
is pivotal in the decision making process (Gabbett et al., 2016). When utilising AI, 
more efforts need to be made in relation to understand the relative weight of individual 
risk factors and injury risk, portraying a picture of the probability of injury rather than 
classifying an athlete into a high or low risk group (Rossi et al., 2018; Van Eetvelde 
et al., 2021), which would be of more benefit for sporting practitioners when it 
comes to making adjustments to training regimes and team selection. Employing an
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AI approach to injury management should, therefore, not only be able to identify 
risk factors but also provide practitioners with actionable thresholds for heightened 
injury probability, allowing for the implementation of timely prevention strategies 
with the hope of minimising the cost of injury for both athlete and team. 
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Chapter 6 
Generative Artificial Intelligence 
in Anti-doping Analysis in Sports 

Maxx Richard Rahman and Wolfgang Maass 

Abstract Doping in sports involves the abuse of prohibited substances to enhance 
performance in the sporting event. Blood doping, a prevalent method, allows the 
increase in red blood cell count to improve aerobic capacity, often through blood 
transfusions or synthetic Erythropoietin (rhEPO). Current indirect detection methods 
require a large amount of data for performing analysis. In this paper, we study the use 
of generative modelling for generating synthetic blood sample data to improve anti-
doping analysis in sports. We performed experiment on the blood samples collected 
during the clinical trial. The dataset comprised haematological parameters from real 
blood samples, which were analyzed to understand the baseline characteristics. The 
Generative Adversarial Network (GAN) is used to understand the complexity and 
variability of real blood sample data. Results demonstrated that the model could 
successfully generate synthetic samples that closely resembled real samples, indi-
cating its potential for augmenting datasets used in doping detection. This approach 
not only enhances the robustness of indirect methods of doping detection by providing 
a larger dataset for analysis but also addresses ethical concerns related to privacy and 
consent in using athletes’ biological data. 

Keywords Blood Doping · rhEPO · GANs · Sports 

6.1 Introduction 

Doping in sports means the use of banned/prohibited substances or methods by 
athletes to improve their performance (Vlad et al., 2018). This unethical practice 
subverts fair competition and poses significant health risks. The history of doping 
is as early as 1886, when substances such as cocaine, caffeine, and strychnine were 
used, although they were not illegal at the time, to enhance performance (Holt et al., 
2009). This period was the starting point of performance-enhancing practices, which 
have developed into a complex set of doping techniques, including anabolic steroids,

M. R. Rahman (B) · W. Maass 
Saarland University, Saarbrücken, Germany 
e-mail: m.rahman@iss.uni-saarland.de 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
C. Dindorf et al. (eds.), Artificial Intelligence in Sports, Movement, and Health, 
https://doi.org/10.1007/978-3-031-67256-9_6 

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-67256-9_6&domain=pdf
mailto:m.rahman@iss.uni-saarland.de
https://doi.org/10.1007/978-3-031-67256-9_6


82 M. R. Rahman and W. Maass

blood doping, human growth hormone, and others. One of the most prominent cases 
in cycling is that of Lance Armstrong, who was suspended because of doping accu-
sations and later confessed to the use of the performance-enhancing drug Erythro-
poietin (EPO) (Heuberger et al., 2013). Armstrong’s case brought a lot of focus on 
how widespread the problem of doping was in professional cycling and other sports. 

Blood doping is one of the most common forms of doping, which means increasing 
the number of red blood cells in the bloodstream, improving the athlete’s aerobic 
capacity and endurance (Plumb et al., 2016). This can be done by blood transfusions, 
the use of certain drugs, or other approaches aimed at increasing the number of red 
blood cells (Goodnough & Panigrahi, 2017). Blood doping is especially seen among 
endurance athletes, such as cyclists, whose performance can be remarkably enhanced 
by the increased oxygen delivery to their muscles. 

Recombinant human Erythropoietin (rhEPO) is a synthesized form of a natural 
hormone that is responsible for the production of red blood cells (Bunn, 2013). The 
use of rhEPO in sports is also known as “EPO doping”, which has become a major 
issue because it can help improve performance of the athlete. The administration of 
rhEPO enables athletes to increase their red blood cell mass without the need for blood 
transfusions, thus making the procedure a more covert way of doping (Robinson 
et al., 2006). Nevertheless, using rhEPO may be associated with cardiovascular risks, 
such as hypertension and thrombosis, which create serious health issues to athletes 
(Santhanam et al., 2010). The detection of blood doping has been a challenge for 
World Anti-Doping Agency (WADA) and the associated laboratories. In 2009, they 
developed the Athlete Biological Passport, which involves the monitoring of selected 
biological markers over time and indirectly detecting the effects of blood doping 
by observing the variations in an athlete’s biological markers, which may suggest 
manipulation (WADA, 2022). 

Current detection techniques include both direct testing for the presence of prohib-
ited substances in blood or urine samples and indirect methods that may provide the 
indication of doping, such as changes in haematological parameters. Manfredini 
et al. (2011) proposed a statistical score that included several blood parameters and 
emphasized variations from their normal levels. Sharpe et al. (2006) used a single 
previous sample to determine the baseline values for an athlete. Parisotto et al. (2001) 
looked at how different statistical models, namely the ON and OFF models, fared in 
their analysis according to specific possible parameters. Hence, the use of statistics 
and Machine Learning (ML) techniques to deal with doping has been the subject 
of different studies. Similarly, Kelly et al. (2019) use ML algorithms to discover 
doping risks among 791 UFC athletes through their performance data, with a high 
sensitivity rate of 44%. Sottas et al. (2006) developed the Abnormal Blood Profile 
Score (ABPS), a testing strategy that utilizes statistical classifications of indirect 
biomarkers. The ABPS calculation, which used both Support Vector Machine and 
Naive Bayes algorithms, reached a sensitivity of 45% and a specificity of 100%. 
Rahman et al. (2022) also showed how different ML approaches could be useful to 
identify the presence of the rhEPO in the blood samples. Therefore, this study is the 
current state-of-the-art method and could be used as a benchmark for future studies.
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Despite these advancements, one of the significant limitations is the difficulty in 
gathering enough data for effective ML analysis. 

Therefore, in this paper, we will discuss the potential uses of generative modelling 
in doping analysis in the sport. This research work focuses on whether generative 
algorithms can help eliminate the constraints of limited data and positively impact 
the doping detection. Thus, we apply a Generative Adversarial Network to generate 
blood samples that can be further used to train ML algorithms to detect and identify 
the presence of rhEPO in blood samples to improve the detection of blood doping. 

6.2 Generative Modelling 

6.2.1 Haematological Profile of Blood Sample 

The haematological profile of the blood sample comprises a set of crucial blood 
parameters that exhibit significant variations due to rhEPO intake (Krumm & Faiss, 
2021). It helps in understanding the size and important characteristics of each circu-
lating blood cell. Table 6.1 shows all the important parameters with the description.

The significance of the OFF-HR parameter becomes evident through an example. 
Imagine an athlete using small doses of rhEPO. While this may not significantly 
elevate hemoglobin levels, reticulocytes are likely to respond markedly, impacting 
the OFF-HR score. Conversely, an athlete taking substantial rhEPO doses might 
maintain constant hemoglobin levels through plasma expansion, evading detection. 
However, infusing a blood bag would decrease reticulocytes, triggering the OFF-
HR. Thus, the OFF-HR serves as a crucial indicator of erythropoiesis acceleration 
or deceleration. 

6.2.2 Requirements for Synthesizing Haematological Profile 

There are several requirements for the generation of haematological profiles due to 
their longitudinal nature (Mosquera et al., 2023). To begin with, we outline a set 
of prerequisites necessary for synthesizing longitudinal datasets. By doing so, we 
aim to define specific criteria for our generative algorithm. The goal is to ensure the 
generated samples’ authenticity and the generative models’ applicability to actual 
data scenarios.

(1) Temporal Nature of the Data: The haematological profile consists of longitu-
dinal elements, which means that it tracks the same athlete over time. This longi-
tudinal element involves the collection of multiple samples from each athlete at 
different times.
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Table 6.1 Description of all the haematological parameters in blood sample 

Parameter Description 

Haemoglobin concentration (HB) The amount of hemoglobin in the blood, 
measured in grams per liter (g/L) 

Haematocrit (HCT) The proportion of blood volume occupied by 
red blood cells 

Reticulocytes percentage (RET%) The percentage of immature red blood cells 
(reticulocytes) in the blood 

Reticulocytes count (RET#) The absolute number of reticulocytes per 
microliter of blood 

Reticulocytes haemoglobin (RET-HB) The hemoglobin content within reticulocytes 

Mean corpuscular volume (MCV) The average volume of red blood cells 

Mean corpuscular haemoglobin mass (MCH) The average mass of hemoglobin in red blood 
cells 

Mean corpuscular haemoglobin concentration 
(MCHC) 

The concentration of hemoglobin in red blood 
cells 

Red blood cell count (RBC) The total number of red blood cells 

Red blood cell distribution width—standard 
deviation (RDW-SD) 

A measure of the variation in red blood cell 
size 

Red blood cell distribution width—coefficient 
of variation (RDW-CV) 

Another indicator of red blood cell size 
variability 

White blood cell count (WBC) The total number of white blood cells 

Immature reticulocyte fraction (IRF) The proportion of immature reticulocytes 

Low fluorescence reticulocyte fraction (LFR) The fraction of reticulocytes with low 
fluorescence 

Medium fluorescence reticulocyte fraction 
(MFR) 

The fraction of reticulocytes with medium 
fluorescence 

High fluorescence reticulocyte fraction (HFR) The fraction of reticulocytes with high 
fluorescence 

OFF-HR score The relationship between reticulocytes and 
hemoglobin. Calculated using the expression: 

OFF − HR = HB(g/L) − 60 
√
RET%

(2) Variability in Profile Sequence Length: The variation in the number of samples 
per athlete is highly dependent on the athlete’s career length or experience 
level. The younger or newer athletes usually have fewer samples whereas the 
more experienced athletes who have been active for a long time and therefore 
have collected many more samples. This difference in sequence length needs 
consideration for analysis the data. 

(3) Diversity of Data Types: The longitudinal dataset is heterogeneous in nature, 
which means that it consists of different types of data types. Specifically, it 
includes:
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a. Categorical or discrete features, which are data that can be divided 
into different categories without any inherent order (e.g., gender, sample 
collection). 

b. Continuous features which are numeric and can take any value within a 
range, representing measurements or quantities (e.g., concentration level of 
different haematological parameters). 

(4) Presence of Outliers and Anomalies: The dataset contains outliers that are 
values which are differ from the reference ranges. They can be crucial for anal-
yses, and can allow to identify exceptional cases, errors in data collection or 
unique characteristics that might be important for the analysis. 

(5) Data Sparsity Due to Missing Values: It is quite usual for the dataset to 
contain a lot of missing values that result in sparsity. This implies that not 
all haematological parameters are available for all the samples. 

6.2.3 Generative Adversarial Networks (GANs) 

Generative models learn to understand and replicate the underlying distribution of 
a given dataset, allowing them to produce new samples that could plausibly come 
from the same distribution as the original data. This approach is particularly powerful 
in many fields, such as image and voice generation, where models like Generative 
Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational Autoen-
coders (VAEs) (Kingma & Welling, 2014) have shown remarkable ability to produce 
high-quality, realistic outputs. In this study, we used GANs to generate blood samples 
based on the collected clinical samples. 

In this section, we discuss the concept and architecture of GANs. A basic GAN 
framework includes an input vector along with two main components: a generator and 
a discriminator, both of which are typically realized using deep neural networks. The 
concept relies on a predetermined distribution, Pdata(x), which is assumed to represent 
the data distribution of a training sample x. Identifying this distribution accurately 
is challenging. Conventional approaches often assume that Pdata(x) adheres to a 
Gaussian mixture model. However, these approaches can falter with complex models, 
leading to unsatisfactory outcomes. Consequently, neural networks are suggested to 
define the distribution. The generator, parameterized by G, takes a random variable 
z from a prior distribution and transforms it via the neural network into a pseudo-
sample distribution, denoted as G(z), with its data distribution labeled as PG(z). The  
variable z typically originates from Gaussian noise, representing a stochastic variable 
in a latent space. Leveraging G, the generator can generate a straightforward input 
distribution into a variety of intricate distributions. The goal is for the PG(x) generated 
by the generator is to closely mimic the actual data distribution Pdata(x). Therefore, 
the generator’s objective is to optimize and find an ideal G∗. 

G∗ = arg min
[
Diff (PG, Pdata)

]
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The next question is to identify the difference between the two distributions. 
Despite the lack of precise knowledge about these distributions, it is possible to draw 
samples from them. To address this, we have a discriminator characterized by the 
parameter D. In the training phase, the discriminator is expected to output a value of 
1 for real samples x, and shift to 0 for generated samples. Goodfellow et al. (2014) 
used binary cross entropy function, which is commonly used for binary classification 
problems. 

Loss = −(y log ŷ + (1 − y) log(1 − ŷ)) 

In this context, ŷ represents the predicted label by the model and y denotes the 
actual label of the sample. Each sample under consideration could originate from 
either the real distribution or the generated distribution. Accordingly, positive exam-
ples are associated with Pdata, and negative examples correspond to PG. The entire 
objective function for the discriminator is defined as follows: 

V (G, D) = Ex∼Pdata

[
log D(x)

] + Ex∼PG

[
log(1 − D(x))

]

Integrating these equations give the foundational GAN’s objective function as 
outlined below: 

min max V (G, D) = min max Ex∼Pdata

[
log D(x)

] + Ex∼PG

[
log(1 − D(G(z)))

]

The training process of a GAN is essentially a min–max game. The generator aims 
to fool the discriminator by maximizing the discriminator’s output for a synthetic 
sample. Conversely, the discriminator works to accurately identify real from gener-
ated samples, striving to maximize the function V (G, D) for real samples and mini-
mize it for generated ones, creating a minimax scenario. Throughout GAN training, 
the parameters for the generator and the discriminator are iteratively adjusted. While 
training the generator, the discriminator’s parameters remain constant, and the gener-
ated data is fed into the discriminator. The difference between the discriminator’s 
output, D(G(z)), and the actual label is calculated, and the generator’s parameters are 
updated based on this error using the backpropagation algorithm. Conversely, during 
the discriminator’s training phase, the generator’s parameters are kept constant. The 
discriminator receives real samples (x) from the real dataset, while the generator 
gives a generated sample G(z). The error is determined using the discriminator’s 
output and the ground truth labels, and the discriminator’s parameters are updated 
according to this error through the backpropagation algorithm as shown in Fig. 6.1.
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Fig. 6.1 Architecture of GAN for generating blood samples 

6.3 Evaluation 

6.3.1 Data Description 

Collecting health-related data on elite athletes is a difficult task as there are issues like 
data accessibility and privacy. Therefore, the dataset used in this study is from the 
clinical experiment, which is well described by Rahman et al. (2022). The clinical 
trial was performed under real-world conditions and included two groups: one at 
“sea-level” with 34 participants and another at “altitude” with 39 participants. The 
experiment was divided into three phases: at baseline (weeks 1–4), intervention 
(weeks 5–8), and follow-up (weeks 9–12) period. Both groups were at sea-level 
during the baseline and follow-up. However, during the 4-week intervention period, 
one group stayed at the sea-level while the other group was at a moderate altitude of 
2300 m. This 4-week duration corresponds to the usual regimes of athletic training, 
in which the altitude training camps are rarely longer than that. 

None of the participants were exposed to the performance-enhancing drug 
throughout the baseline and follow-up phases. However, during the intervention 
phase, the participants were given 11 injections, one after another, every two days. For 
the sea-level group, 25 individuals were given rhEPO injections, and the remaining 
9 were given placebos. In the case of the altitude group, 12 patients were injected 
with rhEPO, and 27 were given placebos. In total, 864 blood samples were collected 
during the complete study. The data statistics are well described in the Table 6.2. 
Figure 6.2 shows the distribution of all the haematological parameters of the rhEPO 
as well as the placebo samples collected at the sea-level.
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Table 6.2 Data statistics of 
the collected blood samples Blood samples Sea-level Altitude (=2300 m) 

rhEPO samples 100 48 

Placebo samples 609 107 

Total samples 709 155 

Fig. 6.2 Distribution of all the haematological parameters for rhEPO and Placebo samples collected 
at sea-level
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6.3.2 Performance Metrics 

Sample Distribution Comparison 

The most basic method for evaluating the utility of generated datasets involves 
comparing the quantity and distribution of samples generated for each simulated 
individual against those in the real clinical data. This consists in plotting the number 
of samples per participant as histograms to observe and compare the average values. 
Additionally, to assess the distribution of sample types in both real and generated 
datasets, we calculate the probability distribution for each type of sample within each 
dataset. 

Marginal Distribution Comparison 

To evaluate how closely synthetic datasets mimic real clinical samples, we can look 
at the marginal distributions of individual haematological parameters. This involves 
analyzing the distribution of each parameter independently to understand how well 
the synthetic data captures the variability and central tendencies observed in real 
blood samples. This approach ensures that our comparison of parameter distributions 
is not skewed by any irrelevant or missing values. 

Kolmogorov–Smirnov test 

To assess the distribution of the generated blood samples quantitatively, we can apply 
the two-sample Kolmogorov–Smirnov test (K-S test) to identify the key difference 
between the real and generated data samples. The K-S test is a well-established 
method for evaluating whether two datasets are likely to come from the same distri-
bution (Dimitrova et al., 2020). It calculates the maximum discrepancy between 
the cumulative distribution functions of two populations (one placebo and the other 
subjected to rhEPO) as follows: 

Da,b = sup|Fa(x) − Fb(x)| 

The test’s null hypothesis, which assumes the two distributions originate from 
the same parent distribution, is rejected at a significance level of α if Da,b exceeds a 
specific threshold determined by the following equation involving the sample sizes 
of the placebo and rhEPO cohorts. 

Da,b > 

√

− ln 
α 
2 

. 
1 + b a 
2b 

where a and b are the number of placebo and rhEPO samples respectively.
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6.4 Results 

We performed the evaluation on the generated samples by using both qualitative 
and quantitative measures described in the previous section. Table 6.3 shows the 
mean and standard deviation of both real and generated samples. The d -value and p-
values are calculated using the 2-sample K-S test to quantify the difference between 
the two distributions. Figure 6.3 shows the distribution of all the haematological 
parameters for real and generated samples at sea-level. The density plots demonstrate 
the quantitative analysis, showing that the generated data approximates the real data 
well in terms of central tendencies and variability. Nonetheless, the nuances captured 
in the plots highlight the need for further refinement of the data generation algorithms 
to ensure that the tail of the distribution and the very specific characteristics of 
the haematological distributions are more accurately generated. This is particularly 
important for any decision-making process where the accuracy of data simulation 
could have significant consequences. 

Table 6.3 Comparison analysis of the generated data samples with respect to the real blood samples 

Real samples Generated samples 2 sample K-S  test  

Mean Std Mean Std d-value p-value 

HB 14.24 1.13 14.09 1.05 0.10 2.1e−03 

RET% 1.04 0.39 0.93 0.25 0.15 3.3e-07 

RDW-SD 41.63 2.32 41.34 2.22 0.14 9.2e−07 

RDW-CV 12.66 0.62 12.58 0.59 0.13 1.2e−05 

HCT 41.52 2.98 41.06 2.71 0.11 4.5e−04 

OFF-HR 82.00 15.03 83.58 13.62 0.07 5.1e−02 

LFR 92.78 3.33 93.71 2.58 0.14 1.8e−06 

RET# 0.05 0.02 0.04 0.01 0.16 1.9e−08 

RBC 4.67 0.38 4.64 0.37 0.09 4.3e−03 

IRF 7.22 3.33 6.29 2.59 0.14 3.7e−06 

MFR 6.41 2.77 5.62 2.15 0.14 1.1e−06 

WBC 5.65 1.51 5.44 1.5 0.16 2.1e−08 

MCH 30.50 1.26 30.42 1.19 0.09 2.9e−03 

MCHC 34.28 0.01 34.27 0.83 0.05 2.4e−01 

HFR 0.81 0.74 0.67 0.58 0.17 1.0e−09 

RET-HB 33.44 1.7 33.92 1.63 0.10 1.0e−03 

MCV 88.98 3.08 88.77 2.95 0.05 1.8e−01
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Fig. 6.3 Distribution of all the haematological parameters for real and generated samples for sea-
level cohort 

6.5 Conclusion 

This study aims to explore the potential of generative modelling to improve the 
detection of blood doping in sports. In the recent past, the application of ML, partic-
ularly supervised learning techniques, has been a topic of interest in the context of 
anti-doping efforts. Such research often relies on data obtained from clinical studies
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involving specific groups of individuals. In our analysis, we used a dataset gathered 
through clinical trials and performed GAN to generate more blood samples, which 
mimics the similar behaviour of the dataset. 

This study provided a detailed comparative study between real and generated 
haematological blood profiles. The experiment results show that the generated data 
samples are close to the real samples across most parameters, proving the efficiency 
of the data generation method used. Particularly, the close approximation in the 
mean values of the blood parameters such as Hemoglobin (HB), Red Blood Cell 
Distribution Width (RDW-SD and RDW-CV), and Mean Corpuscular Hemoglobin 
(MCH), with a considerably smaller standard deviation implies that the generated 
data possesses the same central tendency as the real data, which is important for any 
process that involves the modelling of data or simulation based on real data. 

On the other hand, it is clear from the K-S test results that there are statisti-
cally insignificant differences between real and generated sample distributions, as 
proven by p-values. The d -values, which measure the maximum distance between 
the empirical distribution functions of the two samples, are quite small, indicating the 
differences are not big. The p-values of the K-S test for parameters such as MCHC, 
OFF-HR, and MCV are >1e−02, which proves that the generated data resembles 
the clinical data distribution well. In contrast, some distributions like HFR, RET#, 
and WBC had a p-value < 1e−08, though similar in their mean and variability, do 
not perfectly replicate the complex distribution characteristics of the real data. This 
could be due to the limitations inherent in the data generation process, which may 
not fully capture the biological variability and underlying physiological correlations. 

In conclusion, the generated blood samples can be considered a robust proxy for 
real blood sample data for studies where gathering real data is challenging due to 
insufficient or privacy concerns. Future work should aim to refine the generation 
process to better capture the distributions of the real data, perhaps by integrating 
more complex modelling techniques or incorporating additional biological knowl-
edge into the generation algorithm. Such improvements could make the generated 
data indistinguishable from the real data, opening new boundaries for research and 
application in doping analysis. 
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Chapter 7 
A Brief Review of Artificial Intelligence 
for Sport Informatics in the Scope 
of Human–Computer Interaction 

Marco Speicher and Patrick Berndt 

Abstract This chapter delineates the evolving landscape at the intersection of Arti-
ficial Intelligence (AI), sports, movement, and health, emphasizing the pivotal role 
of Human–Computer Interaction (HCI). Highlighting the surge in AI integration 
within sports, movement analysis, and health management, we want to underscore 
its transformative impact on performance analysis, injury prevention, and person-
alized healthcare interventions. By elucidating the progression from rudimentary 
applications to sophisticated data-driven analyses, HCI has an indispensable role in 
crafting user-centric interfaces and experiences tailored to individuals’ needs and 
preferences. Therefore, we provide a brief overview of AI’s influence on athletic 
performance, injury management, and healthcare, advocating for human-centered 
design (HCD) principles to optimize user engagement and outcomes in this dynamic 
domain. 
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Design · Human-Computer Interaction · Human-Centered AI 

7.1 Introduction 

The convergence of Artificial Intelligence (AI) and the domains of sports, move-
ment, and health have led to a new era of innovation and possibilities, reshaping 
the landscape of Human-Computer Interaction (HCI). This brief review navigates 
the multifaceted intersection of AI and HCI, shedding light on emerging trends that 
impact the way individuals engage with technology in the pursuit of fitness, sports 
excellence, and overall wellbeing.
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In recent years, the integration of AI into sports, movement analysis, and health 
management has surged, fueled by advancements in Machine Learning (ML) algo-
rithms, sensor technology, and data analytics (Teufl et al., 2021). From the analysis of 
biomechanical data to the prediction of injury risks and the optimization of training 
regimens, AI is transforming how athletes, coaches, and healthcare professionals 
approach performance enhancement and injury management (Bates et al., 2023). 
Moreover, the proliferation of wearable devices, smart sensors, as well as mobile 
health and exercise applications has facilitated the collection of vast amounts of 
data on individual movement patterns, physiological metrics, and lifestyle behav-
iors, providing valuable insights for personalized health and sports performance 
monitoring, exercise prescription and intervention strategies (Oyebode et al., 2022; 
Phatak et al., 2021). 

The development of AI in the field of sports and health informatics is characterized 
by the path from rudimentary applications to highly developed, data-driven analyses. 
Central to this evolution is the crucial role of HCI, a facet that has grown essentially as 
human-centered technologies and interfaces have settled in the landscape of athletic 
performance and health management. HCI encompasses the design, evaluation, and 
optimization of user interfaces, interactive systems, and digital experiences tailored 
to the needs, preferences, and capabilities of individuals (Dix, 2003). In the context 
of sports and health AI applications, effective HCI is essential for ensuring seam-
less interaction, intuitive user experiences, valid data collection, and meaningful 
engagement with technology-driven solutions. By integrating principles of Human-
Centered Design (HCD), usability engineering, and User Experience (UX) research, 
HCI professionals strive to create AI-powered applications that empower users to 
make informed decisions, optimize recovery and athletic performance, and enhance 
their overall health, fitness, and wellbeing (Blandford, 2019). 

This review aims to provide a concise understanding of the growing intersection 
between AI, sports, movement, and health. We have explored how AI technologies are 
transforming various facets of athletic performance, injury prevention, rehabilitation, 
and personalized healthcare. Additionally, we want to underscore the critical role 
of HCI in facilitating effective communication and collaboration between humans 
and AI systems in this dynamic domain. The scope encompasses key applications, 
trends, and implications of AI in sports, movement, and health while emphasizing 
the need for HCD and seamless integration of technology to optimize outcomes and 
experiences for stakeholders across diverse disciplines. 

7.2 Artificial Intelligence Applications in Sports 
Informatics 

AI applications in sports informatics take center stage, with a focus on analytics, 
performance analysis, exercise prescription and strategic optimization. We briefly 
present the benefits of AI and highlight its role in designing not only results, but
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also improving health, performance and injury prevention. This is followed by an 
overview of AI applications in sports analysis in order to be able to discuss the role 
of HCI in the sports, fitness and health sector in more detail with regard to AI. 

7.2.1 Overview of Artificial Intelligence Applications 
in Sports Analytics 

Sports analytics has seen a fundamental shift with the integration of AI technologies, 
revolutionizing the way in which coaches and athletes analyze and interpret data. AI 
applications in sports analytics include a variety of techniques and methods that aim 
to extract actionable insights from complex data sets. The quantitative analysis of 
sports has grown initially through non-academic work (Kubatko et al., 2007) and 
has received extensive academic interest in the past decade. This section provides 
an overview of contemporary AI applications in scientific sports analytics and high-
lights their importance for improving performance, optimizing strategies, and driving 
innovation in the sports industry. 

7.2.1.1 Data Processing and Pattern Recognition 

The core of AI-powered sports analytics is the ability to process large amounts of data 
with high speed and accuracy. ML algorithms, including Deep Learning (DL) models, 
excel at recognizing patterns and extracting meaningful insights from various data 
sources such as training statistics, recordings, and sensor data. 

Topics such as data processing and pattern recognition are particularly funda-
mental components of AI-powered sports analytics, facilitating the extraction of 
actionable insights from complex data sets (Biró et al., 2023). When analyzing 
complex data sets, the five V’s of big data should be taken into account: volume, 
velocity, variety, veracity, and value (George et al., 2016). In the field of sports, 
where data volumes continue to grow rapidly, and the pace of data generation 
shows no signs of slowing down, the application of advanced ML algorithms is 
central to uncovering meaningful patterns and trends. Moreover, the variety of data 
sources, including game footage, player statistics, and sensor data, presents both 
challenges and opportunities for analysis. Through the use of AI-powered systems, 
sports organizations can harness the value of this diverse data landscape, leveraging 
it to gain valuable insights into player performance and team strategies. Addition-
ally, the veracity of data, ensuring its accuracy and reliability, is paramount in the 
development and deployment of ML models for sports analytics. Finally, velocity 
is represented by the ability to process data in real-time, which allows for timely 
decision-making and adaptive strategies during live games and training sessions, 
further emphasizing the significance of advanced algorithms in the modern sports 
landscape. By analyzing historical performance data and identifying correlations
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between variables, AI systems can uncover hidden patterns and trends that may 
elude human observation, providing valuable insights into athlete behavior, training 
data dynamics, and team strategies (Novatchkov & Baca, 2013). 

Techniques such as DL, Convolutional Neural Networks (CNNs), and Recurrent 
Neural Networks (RNNs) are characterized by the detection of complex patterns in 
various data sources. CNNs, for example, have been successfully used in the analysis 
of sports videos and have enabled the automatic recognition of player actions and 
events in soccer matches (Jiang et al., 2016). In addition, RNNs have demonstrated 
their effectiveness in modeling temporal dependencies in sequential sports data, such 
as player trajectories and match sequences (Lucey et al., 2014). 

7.2.1.2 Predictive Modeling and Performance Forecasting 

The advent of wearable sensors and computer vision technology has revolutionized 
athlete tracking and movement analysis in sports. AI algorithms can process real-
time data streams from GPS trackers, accelerometers, and video feeds to monitor 
athletes’ movements, quantify performance metrics, and identify areas for improve-
ment. Through techniques such as pose estimation and motion capture, AI systems 
can reconstruct player trajectories, measure biomechanical parameters, and assess 
movement efficiency, providing coaches and trainers with actionable feedback for 
optimizing training regimens and preventing injuries (Claudino et al., 2019). 

For example, researchers demonstrated the effectiveness of ML algorithms in 
predicting game outcomes and player performance in basketball based on factors such 
as player statistics, team dynamics, and situational variables (Kubatko et al., 2007). 
They used Support Vector Machine (SVM) considering both classifier performance 
and the complexity of the dataset. The resulting model was developed based on a 
tracking dataset of players and ball trajectories in 32,377 possessions from nearly 630 
basketball games in the 2012/13 NBA season. Furthermore, the analysis of basketball 
data to gain competitive advantages is of interest to the clubs and is linked to the 
financial success of a team (Demenius & Kreivytė, 2017). 

AI-powered predictive models enable organizations in sports to anticipate 
outcomes, evaluate athletes’ potential, and predict performance metrics with higher 
accuracy. By using historical data and statistical algorithms, predictive analytics 
tools can make forecasts for various scenarios, including at sporting events, such as 
results, injuries, and team dynamics (Molavian et al., 2023). These insights enable 
coaches and managers to make informed decisions regarding player selection, match 
tactics, and resource allocation to maximize their team’s competitive advantage and 
performance results. 

Similarly, a recent work has highlighted the potential of predictive modeling tech-
niques in predicting match outcomes in soccer, using complex datasets that include 
player biometrics, match conditions and tactical strategies (Bunker & Susnjak, 
2022). By leveraging these predictive insights, sports teams can make informed deci-
sions regarding player selection, match tactics, and resource allocation, ultimately 
maximizing their competitive advantage and on-field performance outcomes.
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By analyzing game footage, scouting reports, and statistical data, AI systems can 
identify recurring patterns, exploit opponent weaknesses, and recommend strategic 
adjustments tailored to specific game situations (Pavitt et al., 2021). Whether through 
automated play recommendation systems or interactive decision support tools, AI 
empowers coaches and players to adapt their strategies dynamically, maximize their 
team’s strengths, and outmaneuver their opponents on the field. 

7.2.1.3 Using Wearable Technology for Fitness Training 

In addition to the individualized application of current findings for training control, 
the development, research, and application of new technical possibilities are also 
becoming increasingly important for modern strength and fitness training. Many 
individuals struggle to maintain or increase their exercise routines, leading to 
suboptimal activity levels. However, research indicates that automatically tracking 
exercise, especially through pedometry, can significantly boost motivation and 
encourage physical activity (Pelletier et al., 2021). This underscores the importance 
of leveraging technology to facilitate and sustain healthy lifestyles. 

Although the implementation of emerging technologies, such as fitness wearables, 
presents trainers and athletes with the challenge of integrating these tools and methods 
into training management in a meaningful way, in most cases, it enables more precise 
load control or more comprehensive monitoring of recovery and performance param-
eters (Pizzo et al., 2021). Such technical aids are usually based on compact sensor 
systems that are either worn on the body or attached to training equipment to record, 
process, and transmit relevant health or performance-related parameters to other 
devices. Fitness wearables and other sensor-based aids are used in the context of 
sports training not only to test the actual performance level or to check performance 
development but also to record the health and regeneration status, to monitor the 
training load and individual stress within a training session and to automatically 
record movements (Passos et al., 2021). 

A special category of these wearable sensor systems uses so-called inertial 
measurement units (IMU) to record translational and rotational accelerations in multi-
dimensional space. A systematic review of the use of wearable inertial sensor units 
showed that such devices are used in sport, particularly to record athletic or physical 
performance, physical activity and sport motor requirements, as well as to analyze the 
quality of movement in competitive and high-performance sport (Camomilla et al., 
2018). In the context of resistance training, these devices are primarily used to record 
the movement trajectory and velocity of free weights, such as barbells, which enables, 
among other things, the monitoring of movement technique and the velocity-based 
control of load intensity and duration (Weakley et al., 2021). Most inertial sensor 
systems available on the market for recording barbell speed are considered valid and 
reliable (Clemente et al., 2021). 

In the context of resistance training, the use of this sensor technology to measure 
velocity has led to the establishment of a new approach to exercise prescription known 
as “velocity-based training”. In contrast to the traditional load-based approach, in
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which the intensity is controlled by the amount of load and the duration by the number 
of repetitions, the velocity-based approach uses the velocity of the moving load or 
the extent of its reduction over several repetitions within a training set as the central 
prescription variable (Weakley et al., 2021). 

Overall, the increasing interest in wearables for sports and fitness emphases the 
need for design knowledge to shape future designs in this area. To address this, 
researchers presented a design space of wearables for sports and fitness practices, 
drawing from a survey of previous research (Turmo Vidal et al., 2021). They identified 
core design decisions related to wearability, technology design, and wearable use in 
practice, considering the goals of introducing technology, the balance between pre-
designed features and user appropriation, and the social dynamics of the practice. 
By characterizing prior work within this design space, the authors identified trends 
and opportunities for design in wearables for sports and fitness. 

7.2.2 Examples of Successful Artificial Intelligence 
Implementations in Professional Sports 

The following non-academic examples demonstrate the significant impact of AI 
implementations in professional sports, ranging from player performance monitoring 
and injury prevention to fan engagement and data-driven decision-making. As AI 
technologies continue to evolve, we can expect further innovations and advancements 
that will reshape the landscape of sports analytics and enhance the overall sports 
experience for athletes, teams, and fans alike. 

7.2.2.1 Catapult Sports in Soccer 

Catapult Sports (https://www.catapult.com) is a company that specializes in wear-
able technology designed to monitor athlete performance in various sports, including 
soccer. Professional soccer teams have increasingly adopted Catapult’s wearable 
devices to track player movements, physical exertion, and injury risks during training 
sessions and matches. By leveraging AI algorithms, Catapult’s technology processes 
data collected from these wearables to provide coaches and sports scientists with 
actionable insights into player performance and conditioning. For instance, AI-
powered analytics can identify patterns in player movement, assess fatigue levels, and 
recommend personalized training programs to optimize performance and minimize 
injury risks (Barrett, 2017). Several soccer clubs, including English Premier League 
teams and international squads, have reported significant improvements in player 
fitness, tactical decision-making, and injury prevention because of implementing 
Catapult’s AI-driven sports analytics solutions.

https://www.catapult.com
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7.2.2.2 HomeCourt for Basketball Analytics 

HomeCourt (https://www.homecourt.ai) is an AI-powered mobile application 
designed to revolutionize basketball training and skill development. Leveraging 
computer vision and ML algorithms, HomeCourt analyzes basketball players’ move-
ments and shooting techniques using the camera of a smartphone or tablet. The app 
tracks key metrics such as shot accuracy, release angle, and shooting arc in real-time, 
providing instant feedback and personalized coaching tips to help players improve 
their skills. With its AI-driven analysis capabilities, HomeCourt enables players to 
track their progress, identify areas for improvement, and compete with friends and 
teammates in skill challenges and drills. The app’s intuitive interface and gamified 
features make basketball training more engaging and accessible to players of all skill 
levels, from amateur enthusiasts to professional athletes. HomeCourt has garnered 
widespread acclaim within the basketball community and has been endorsed by top 
players and coaches for its innovative approach to skill development and performance 
optimization. As a result, HomeCourt represents a groundbreaking example of how 
AI technology is transforming sports training and empowering athletes to reach their 
full potential on the court. 

7.2.2.3 Enduco for Endurance Training 

Endurance training is a critical component of athletic development, particularly for 
endurance athletes such as cyclists, runners, and triathletes. To optimize performance 
and achieve peak fitness levels, athletes require tailored training plans, personalized 
coaching, and effective performance tracking tools. Enduco (https://enduco.app), a 
leading platform for endurance training, offers comprehensive solutions designed 
to meet the unique needs of endurance athletes. Enduco has emerged as a valuable 
asset for endurance athletes, offering a comprehensive suite of tools and resources 
to optimize training, track performance, and achieve peak athletic performance. By 
leveraging Enduco’s capabilities, athletes can unlock their full potential, push their 
limits, and reach new heights in their endurance pursuits. The key takeaways can be 
summarized as follows: (1) Personalized training plans tailored to individual needs 
can optimize performance, (2) real-time performance tracking and analysis are essen-
tial for informed decision-making, (3) seamless coach collaboration fosters effective 
communication and training strategies, and (4) motivation and accountability are 
crucial factors in achieving endurance training goals. By embracing innovative solu-
tions like Enduco, athletes can embark on a journey of continuous improvement, 
resilience, and success in their endurance endeavors. 

7.2.2.4 Enode for Strength Training 

Enode (https://enode.ai) has revolutionized strength training in professional sports 
through its innovative AI-driven approach. By integrating advanced algorithms and

https://www.homecourt.ai
https://enduco.app
https://enode.ai
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data analytics, Enode provides personalized training programs tailored to individual 
athletes’ needs, optimizing performance and minimizing the risk of injury. Utilizing 
an in-house IMU, the technology records biomechanical data and visualizes it in the 
app in real-time. Their velocity-based training approach allows for precise monitoring 
and adjustment of training protocols based on velocity metrics, enhancing strength, 
power, and endurance. Professional sports teams worldwide rely on Enode’s platform 
to maximize their athletes’ potential and maintain peak physical condition throughout 
the rigorous season. 

7.3 HCI in Sports and Health Artificial Intelligence 

A critical facet of this survey is the examination of HCI within the context of AI 
applications in sports and health. The seamless integration of AI technologies into 
user experiences is essential for their effective adoption. With this survey, we want 
to shed light on design considerations, challenges, and solutions in ensuring that AI 
enhances rather than hinders the interaction between humans and technology in the 
pursuit of fitness and well-being. 

7.3.1 Evolution of HCI in Sports, Health and Fitness 

The fitness sector is a sub-sector of the sports and health industry that often goes unno-
ticed. The fitness industry has undergone a remarkable transformation with the advent 
of technology, particularly in the realm of HCI. Historically, fitness enthusiasts relied 
on conventional methods for tracking progress and monitoring performance, such 
as pen-and-paper logs and manual calculations. However, the integration of digital 
technologies, wearable devices, and AI-powered applications has revolutionized how 
individuals engage with fitness and health activities (Cooper et al., 2018). 

In the early stages, HCI in the fitness industry primarily focused on digitizing tradi-
tional workout routines and providing basic tracking capabilities. Simple interfaces 
and rudimentary feedback mechanisms laid the groundwork for more sophisticated 
applications that catered to the evolving needs and expectations of users. As tech-
nology advanced, HCI principles began to play a more prominent role in the design 
and development of fitness-oriented software and hardware (Chatterjee et al., 2022). 

The emergence of AI-driven analytics and personalized coaching platforms 
marked a significant turning point in the evolution of HCI in the fitness industry. These 
platforms leverage ML algorithms to analyze user data, generate actionable insights, 
and deliver tailored recommendations for optimizing performance and achieving 
fitness goals. By harnessing the power of AI, HCI practitioners have been able to 
create immersive and adaptive experiences that resonate with users on a deeper level 
(Palumbo et al., 2020).



7 A Brief Review of Artificial Intelligence for Sport Informatics … 105

As HCI continues to evolve in the fitness industry, there is a growing emphasis on 
inclusivity, accessibility, and User-Centered Design (UCD). Developers are striving 
to create inclusive experiences that cater to diverse demographics and accommodate 
varying levels of physical ability and technological literacy. Additionally, ensuring 
seamless integration with existing hardware and software ecosystems remains a key 
priority, as interoperability and compatibility issues can hinder user adoption and 
satisfaction. 

In conclusion, the evolution of HCI in fitness, sports and health reflects a dynamic 
interplay between technological innovation, UX design, and evolving consumer 
expectations. By embracing HCD principles and leveraging cutting-edge technolo-
gies, HCI practitioners are driving forward the next frontier of fitness, sports, and 
health innovation, empowering individuals more efficiently to lead healthier, more 
active lifestyles. 

7.3.2 Importance of Seamless Interaction Between Humans 
and Artificial Intelligence Systems 

AI-driven applications can personalize user experiences based on individual prefer-
ences, behaviors, and performance metrics. This personalization should enhance 
engagement and effectiveness by tailoring recommendations, feedback, and for 
example training programs to the specific needs and goals of users. HCI methods 
prioritize understanding the needs, preferences, and behaviors of users to inform 
the design process (Dix, 2003). User research, personas, and user journeys help 
identify user requirements and pain points, ensuring that the applications address 
real-world challenges effectively. Moreover, UI/UX design focuses on creating inter-
faces that are intuitive, visually appealing, and easy to navigate. Clear navigation, 
logical information architecture, and consistent visual elements enhance usability 
and accessibility, enabling users to interact with the applications effortlessly. 

However, there is limited understanding of how individuals interact with person-
alized predictions. To address this, a smartphone app called GlucOracle generates 
personalized forecasts for post-meal blood glucose levels using self-tracking data 
from individuals with type 2 diabetes (Desai et al., 2019). The app was pilot tested 
with two populations: an online diabetes community and a low socio-economic status 
community. Individuals from both groups found the personalized glucose forecasts 
useful for adjusting immediate meal options and planning future meals. The study 
also highlighted new questions regarding the appropriate timing, format, and focus 
of forecasts, and suggested new research directions for personalized predictions in 
health. 

Consumer-facing health technologies, particularly AI-based symptom checkers 
(AISCs), emerge in everyday healthcare practice. AISCs gather symptom infor-
mation from users and offer medical suggestions and potential diagnoses, a role 
traditionally associated with healthcare professionals such as physicians and expert
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patients. This development raises questions about how AISCs influence and trans-
form the concept of medical authority in individuals’ healthcare practices. To explore 
this, a recent study conducted interviews with thirty AISC users, examining how 
users perceive the medical authority of AISCs based on factors like automated deci-
sions, interaction design patterns, connections to established medical authorities, and 
comparisons with other health technologies (You et al., 2021). The findings shed light 
on the utilization of AISCs in healthcare delivery, the transformation of traditional 
notions of medical authority by AI, and implications for designing AI-enabled health 
technologies. 

In general, AI algorithms enable applications to process large volumes of complex 
data quickly and accurately. In clinical settings, algorithms often have to work with 
incomplete patient data and incompletely documented disease progressions (Schmidt 
et al., 2015). In sports analytics, AI processes data from various sources, such as 
player statistics, game footage, and sensor data, to derive actionable insights and 
predictions. 

AI techniques such as ML and DL enable the identification of patterns, trends, and 
correlations within the data. This allows for predictive modeling in sports analytics, 
such as forecasting match outcomes, player performance, and injury risks. Despite the 
promise of DL algorithms to enhance workflows and outcomes, their real-world effi-
cacy remains to be fully demonstrated. A recent study emphasizes the importance of 
conducting human-centered evaluative research alongside prospective evaluations of 
model accuracy to better understand and optimize the integration of AI technologies 
into health settings (Beede et al., 2020). 

Specifically, the focus in medical image retrieval systems for aiding medical 
decision-making processes using ML is on retrieving visually similar medical images 
from past cases to assist in diagnosing new patients. However, no algorithm can 
perfectly match an expert’s notion of similarity for every case, potentially leading to 
irrelevant results for a doctor’s specific diagnostic needs (Cai et al., 2019). There-
fore, one major requirement when searching for similar images retrieved by a DL 
algorithm is to empower users to adjust the search algorithm dynamically, empha-
sizing the types of similarity most crucial at different moments. Furthermore, users 
adopt new strategies by repurposing these tools to test the underlying algorithm and 
differentiate ML errors from their own mistakes. These insights could inform the 
development of future human-ML collaborative systems for expert decision-making 
in fitness, sports and health contexts. 

HCI methods emphasize providing timely and meaningful feedback to users to 
guide their interactions and facilitate learning. Visual feedback, progress indicators, 
and notifications keep users informed about their actions, progress, and achievements, 
fostering motivation and engagement. Interaction design ensures that the user journey 
within the application is seamless and coherent. Well-designed interaction patterns, 
gestures, and transitions enhance the flow of interaction, minimizing cognitive load 
and friction points, and maximizing user satisfaction and retention.
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7.3.3 The Role of HCD in the Interaction Design Process 

HCD is an approach to creating products, services, and systems that focuses on 
understanding the needs, behaviors, and preferences of the people who will use 
them. It involves actively involving end-users in the design process, empathizing 
with their experiences, and iterating on designs based on their feedback. HCD aims 
to ensure that the final product meets the users’ needs effectively and provides a 
positive and intuitive user experience. 

7.3.3.1 Human-Centered Design and Human-Centered 
Artificial Intelligence 

In the context of AI-powered applications for sports and health, HCD is particularly 
crucial for several reasons. First and foremost, these applications deal with sensitive 
and personal aspects of individuals’ lives, such as their physical health, fitness goals, 
and performance metrics. By prioritizing HCD principles, developers can create 
applications that are sensitive to users’ privacy concerns, preferences, and comfort 
levels with technology. 

Furthermore, the effectiveness of sports and health applications relies heavily on 
user engagement and adherence to the recommended activities or interventions. By 
involving users in the design process and incorporating their feedback, developers 
can create applications that are intuitive, motivating, and enjoyable to use. This, in 
turn, could increase user engagement and improve outcomes related to health and 
wellness. 

Concerns are growing regarding the values embedded in AI systems, their 
decision-making processes, and their social consequences, especially in everyday 
applications such as spam filtering, credit scoring, and search engines. The 
inscrutability of AI models, embedded biases, privacy issues, and environmental costs 
are significant considerations. The term “human-centered AI” (HCAI) is gaining 
traction, reflecting a desire for AI to serve people amidst concerns about poten-
tial exploitation and manipulation. However, the definition of HCAI varies widely, 
encompassing different perspectives on the role of humans in AI systems. By exam-
ining peer-reviewed articles, a recent review paper seeks to identify trends, gaps, 
and opportunities in HCAI research, providing a foundation for further exploration 
in this field (Capel & Brereton, 2023). They present a historical overview of HCAI 
and describe the methodology used to review papers, culminating in a map of the 
current state of HCAI research. This map aids in visualizing relationships between 
different approaches, methods, and tools in the field and underlines the complexity 
of designing and evaluating AI. Their approach includes Ethical AI, Explainable and 
Interpretable AI, and Humans Teaming with AI, and combines those fields with an 
Human-centered Approach to design and evaluate AI. 

While User-Centered Design (UCD) is undoubtedly valuable for creating products 
and systems tailored to the needs and preferences of users, HCD offers a broader
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and more holistic approach that considers the entire spectrum of human experiences, 
capabilities, and contexts (Dix, 2003). HCD is considered as the right choice for 
future developments of AI-driven applications in fitness, sports, and health. 

HCD extends beyond individual users to encompass diverse stakeholders, including 
caregivers, family members, communities, and the society as a whole. By consid-
ering the broader human ecosystem, HCD ensures that technological solutions are 
inclusive, equitable, and responsive to the needs of all individuals, regardless of age, 
ability, background, or circumstance.

• HCD places a strong emphasis on empathy, understanding, and advocacy for 
users’ voices and experiences. By engaging users as co-creators and partners in 
the design process, HCD empowers individuals to actively participate in shaping 
the technologies that impact their lives, fostering a sense of ownership, trust, and 
empowerment.

• By prioritizing human needs, values, and well-being, HCD creates opportuni-
ties for long-term value creation and positive social impact. By designing with 
empathy and foresight, HCD practitioners can develop solutions that not only 
address immediate challenges but also contribute to meaningful improvements in 
quality of life, health outcomes, and societal well-being over time. 

In summary, while UCD is an important aspect of HCD, the latter offers a more 
comprehensive and inclusive approach that considers the broader human experience, 
societal impacts, and ethical dimensions of technology design and implementation. 
As we navigate an increasingly complex and interconnected world, HCD serves as a 
guiding framework for creating technologies that are not only useful and usable but 
also ethical, equitable, and empowering for all individuals and communities. 

7.3.3.2 Brief Outline of HCD from the HCI Community Regarding 
Sports, Fitness and Health 

The HCD framework is an approach to designing products, services, and systems that 
prioritizes understanding the needs, behaviors, and preferences of the people who 
will use them. It involves iterative processes of observation, ideation, prototyping, 
and testing, with a focus on empathizing with users and incorporating their feedback 
throughout the design process. 

In the context of health and sports software and hardware, the HCD framework is 
used to develop solutions that are tailored to the unique requirements of users in these 
domains. This includes considerations such as usability, accessibility, motivation, 
and engagement, as well as integration with existing workflows and technologies in 
healthcare and sports settings. 

Researchers and practitioners in HCI have explored various applications of HCD 
in health and sports technology. While specific studies and papers from high impact 
conferences vary from year to year, there have been numerous contributions that 
address HCD principles and methodologies in these domains. Some noteworthy
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examples of topics related to HCD in health and sports technology that have been 
presented in the last decade include:

• UCD of Fitness Trackers: Studies focusing on the design and evaluation of fitness 
trackers and wearables, considering factors such as user preferences, motivation, 
and usability.

• Interactive Systems for Physical Rehabilitation: Research on the development 
of interactive systems and applications to support physical rehabilitation and 
therapy, with a focus on user engagement and adherence to treatment protocols.

• Mobile Health Applications: Investigations into the design and usability of 
mobile health applications for chronic disease management, medication adher-
ence, and behavior change interventions.

• Accessible and Inclusive Design: Efforts to make health and sports technologies 
more accessible to users with disabilities, including studies on inclusive design 
practices and the development of assistive technologies.

• Gamification and Behavior Change: Exploration of gamification strategies and 
behavior change techniques to promote healthy lifestyles and facilitate adherence 
to exercise and wellness programs. 

The HCI community has consistently demonstrated interest in applying human-
centered design principles to address challenges and opportunities in health and sports 
technology. Researchers and practitioners continue to explore innovative approaches 
to designing interactive systems and interfaces that enhance user experiences and 
improve outcomes in these domains. 

7.3.4 Challenges and Solutions in Ensuring Effective HCI 
in Artificial Intelligence-Powered Applications 

By considering the human factors throughout the design and development process, 
sports and health applications can be tailored to meet the unique needs and pref-
erences of users, ultimately leading to more effective and impactful solutions for 
promoting health. Nonetheless, ensuring effective HCI for AI-powered software and 
hardware in the context of fitness, sports, and health presents several challenges. 

AI algorithms often operate as “black boxes”, making it difficult for users to 
understand how decisions are made. In the context of health and sports, users may be 
hesitant to trust AI recommendations without insight into the underlying rationale. 
Assessments can be contentious, leading to expert disagreement. This raises the ques-
tion of how AI assistants should be designed to handle the classification of ambiguous 
cases. Explanations containing irrelevant arguments could reduce experts’ accuracy 
in correcting AI-suggested labels, potentially dropping below 50% (Schaekermann 
et al., 2020). These observations underscore the importance of clarity and relevance 
in AI-generated explanations for enhancing experts’ decision-making processes.
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Despite the widespread use of AI applications, the general public often lacks 
the understanding of how black-box algorithms operate and how to address biases 
effectively. Therefore, researchers have addressed these challenges through various 
approaches and methodologies. They provided insights into the importance of 
Explainable AI (XAI) in healthcare and discussed potential ethical concerns related 
to the lack of transparency in AI-powered systems (Yuan et al., 2023). Researchers 
have formulated 18 human-AI interaction guidelines (Amershi et al., 2019), like 
“Make clear what the system can do”. The User Interface (UI) should help the user 
to understand what the AI system is capable of doing. An example of the application 
of this policy would be an activity tracker where all the metrics it tracks should be 
displayed and explained at the same time. 

Despite existing strategies, translating research findings into practical design 
applications is a key challenge for effective solutions. For example, there are several 
challenges and opportunities in integrating insights from personal health informatics 
research into the design of applications for health, everyday life, or collaboration 
with clinicians. Researchers tested a prototype set of design cards through inter-
views with student designers and health-focused professional designers/researchers, 
revealing various tensions, barriers, and needs in designing health-related technolo-
gies (Kirchner et al., 2021). The findings emphasize the importance of supporting 
designers in addressing knowledge gaps, advocating for user needs, and integrating 
evidence-based approaches in health-related design projects. 

Ideally, those systems should be able to personalize recommendations and adapt 
to individual user needs and preferences. However, designing algorithms that accu-
rately capture user preferences while avoiding biases and ensuring data privacy can 
be challenging. Furthermore, providing meaningful feedback to users is crucial for 
fostering trust in AI-powered systems. Feedback mechanisms must strike a balance 
between being informative and not overwhelming users with unnecessary informa-
tion. A recent paper examined the role of personalization in adaptive and persuasive 
systems for health and wellness. In this work, they presented strategies for designing 
personalized interventions that effectively motivate behavior change (Oyebode et al., 
2022). 

One of the most important and equally most difficult challenges to ensure is 
data privacy and security. Health and fitness data are highly sensitive, and users 
expect strict privacy protections. Designing AI-powered systems that collect, store, 
and analyze data while maintaining user privacy and complying with regulations 
presents significant challenges. Researchers explored privacy concerns in mobile 
technology for personal healthcare (Avancha et al., 2012). They discussed privacy-
preserving techniques and design strategies for ensuring the security of user data in 
health-related applications. 

Overall, HCD is important for AI-powered applications in sports and health 
contexts because it helps ensure that the technology is not only technically robust 
but also genuinely useful, usable, and valuable to the people it is intended to serve. 
These challenges should not be disregarded, as otherwise, both the UX and the effec-
tiveness of the system could suffer. In summary, by addressing challenges related to
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interpretability, personalization, feedback, privacy, and user engagement, researchers 
can create more effective and user-friendly systems that promote health and effective 
training. 

7.4 Conclusion and Future Work 

In conclusion, this survey summarizes the transformative impact of AI on sports, exer-
cise, and health informatics and highlights its profound influence through concepts 
from HCI. We can only speculate about the future of these advances. However, an 
increasingly dynamic landscape indicates that new innovations combining AI and 
HCI must continually redefine the boundaries of what is achievable in the realm of 
human performance, health and wellbeing. 

The success of AI applications in sports depends on the synergy between AI 
capabilities and HCI methods. While AI enables advanced data analysis, prediction, 
and personalization, HCI methods ensure that the applications are user-centered, 
intuitive, engaging, and easy to use. The effective integration of AI and HCI principles 
results in applications that not only leverage the power of data-driven insights but 
also deliver superior user experiences that drive adoption, retention, and satisfaction. 

While designers commonly encounter challenges when working with AI, partic-
ularly in the realms of sports, fitness, and health, these difficulties are not solely 
due to AI’s algorithmic complexity and unpredictable behaviors. Given the multi-
faceted nature of these domains, there is a pressing need for increased collaboration 
between researchers in the fields of AI, HCI, sports science, exercise physiology, 
and healthcare. By fostering interdisciplinary partnerships, new conceptual frame-
works can be developed to address human interactions with AI technologies within 
the context of sports training, fitness tracking, and healthcare management. This 
collaborative approach not only enhances the understanding of how AI can effec-
tively support human performance and wellbeing but also promotes the integration 
of diverse perspectives and expertise, ultimately leading to more holistic and user-
centric solutions in the sport, fitness, and health sectors. This collaboration is crucial 
for guiding more coherent interface designs and reflecting the relationships between 
user intentions and inferred models. The aim is to create a map of HCAI research that 
informs researchers about the breadth of ongoing studies, identifies gaps in research 
formulation, highlights areas for strengthening teams and projects, and encourages 
the exploration of new HCAI constructs and methodologies. Ultimately, the goal is 
to foster interdisciplinary efforts that enhance the understanding and application of 
HCAI principles in research and practice. 

In the realm of HCI, the integration of AI presents a paradigm shift in how indi-
viduals interact with technology to achieve their health and fitness goals. HCI profes-
sionals play a pivotal role in designing intuitive user interfaces, interactive systems, 
and digital experiences that seamlessly integrate AI capabilities while prioritizing 
user needs, preferences, and capabilities. Through HCD principles and usability engi-
neering, HCI fosters meaningful engagement with AI-driven solutions, empowering
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users to make informed decisions, enhance performance, and optimize their health 
outcomes. 

Finally, the convergence of AI, sports, movement, and health informatics holds 
immense promise for transforming the way we approach fitness, sports excellence, 
and healthcare delivery. As AI continues to advance, its impact on HCI will be 
profound, reshaping the landscape of technology-mediated experiences and inter-
actions in pursuit of improved human performance and wellbeing. Embracing the 
principles of HCD and the seamless integration of AI technologies is crucial to 
unlocking the full potential of this transformative synergy. 
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Chapter 8 
Transferring Lessons Learned 
from Uncertainty-Aware Visual Analytics 
in Clinical Data to Predictive Sporting 
Applications 

Christina Gillmann 

Abstract The application of uncertainty-aware visualization techniques in Machine 
Learning (ML) predictions has proven to be invaluable in the realm of clinical data. 
This article delves into the prospect of transferring these lessons to sporting appli-
cations. By scrutinizing the insights derived from uncertainty-aware visualization 
in clinical data, our goal is to harness the potential of these techniques and apply 
them to augment the analysis and interpretation of ML predictions in sports. The 
article underscores the significance of comprehending and visually representing 
uncertainty in sporting data, elucidating various visualization methods, including 
error bars, heatmaps, probability distributions, ensemble methods, and sensitivity 
analysis. Through this exploration, we illustrate how uncertainty-aware visualiza-
tion can contribute to enhancing the reliability and decision-making processes asso-
ciated with ML predictions in sports. Drawing upon the knowledge acquired from 
uncertainty-aware visualization in clinical data, we can lay the groundwork for more 
resilient and informed applications of ML in the sporting domain. 

Keywords Uncertainty-Aware Visual Analytics · Transferability · Predictive 
Sports Applications 

8.1 Introduction to Data-Driven Methods 

Visual analytics has proven to be a successful concept in various applications, such 
as biology (Maack et al., 2021), environmental sciences (Raith et al., 2021), and 
mechanical engineering (Kretzschmar et al., 2020). The benefits of this technique 
have been explicitly demonstrated in Machine Learning (ML) tasks (Gillmann et al., 
2021b; Yuan et al., 2020). The concept was introduced by Keim et al. (2008), as 
depicted in Fig. 8.1b, where data is transformed into hypotheses or visualizations.
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Furthermore, interaction allows conversion between hypotheses and visualizations. 
During this process, users can gain new insights into the input dataset, which can 
be fed back into the dataset component. The concept has been widely used in many 
fields, with clinical data being one of the most prominent examples. 

Unfortunately, the Visual Analytics (VA) process can introduce uncertainty in 
each of its components. These uncertainty events include missing data, incorrect 
measurements, model inaccuracy, as well as user uncertainty while interpreting the 
results produced by the VA cycle. Here, the original cycle by Keim et al. (2008) does 
not provide a systematic way to include, propagate, and communicate uncertainty 
throughout the VA cycle. Therefore, the VA cycle has been extended by Maack et al. 
(2023) to address this issue. In this extension, the cycle by Keim et al. (2008) is  
augmented by several components and connections. The major changes include 
uncertainty quantification in each component of the VA cycle, an exchange of all 
components with uncertainty-aware components, a separation of the feedback loop

Fig. 8.1 UAVA. a Classic visual analytics cycle defined by Keim et al. (2008). b Extension to 
create an UAVA cycle by Gillmann et al. 
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into uncertainty-aware and regular insight, and a provenance component that keeps 
track of the uncertainty propagated and accumulated along the VA cycle. 

The concept of Uncertainty-Aware Visual Analytics (UAVA) has proven to be a 
suitable tool for many clinical applications, resulting in a broad set of success stories. 
These include medical imaging (Gillmann et al., 2021c), clinical health record data 
(Preim & Lawonn, 2020), and monitoring data (Lourdusamy & Mattam, 2020). 

Based on these findings, the question arises of how to transfer this knowledge to 
predictive sports. Let’s consider a scenario where a ML model is trained to predict 
the location of a knee joint based on video data captured during sports activities, such 
as basketball. The model aims to track the movement of the knee joint to analyze 
biomechanics and potentially optimize movements to prevent injuries or improve 
performance. 

Now, imagine a coach using this data for movement optimization, particularly 
focusing on improving the jumping technique of basketball players to reduce the risk 
of knee injuries. The coach receives visual representations of the uncertainty associ-
ated with the predicted location of the knee joint during various phases of jumping, 
such as takeoff, flight, and landing. The visual representation of uncertainty provides 
the coach with insights into the confidence levels of the model predictions. For 
instance, during takeoff, where the knee joint movements might be more predictable 
and stable, the uncertainty might be relatively low. However, during the landing 
phase, where movements can be more dynamic and variable, the uncertainty might 
be higher. This enables coaches to make more informed decisions regarding move-
ment optimization in sports by understanding the limitations and potential errors 
associated with the data and predictions. 

In this paper, we aim to summarize the success stories of UAVA in clinical data. 
Building on that, we aim to provide a transfer of this knowledge to predictive sports 
applications. 

We hope that this manuscript inspires researchers in this area to make use of the 
concept of UAVA, as shown in the example above. 

Therefore, this manuscript contributes: 

• A summary of UAVA (see Sect. 8.2) 
• A collection of success stories of UAVA for clinical data (see Sect. 8.3) 
• A guide to approaching predictive sports through UAVA (see Sect. 8.4) including 
• A mapping of data types in predictive sports to abstract VA (see Sect. 8.4.2) 
• An adapted taxonomy of uncertainty events in VA for predictive sports analysis 

(see Sect. 8.4.3) 
• A workflow to create UAVA cycles for predictive sports analysis (see Sect. 8.4.4). 

8.2 Introduction to Data-Driven Methods 

In the following, we aim to shed light on the concept of UAVA (see Sect. 8.2). Maack 
et al. (2023) defined an extension of the VA cycle (see Fig. 8.1b) by Keim et al. 
(2008) (see Fig. 8.1a), which will serve as a starting point and a goal of the presented
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consideration. The cycle consists of components (see Sect. 8.2.1) that are connected 
by operations (see Sect. 8.2.2). Here, novel components and connections, in contrast 
to the classic VA cycle, are highlighted by a bar over their label. The cycle starts 
with a dataset S, which shapes the following considerations massively. Therefore, 
the potential datasets that can be handled in the UAVA cycle will be explained in 
more detail (see Sect. 8.2.3). 

8.2.1 Components of the Uncertainty-Aware Visual Analytics 
Cycle 

There exist 6 major components in the UAVA cycle, that are connected: 

Dataset S, is a very general concept that consists of n records (r1, r2, …, rn), where 
each record ri, consists of m observations, variables or attributes (a1, a2,..an). An 
attribute ai is a single entity such as a number or symbol. A Dataset holds a structure 
that can be syntactic or semantic. 

Uncertainty-aware Dataset S is resulting from the input dataset S in conjunction 
with the extracted uncertainty quantification QS . It describes the input dataset in 
conjunction with proper uncertainty quantification. 

Hypothesis H, is a supposition or proposed explanation created on the basis of 
limited evidence as a starting point for further investigation. To achieve this, the null 
hypothesis is usually utilized. In this case, a hypothesis is formed and tested. Then 
the hypothesis can either be rejected or failed to be rejected. In conjunction with the 
null hypothesis, there is also an uncertainty quantification attached to it. 

Visualization V, is an uncertainty-aware visual representation that can be interpreted 
by the user. 

Insight I, can be defined as knowledge that is gained during analysis and has to be 
internalized, synthesized, and related to prior knowledge including the uncertainty 
related to this insight. 

Provenance P. When running a UAVA cycle, uncertainty will propagate and accumu-
late along with the operations carried out on the VA cycle. This implies the tracking 
of uncertainty throughout each computational step of the VA cycle, referred to as 
provenance.
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8.2.2 Connections of the Uncertainty-Aware Visual Analytics 
Cycle 

The components of the UAVA cycle are related to each other using the following 
connections: 

• DW : S → S, the preprocessing of a dataset 
• DW : S → S, the preprocessing of an uncertainty-aware dataset 
• {QS , QH , QV , QI } : {S, H , V , I} →  S, H , V , I , the uncertainty quantification for 

all components of the UAVA cycle 
• H{S,V } : {S, V } →  H , the generation of a UA hypothesis from a UA dataset S or 

visualization V 
• V{S,H } : {S, H } →  V , the generation of a UA visualization from dataset S or 

hypothesis H 
• U{V ,H } : {V , H } → {V , H }, user interaction with the UA visualization V or UA 

hypothesis H. 
• U{CV ,CH } : {V , H } →  I , user interaction to generate UA insight I from UA 

hypothesis H or UA visualization V 
• F (S), a feedback loop to insert generated insight I back into the VA cycle 
• F(S) , an uncertainty-aware feedback loop to insert generated uncertainty-aware 

insight I back into the VA cycle 
• PS,H ,V ,I : P → P , the generation of Provenance from monitoring the state of 

S, H , V , I . 

These connections allow a transition between the components and guide through 
the analytic process. 

8.2.3 Datatypes in the Ancertainty-Aware Visual Analytics 
Process 

The UAVA cycle is defined such that it starts with the data that is intended to be 
analyzed. In the work of Maack et al. (2023), datasets are clearly defined. As we 
require these definitions in the following considerations, this section provides a short 
recap on the datatypes and their potential sources of uncertainty. 

Geospatial data S1. This involves geospatial locations or trajectories L, with various 
attributes A assigned to these domains through a function f : L → A. Spatial uncer-
tainty and attribute uncertainty (Li et al., 2017) are inherent in such datasets. Spatial 
uncertainty arises from areas or trajectories that can deviate in shape from the stored 
data, while attribute uncertainty describes the uncertainty of data attributes them-
selves. Both uncertainties are illustrated in Fig. 8.2a, demonstrating positional and 
attribute uncertainty. Analytic models, as outlined by Li et al. (2017), can be employed 
for uncertainty quantification.



120 C. Gillmann

Fig. 8.2 Different types of data and potential sources of uncertainty. Blue figures represent fixed 
values, whereas purple figures represent uncertainty that can be contained in the data. a Spatial data. 
b Graph data. c Field data. d High-dimensional data. e time-dependent data and f document data
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Graph data S2. This connects nodes V via links E, forming a graph. Nodes and links 
can possess various attributes provided by functions f : V → A and g : E → A. Three 
types of uncertainty (Kassiano et al., 2016) exist in graph data: uncertainty regarding 
the presence of a node, uncertainty about a link between nodes, and uncertainty 
related to attributes in nodes or links. The position of visualized nodes is not a 
fundamental uncertainty but is derived from the graph description or some graph 
drawing algorithm. Engel et al. (2015) provided uncertainty quantification for graph 
data, as visually indicated in Fig. 8.2b. 

Field data S3. This data can contain scalars, vectors, and tensors (attributes A), often 
arranged on a grid defined by positions and neighborhood relations. Two types of 
uncertainty can occur, as depicted in Fig. 8.2c: uncertainty in positions and uncer-
tainty in attributes defined over P (Hansen et al., 2014). It is important to note that 
each attribute value may be affected by uncertainty to differing extents. For instance, 
vector entries can have varying uncertainty depending on their dimension. Potter 
et al. (Potter et al., 2011) provided a summary of uncertainty quantification for field 
data. 

High-dimensional Data S4. Defined by a dimension N determining the number of 
attributes A in one entry, high-dimensional data typically has N > 10. Here, only 
attribute uncertainty needs consideration, as illustrated in Fig. 8.2d. 

Temporal Data S5. This data contains attributes A sorted along a timeline T using 
a function f : T → A. Two types of uncertainty arise: time uncertainty and attribute 
uncertainty (Cheng et al., 2014), as shown in Fig. 8.2e. Each point in time and the 
attribute attached to it can be affected by uncertainty. Zhen et al. (Hu et al., 2015) 
demonstrated the quantification of uncertainty in temporal data. 

Text/Document Data S6. This data is in the form of text or documents holding 
attributes A at specific character positions P, given by the function f : P → A. 
Two types of uncertainty can arise, as shown in Fig. 8.2f: Document uncertainty and 
attribute uncertainty (Kerdjoudj and Curé, 2015). Each document can have an overall 
uncertainty, and all of its entries can be affected by uncertainty (Kerdjoudj and Curé, 
2015) provided quantification of uncertainty in textual data. 

8.3 Uncertainty-Aware Visual Analytics and Clinical Data -
Examples 

In this section, we will introduce various types of clinical data and provide an 
overview of their potential sources of uncertainty. Clinical data in healthcare encom-
passes a diverse array of information related to patients, including details about 
their medical conditions, treatments, outcomes, and personal information. These data
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Fig. 8.3 UAVA for demographic data in the U.S (Small, 2023). Demographics data is aggregated 
and displayed as single values for complete cohorts 

types play a crucial role in diagnosis, treatment, research, and healthcare manage-
ment. Additionally, we will illustrate how UAVA can effectively handle this type of 
data, with a specific focus on predictive tasks. 

8.3.1 Patient Demographics 

Patient demographics encompass basic information such as name, age, gender, 
address, contact details, and insurance information, categorizing this type of data as 
high-dimensional. Regarding uncertainty, the values stored in patient demographics 
data are susceptible to uncertainties. This may manifest as outdated, missing, or 
ambiguous information, often arising from patients providing incomplete or outdated 
details. 

An illustrative example is presented in Fig. 8.3 and is available on the SmallMan 
website (Small, 2023). The dashboard provides an overview of demographic data, 
aggregated to offer insights into the entire cohort. Standard deviations are often 
included to provide additional context. Such dashboards are vital in predictive 
demographic analysis, offering insights into potential developments, a critical 
consideration in clinic capacity planning. 

8.3.2 Patient Monitoring 

Patient monitoring encompasses a broad range of data, including electrocardiograms 
(ECG or EKG), fetal monitoring during childbirth, telemetry data for intensive 
care units, as well as single time-step data like vital signs and laboratory results.
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Fig. 8.4 Example for UAVA for ECGI monitoring by Athawale et al. (2019) 

Vital signs data includes measurements such as blood pressure, heart rate, respira-
tory rate, and body temperature, offering valuable insights into a patient’s overall 
health. Laboratory data comprises various diagnostic tests, providing biochem-
ical and hematological information. This type of data is generally considered time 
dependent. 

In terms of uncertainty, patient monitoring can be affected by incorrect or 
missing values, and the precise time considered may also be imprecise. Figure 8.4 
demonstrates an example of Electrocardiographic Imaging (ECGI) developed by 
Athawale and Johnson (2019). ECGI captures voltages responding to changes in 
the heart’s electrical activity, offering noninvasive insights into arrhythmia sources. 
While the ECG swiftly provides information on abnormal rhythms, it lacks detailed 
spatial information about the heart’s electrical impulses. Monte Carlo simulations 
are employed to explore different arrhythmia positions, with various visualizations 
providing information on probability, confidence, and potential captured in the simu-
lations. These simulations stand as a prominent example of ML based on clinical 
data. 

8.3.3 Imaging Data 

In the realm of medicine, medical imaging serves as a crucial technique for generating 
visual representations of the body’s interior, facilitating clinical analysis and medical 
interventions. These images offer valuable insights into the structure and function 
of organs, tissues, and internal structures, contributing to the diagnosis, treatment 
planning, and monitoring of diverse medical conditions. Medical imaging plays an 
indispensable role in modern healthcare, enabling healthcare professionals to visu-
alize and comprehend the internal aspects of the human body without resorting to 
invasive procedures. X-rays, MRIs, CT scans, ultrasounds, and other imaging studies 
constitute medical imaging data, instrumental in diagnosing and monitoring various 
medical conditions.
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Fig. 8.5 UAVA for brain lesion prediction as shown by Gillmann et al. (2021a). a Predicted lesion 
mapped into a selected brain region. b Histogramm of probabilities that brain region is affected by 
a lesion. c ROC for the prediction of a specific patient 

Concerning medical imaging, uncertainties may stem from two primary sources. 
Firstly, the overall position of the image might be influenced by uncertainty. Secondly, 
the values encapsulated within the image can also be subject to uncertainty. 

Figure 8.5 exemplifies the utilization of UAVA for medical images (Gillmann 
et al., 2021a). In this case, brain lesions occurring during a stroke are examined 
using over 400 acute stroke images to train a neural network predicting the resulting 
lesion (Welle et al., 2023). Given the complexity and numerous settings of the 
network (Nieradzik et al., 2021), UAVA was employed to unravel its mechanisms. 
The visualization encompasses different modes. First, the network’s predictions were 
overlaid on a selected brain region. Subsequently, a histogram captured the distri-
bution of probabilities indicating the affected area. Lastly, a Receiver-Operator-
Curve was presented graphically. This example demonstrates how UAVA assists 
decision-makers in comprehending ML models. 

8.3.4 Written Medical Records 

Medical records are diverse, serving as comprehensive documentation for various 
medical conditions and procedures through textual information. These records 
encompass medication records, procedure and surgery records, diagnosis and clinical 
notes, and treatment plans. Medication records, crucial for tracking patient treatment 
plans and potential drug interactions, include details such as dosage, frequency, and 
treatment duration. Procedure and surgery records provide information on surgical 
procedures, including the date, surgeon, type of surgery, and post-operative care.
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Physicians’ notes and diagnostics contain essential information about a patient’s 
condition, including symptoms, observations, and clinical assessments. Finally, treat-
ment plans document prescribed medications, therapies, and interventions tailored 
to address a patient’s specific condition. 

Examining the significance of written medical reports, Reiner (2017) delved 
into the uncertainties associated with these records. Uncertainties may arise from 
inaccuracies in the recorded occurrences. Additionally, clinicians might express 
uncertainties regarding the diagnosis or measurements they report. 

8.3.5 Molecular Data 

Molecular protein data encompasses detailed information about the structure, func-
tion, and interactions of proteins at the molecular level. This dataset includes 
crucial details such as amino acid sequences, three-dimensional structures, and post-
translational modifications, offering valuable insights into the underlying mecha-
nisms governing cellular processes. Analyzing molecular protein data is indispens-
able for unraveling biological functions, understanding disease mechanisms, and 
developing targeted therapeutic interventions in medicine. Uncertainty events in this 
context may manifest as positional uncertainty for specific atoms or values associated 
with these atoms. 

An illustration of uncertainty-aware molecular visualization is presented by 
Maack et al. (2021) in Fig.  8.6. Considering the dynamic nature of molecules in 
space, the resulting surfaces computed based on atom positions and sizes may vary. 
To address this variability, Maack et al. developed a VA tool that offers indicators 
depicting how the surface of a protein may fluctuate through uncertainty-aware geom-
etry visualization (Gillmann et al., 2018). Examining the protein surface is critical in 
drug development, and this example showcases how UAVA can enhance this process.

8.3.6 Network Data 

Biological network data comprises interconnected sets of biological entities, such as 
genes, proteins, or metabolites, along with the relationships or interactions between 
them. These networks serve as representations of intricate systems within living 
organisms, delineating the complex web of molecular connections that govern various 
biological processes. Analyzing biological network data facilitates the exploration 
of cellular functions, identification of key regulatory elements, and insights into the 
dynamic relationships shaping biological systems, providing valuable information 
for fields like systems biology and bioinformatics. 

Regarding uncertainty, Conroy et al. (2024) addressed uncertainty in network 
data, acknowledging that while their article is based on historical network data, the 
sources of uncertainty remain consistent when considering clinical data. Uncertainty
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Fig. 8.6 Uncertainty-aware visualization of molecular data. Isosurfaces are used to indicate the 
uncertainty inherent in atomic positions (Maack et al., 2021)

in network data can arise from nodes or edges based on their potential existence and 
associated values. 

Weiskopf (2022) provided a comprehensive overview of biological data and its 
related uncertainty visualization, as depicted in Fig. 8.7. The visualization employs 
different thicknesses and colors for corresponding proteins based on the uncertainty 
of their relation. Users can filter connections based on various parameters, enhancing 
the exploration of uncertainty in biological network data.

8.3.7 Abstraction of Clinical Data to Visual Analytics Data 

As shown, the UAVA cycle starts with a dataset. In the Paper by Maack et al. (2023), 
data is divided into different types. In order to follow this scheme, we will order 
types of clinical data in the given types and summarize their sources of uncertainty. 

Figure 8.8 shows the mapping of clinical data into the definition of high-level data 
type in the UAVA cycle. Here, we can observe that every category of clinical data 
can be mapped into a datatype.

Patient demographics can be mapped into high-dimensional data. Here, each 
dimension corresponds to one captured attribute. Patient monitoring can be repre-
sented by time-dependent data. Therefore, each measurement point in time can hold 
different attributes. Imaging data responds to grid data. Here, each pixel or voxel in 
the image is a grid point. Further, written reports can be mapped to text data easily.
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Fig. 8.7 UAVA for protein pathway analysis. Networks with uncertain edges are indicated with 
different thicknesses and colors (Weiskopf, 2022)

Molecular data provide an example of spatial data, whereas pathway data correspond 
to graph data. 

8.4 Transferability to Predictive Sports 

Section 8.4 shows that UAVA can be used for all data sources occurring in clinical 
data, and that it is a suitable tool to handle it. As a goal, this work aims to provide 
guidelines to use UAVA in predictive sports. In the following, we aim to summarize 
sources of data for predictive sports and aim for a similar categorization of abstract 
data in UAVA. Based on this, we will discuss how we can instantiate sources of 
uncertainty to predicte sports and give directions on how to use UAVA in this area.
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Fig. 8.8 Mapping of clinical data into the uncertainty-aware datatypes of the UAVA cycle. Each 
clinical data type can be assigned to an abstract data type

8.4.1 Data Sources for Predictive Sports Analysis 

Predictive sports analysis, often referred to as sports analytics or sports data anal-
ysis, is the process of using statistical, mathematical, and computational techniques to 
analyze past and current sports data in order to make predictions and gain insights into 
various aspects of sports performance and outcomes (Bai & Bai, 2021). It involves 
collecting and analyzing a wide range of data related to sports, such as player statis-
tics, team performance, game conditions, and more, to make informed predictions 
about future events in the sports world. 

Player Performance Data compasses detailed statistics related to individual athletes, 
including metrics like points scored, assists, rebounds, shooting accuracy, and defen-
sive contributions. This information is crucial for assessing a player’s strengths, 
weaknesses, and overall impact on the team’s success. Predictive models often 
leverage historical player performance data to anticipate future contributions and 
evaluate the potential outcomes of specific matchups.
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Team performance data consists of aggregated statistics that reflect the collective 
performance of a sports team. Key metrics include win-loss records, average points 
scored and conceded, team chemistry, and strategic tendencies. Analyzing team-level 
data is fundamental for understanding overall team dynamics, strengths, and weak-
nesses, which are vital components in predicting game outcomes and tournament 
success. 

Injury reports provide essential information about the health status of players, 
including current injuries, recovery timelines, and potential impact on performance. 
Predictive sports analysis takes into account the availability of key players, as injuries 
can significantly influence game strategies and outcomes. Integrating injury data 
allows analysts to adjust predictions based on the potential impact of absent or 
recovering players. 

Weather data includes information on atmospheric conditions such as tempera-
ture, humidity, wind speed, and precipitation. In outdoor sports, weather can have a 
profound impact on game dynamics, affecting player performance and influencing 
strategic decisions. Incorporating weather data enables predictive models to consider 
environmental factors that may contribute to or hinder certain playing styles and 
strategies. 

Game context data provides details about the circumstances surrounding a match, 
including whether the team is playing at home or away, the distance traveled, and 
the game schedule. Understanding the context helps analysts factor in variables like 
home-field advantage, fatigue from travel, and scheduling constraints, enhancing the 
accuracy of predictions by accounting for external influences on team performance. 

Historical data forms the foundation for predictive sports analysis, encompassing 
past game results, player performances, and team trends. By identifying patterns 
and trends in historical data, analysts can build models that capture the dynamics 
of sports competitions over time. Historical data serves as a valuable resource for 
training predictive algorithms and understanding the evolving nature of sports. 

Player tracking data involves real-time information on player movements, posi-
tioning, and physical exertion during a game. Technologies like GPS and motion 
sensors provide granular insights into an athlete’s performance, including speed, 
acceleration, and spatial awareness. Integrating player tracking data enhances 
predictive models by considering the micro-level details of player behavior and 
decision-making. 

Betting odds and market data from sportsbooks reflect the collective expectations 
and sentiments of the betting public. Analyzing betting odds helps analysts gauge 
the perceived probabilities of different outcomes and identify potential discrepancies 
between public perception and statistical models. This information can be valuable 
for understanding market dynamics and making informed predictions. 

Social Media and News Feeds provide real-time updates on team dynamics, player 
sentiments, and public opinions. This qualitative data supplements quantitative
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metrics by offering insights into intangible factors such as team morale, external 
pressures, and public expectations. Integrating social media and news data enhances 
the contextual understanding of the sports environment. 

8.4.2 Abstraction of Predictive Sports Data to Visual 
Analytics Data 

To effectively apply UAVA to predictive sports, a comprehensive classification of 
predictive sports data is essential, mirroring the approach used for clinical data. 

Figure 8.9 illustrates the mapping of predictive sports data onto the abstract data 
types of UAVA. A significant distinction from clinical data emerges, where predictive 
sports data can be amalgamated from diverse abstract data types.

Player performance data seamlessly fits into the category of high-dimensional 
data, a characteristic shared with team performance data and bidding odds data. Team 
performance data, however, may also be categorized as graph data when exploring 
relationships between different players alongside traditional high-dimensional 
attributes like the number of wins. Historical data aligns with time-dependent data, 
while injury reports exhibit versatility, classifiable as either time-dependent data, grid 
data (if imaging techniques are employed), or text data when considering written 
reports. Social media data presents itself as either grid data (if images are involved) 
or text data when dealing with textual content. Weather data and player tracking data 
find a natural classification as spatial data. 

Despite the diversity in predictive sports data, it does not adhere to a singular cate-
gory within UAVA. Nevertheless, the UAVA framework can be effectively applied. 
Building upon the work of Maack et al. (2023), who demonstrated the combination 
of UAVA data types in an arbitrary manner, it becomes evident that abstract data 
types can be viewed as attributes. For instance, time-dependent data can be enriched 
with spatial attributes at each time point, resulting in spatio-temporal data. There-
fore, UAVA offers a flexible mechanism for the derivation of uncertainty events in 
predictive sports. 

8.4.3 Derivation of Uncertainty Events in Predictive Sports 

As detailed by Gillmann et al.(2023), a comprehensive list of uncertainty sources 
for various datatypes in VA has been established. However, this manuscript seeks to 
tailor this list specifically for predictive sports analytics. The objective is to empower 
domain scientists to articulate the specific types of uncertainty events present in their 
data.
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Fig. 8.9 Mapping of data sources in predictive sports to abstract data types of UAVA. In contrast 
to clinical data, predictive sports data sources can encompass multiple abstract data types of UAVA

Consequently, the sources of uncertainty within the dataset component can be 
refined. In other words, it becomes feasible to identify the inherent sources of 
uncertainty in the diverse data types characteristic of predictive sports. 

To summarize, four primary sources of uncertainty exist in the dataset component: 
incompleteness of data, finite instrument resolution, non-representative sampling, 
and variations in observations. It is crucial to note that while all sources of uncertainty 
may potentially exist in any given case, they might not always be of paramount 
interest. The subsequent sections outline the data types where these uncertainties 
play a significant role.
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Incompleteness of data arises mostly in historical data. Collecting data has been 
practices in the past years but has not always been. Further social media data is a 
relatively new phenomenon that also comes with missing data. 

Finite Instrument resolution is a phenomenon that occurs with data that is time-
dependent. In predictive sports, this means that historical data and injury reports. 

Non-representative sampling is also a phenomenon that arisis when considering 
time (e.g. historical or injury data). In addition, player and team performance data 
can also be affected by this source of uncertainty. 

Variations in Observations may arise in ambiguous social media data, player 
tracking data or game context data. 

By exploring these sources of uncertainty in greater detail, we gain a nuanced 
understanding of the challenges inherent in predictive sports analytics. Addressing 
these uncertainties is crucial for refining analytical approaches and deriving 
meaningful insights from the diverse data landscape in the realm of sports predictions. 

8.4.4 A Workflow to Apply Uncertainty-Aware Visual 
Analytics to Predictive Sports 

Maack et al. (2023) developed a workflow for crafting UAVA applications. To adapt 
this workflow for predictive sports analysis, this section refines the process to align 
with the specific demands of the application. The workflow is delineated into five 
steps, each elucidated below. 

Step 1: Design a visual analytics cycle. To devise a VA cycle tailored for predictive 
sports analysis, understanding the nature of the data is paramount. Section 8.4.2 
furnishes a mapping of predictive sports data sources to general data sources in 
UAVA. Leveraging this mapping, subsequent steps involve determining pertinent 
analysis methods, including ML techniques and suitable visualization methods. 

Step 2: Quantify system uncertainty of the given visual analytics cycle. 
Section 8.4.3 offers a derivation of uncertainty events specific to predictive sports 
analysis. The identification of crucial sources is imperative, with particular emphasis 
on discerning uncertainty in the hypothesis component. This uncertainty may vary 
depending on the chosen ML algorithm employed. 

Step 3: Integrate and connect uncertainty-aware solutions. Based on the chosen 
hypothesis and visualization techniques from Step 1, seeking uncertainty-aware solu-
tions for the selected algorithms becomes imperative. Work by Steinbach et al. (2022) 
provides insights into ML approaches adept at handling uncertainty events. Simulta-
neously, the work by Kamal et al. (2021) aids in identifying visualization approaches 
adept at managing uncertainty events.
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Step 4: Separate the visual analytics cycle feedback loop into quantifiable and 
unquantifiable feedback. This crucial step involves splitting the feedback loop into 
quantifiable and unquantifiable feedback. If uncertainty-aware solutions are imple-
mented in the hypothesis, they result in insights with a quantifiable feedback loop. 
To enhance uncertainty quantification, incorporating a feedback mechanism enabling 
users to provide subjective impressions of computed results is recommended. 

Step 5: Generate provenance of uncertainty-aware components in the visual 
analytics cycle. To monitor the propagation and accumulation of uncertainty events 
throughout the runtime of a UAVA cycle, provenance becomes indispensable. Works 
such as Xu et al. (2020) offer an overview of potential techniques in this domain. 
Incorporating provenance ensures a comprehensive understanding of uncertainty 
events in the system. 

8.5 Contribution 

This paper offers a comprehensive overview of uncertainty-aware VA and its appli-
cation to clinical data. Building upon this foundation, the manuscript endeavors to 
bridge insights from the clinical domain to the realm of predictive sports analysis. 

Specifically, it presents an abstraction of predictive sports data into the framework 
of VA, a delineation of uncertainty events tailored for predictive sports analysis, and 
a refined workflow for constructing uncertainty-aware VA cycles within this domain. 

In our future endeavors, we aspire to implement uncertainty-aware VA approaches 
across diverse use cases within predictive sports analysis. Additionally, we are 
committed to conducting a state-of-the-art analysis of uncertainty-aware VA method-
ologies in the context of predictive sports analysis. 
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Chapter 9 
Machine Learning in Biomechanics: 
Enhancing Human Movement Analysis 

Bernd J. Stetter and Thorsten Stein 

Abstract Biomechanical analysis of human movements is highly relevant for 
discovering strategies to prevent injury, treat disease, and enhance performance. In 
this context, high-dimensional datasets are typically collected using either laboratory-
based biomechanical measurement systems or wearable sensors. In recent years, 
Machine Learning (ML) has become increasingly popular for exploiting the poten-
tial of high-dimensional biomechanical data. There are three major ML paradigms: 
supervised learning, unsupervised learning, and reinforcement learning, with the first 
two used primarily in biomechanics. In supervised learning, ML models are trained, 
for example, to classify knee injury status based on muscle activation patterns or to 
predict knee joint forces using wearable sensor data through regression algorithms. 
Unsupervised learning in biomechanical applications involves, for example, reducing 
high-dimensional kinematic data into compact low-dimensional representations or 
identifying characteristic groups of people, such as individuals with similar gait 
abnormalities. Reinforcement learning presents, for example, a promising approach 
to developing controllers for biomechanical models capable of generating physio-
logically feasible high-dimensional movements. ML-based analysis complements 
traditional biomechanical analysis well, as both have their own strengths and weak-
nesses. Overall, ML can support our understanding of human movement biome-
chanics and optimize movement patterns to prevent injuries and enhance human 
health and performance. 
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9.1 Introduction 

Movement is an important aspect of human life as it ensures physical mobility and 
thus interaction with the environment. Accordingly, human movement is an impor-
tant topic for many scientific disciplines, including biomechanics. Biomechanics 
is a scientific discipline that deals, among other things, with the modeling, simu-
lation and analysis of human movements to discover strategies to prevent injury, 
treat disease, and enhance performance (Seth et al., 2018). This requires an inter-
disciplinary research approach that profitably integrates knowledge from anatomy, 
physiology, physics, engineering, computer science and others. Today, biomechanics 
is a rapidly growing discipline that covers a wide variety of research questions and 
fields of application (e.g., Uchida and Delp (2021); https://isbweb.org/). 

In biomechanics, human movements are usually studied under laboratory condi-
tions with infrared camera systems, force plates and electromyography (EMG). 
The data collected using these systems, together with anthropometric data, form 
the input for biomechanical models that enable the calculation of additional vari-
ables that cannot simply be measured directly (e.g., joint angles, joint moments and 
joint forces). With this state-of-the-art approach it is possible to collect many high-
dimensional datasets in a short period of time. This approach is very sophisticated 
and accurate, but also very expensive and limited to the laboratory (Dorschky et al., 
2023). To enable a biomechanical analysis of human movements outside the labora-
tory, wearable sensors (e.g., IMUs) have been increasingly used in recent years (Díaz 
et al., 2020; Mundt, 2023). These sensors are worn close to the body, only slightly 
influence the wearer’s movements, and offer the possibility to study human move-
ments for extended periods of time in natural environments. These environments 
can be everyday day life or sports during training, rehabilitation and competition. 
Human movement analysis in these contexts is important for monitoring athletic 
performance, preventing injuries and managing disease progression (Preatoni et al., 
2022). Wearable sensors are less expensive and enable an ecologically valid data 
collection. However, there are also some challenges when using wearable sensors, 
such as sensor drifts, noise, calibration errors, movement artifacts, data transmis-
sion errors and unmeasured signals (e.g., ground reaction forces), which must be 
considered (Dorschky et al., 2023; Hafer et al., 2023). 

In principle, laboratory-based biomechanical measurement systems and wearable 
sensors can be used to collect many high-dimensional datasets. Depending on the 
research question (e.g., effect of gait training in knee osteoarthritis patients), the 
recorded or calculated biomechanical datasets (e.g., time series of knee joint moments 
during walking) are often reduced to a single discrete parameter (e.g., maximum 
knee adduction moment during the stance phase). Then statistical hypothesis testing 
is applied on such discrete parameters. With this well-founded approach, it cannot 
be completely ruled out that further important information is hidden in the high-
dimensional datasets in the form of complex non-linear relationships that would be 
relevant in the context of the research question. In such situations, traditional simple 
statistical analyses reach their limits. In contrast, the field of Machine Learning (ML)

https://isbweb.org/
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focuses explicitly on the development of algorithms that can recognize patterns in 
high-dimensional datasets and make predictions. 

The intersection of ML and biomechanics is precisely this topic that is the focus of 
this chapter. After a brief introduction to the topic of ML, the aim is to present selected 
applications in biomechanics according to the most important ML algorithms and 
thus give the reader an introductory overview of the topic. This chapter concludes 
with an outlook on future developments. 

9.2 Fundamentals of Machine Learning 

ML is a subfield of Artificial Intelligence (AI) that comprises among other things 
elements from statistics (e.g., Linear Regression and k-Means clustering), computer 
science (e.g., data structures and algorithms) as well as neuroscience (e.g., Neural 
Networks and learning). It involves the creation of algorithms that can automati-
cally learn from data rather than through explicit programming and improve their 
performance over time based on some performance measure (Alpaydin, 2020). 

ML includes three major learning paradigms, although hybrid forms exist 
(Alpaydin, 2020): (1) In supervised learning, algorithms are trained with input 
data which is associated with known output labels. Supervised learning includes 
classification (e.g., classification of gait pattern in patients with acute ACL injury; 
Sect. 9.3.1) and regression (e.g., prediction of knee joint forces based on wear-
able sensor data; Sect. 9.3.2), making it suitable for situations in which data with 
labeled features are available that define the meaning of the data. (2) Unsupervised 
learning involves discovering patterns in unlabeled data to understand the meaning 
of the data. Dimensionality reduction (e.g., reduction of high-dimensional kine-
matic data into a meaningful low-dimensional representation; Sect. 9.4.1) and clus-
tering (e.g., grouping of patients with similar gait compensating strategies due to hip 
osteoarthritis; Sect. 9.4.2) represent unsupervised learning, enabling insights into 
data organization and relationships. (3) Finally, reinforcement learning employs a 
different approach, instead of training with sample data as in supervised learning, 
an agent interacts with an environment to learn optimal actions through trial and 
error. By receiving feedback in the form of rewards or penalties, successful actions 
are “reinforced” adapting the behavior to maximize cumulative reward (e.g., opti-
mize prosthetic limb control based on feedback about movement success or failure; 
Sect. 9.5). 

When a ML algorithm is trained with data, a ML model is created. For example, 
the training of a regression algorithm (i.e., learn regression coefficients) creates a 
predictive model. When the predictive model is fed with new, unseen data, the model 
can provide a prediction based on the data used to train the model. However, this 
process of developing a ML model is similar regardless of the type of ML algorithm 
motivated previously. 

Figure 9.1 illustrates the primary steps involved in developing a ML model for 
biomechanical applications. It starts with data collection using various systems
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such as motion capture, wearable sensors, or EMG, to determine variables (e.g., 
joint angles, muscle activations) describing movement patterns on different levels. 
This is achieved through the application of signal processing and biomechanical 
modeling. Subsequently, when dealing with high-dimensional data, feature engi-
neering is employed to derive a lower-dimensional representation. In the next step, 
an appropriate ML algorithm (e.g., Decision Tree for classification) must be selected 
based on the biomechanical task and the characteristics of the data. During the 
training process on a training set of the data, model parameters are adjusted to 
minimize error or maximize performance. When training a ML model, it’s crucial 
to avoid both underfitting and overfitting. Underfitting arises when the model fails 
to adequately represent the training data, resulting in high training error, while over-
fitting occurs when the model excessively fits the training data (Dorschky et al., 
2023). Finally, a test set of the data, also named as validation set, is utilized for 
validation to assess the performance of the trained model and ensure generalization 
to unseen data. Common validation approaches in biomechanical ML applications 
are the K-Fold Cross-Validation (KFCV) and the Leave-One-Subject-Out Cross-
Validation (LOSOCV) (Dorschky et al., 2023; Halilaj et al., 2018). KFCV (e.g., 
10FCV) divides the dataset into k subsets or “folds” (e.g., k = 10), training the 
algorithm k times with each fold as the test set once and the remaining data as the 
train set. LOSOCV allocates each subject’s data solely to either training or test sets 
(i.e., the number of folds equals the number of subjects). Performance metrics are 
averaged across all iterations. Each approach has its strengths and limitations, and 
the choice depends on factors such as dataset size, computational resources, and the 
specific characteristics of the application scenario. 

Fig. 9.1 The primary steps involved in developing a ML model, along with a brief description, 
occur before the model can be applied for biomechanical purposes. PCA: Principal Component 
Analysis; SVM: Support Vector Machine
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9.3 Supervised Learning 

Supervised learning is a ML paradigm where the algorithm is trained on a labeled 
dataset to learn the relationship between input features and corresponding output 
labels (Alpaydin, 2020). The term label, which is also known as response or depen-
dent variable, refers to the output or outcome that an algorithm learns to predict 
(Halilaj et al., 2018). For example, in a ML model for diagnostics, it could represent 
disease status, while in a regression model, it signifies a biomechanical time series, 
such as the ground reaction force during a gait cycle. This entails using a dataset 
where both the input (e.g., joint kinematics) and the output (e.g., gait abnormalities) 
are known for model development. The goal is for the algorithm to learn a mapping 
function from the input to the desired output, enabling it to make predictions on new, 
unseen data. The labeled dataset would for example include instances of normal and 
abnormal gait, allowing the algorithm to discern patterns and make predictions about 
the gait characteristics of future individuals. 

Supervised learning encompasses two primary subtypes: classification 
(Sect. 9.3.1), which involves predicting discrete categories, and regression 
(Sect. 9.3.2), which involves predicting continuous values. 

9.3.1 Classification 

9.3.1.1 Foundations and Biomechanical Applications 

ML classification algorithms in biomechanics involve organizing high-dimensional 
data into meaningful groups or classes based on specific criteria, enabling analysis 
of human movement patterns. One example in biomechanics is the classification of 
muscle activation pattern, where classification models are trained to assess deficits in 
neuromuscular control after knee injury (Mohr et al., 2019). As described in Sect. 9.2, 
it begins with data collection and necessary calculations to obtain biomechanical 
variables of interest (e.g., joint angles, muscle activations). 

Next, relevant features are extracted either through biomechanical domain knowl-
edge or by utilizing dimensionality reduction on the raw or preprocessed data (see 
Sect. 9.4.1). The determined features serve as inputs for a classification algorithm. 
Common algorithms include Decision Trees, Support Vector Machines (SVM), and 
Artificial Neural Networks (ANN), which learn patterns and relationships in the 
data to accurately classify biomechanical data (Alpaydin, 2020; Halilaj et al., 2018). 
The algorithm selection can be a challenging part of developing good classifica-
tion models due to the variety of possible algorithms (Alpaydin, 2020; Halilaj et al., 
2018). Consequently, it may be worth testing different ones depending on the specific 
application, as not every algorithm will produce good results in every application 
(Richter et al., 2018).
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After being trained on a dataset with known input and output, the classification 
model should undergo model evaluation for performance and generalization (see 
Sect. 9.2). The most commonly used performance metric for classification models 
is the accuracy, also named as classification rate, as the rate of correct classifications 
made by the model (Halilaj et al., 2018). Other metrics, such as the sensitivity (also 
true positive rate), specificity (also true negative rate), area under the receiver oper-
ating characteristic (ROC) curve, or the confusion matrix, can also be included to 
facilitate assessment and comparison with alternative models [see Alpaydin (2020); 
Halilaj et al. (2018) for more details]. 

Once the classification model is validated, it can be used to systematically clas-
sify participants or patients based on biomechanical data in various fields of appli-
cation such as sports biomechanics and clinical biomechanics. Table 9.1 presents 
a selected overview of studies addressing classification scenarios in biomechanical 
applications. 

Table 9.1 Exemplary studies utilize classification to investigate human movement biomechanics 

Study Purpose Classification 
algorithm(s) 

Finding 

Christian et al. 
(2016) 

Classification and 
assessment of gait 
pattern in patients 
with acute ACL injury 

SVM ACL injury and healthy 
individuals were classified with 
100% accuracy, and the gait score 
of the injured group improved 
significantly after a therapeutic 
treatment 

Richter et al. 
(2018) 

Classification of 
movement strategies 
in change of direction 
tasks 

RF, Corr2Mean, 
SVM, regression, 
ANN and others 

Classification accuracy ranged 
from 82% (i.e., Corr2Mean) to 
53% (i.e., discriminant analysis) 

Mohr et al. 
(2019) 

Classification of 
muscle activation 
pattern according to 
knee injury history 

SVM 83% of the muscle activation 
patterns of the affected or 
unaffected leg were classified 
correctly, while females achieved 
100% accuracy 

Suda et al. 
(2020) 

Classification of 
foot–ankle movement 
patterns among 
runners at varying 
experience levels 

SVM Foot–ankle kinematic and kinetic 
patterns showed classification 
accuracies of over 85% for less, 
moderately, and experienced 
runners 

ACL anterior cruciate ligament; RF Random Forest; SVM Support Vector Machine; Corr2Mean: 
correlation to the cluster average; ANN Artificial Neural Network
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9.3.1.2 Exemplary Study: “Support Vector Machine-Based Gait 
Pattern Classification” 

Christian et al. (2016) conducted a study investigating the application of SVM in 
analyzing kinematic gait patterns of recently ACL-injured patients and assessing the 
impact of therapeutic intervention. By treating gait kinematics as high-dimensional 
data rather than discrete variables, a more comprehensive understanding of gait char-
acteristics can be achieved, aiding in the objective assessment of gait and reducing 
subjective bias in observational gait analysis. The study involved recording 3D trajec-
tories of 14 reflective markers of the lower body and thorax of seven male patients with 
acute unilateral anterior cruciate ligament (ACL) rupture and seven healthy males. 
Principal Component Analysis (PCA, Sect. 9.4.1) and Recursive Feature Elimina-
tion (i.e., algorithm to select a subset of features) were employed to extract features 
from 3D marker trajectories across the gait cycle, thus reducing dimensionality. In 
conjunction to this, a linear SVM was trained based on two Principal Components 
(PCs) to differentiate between the injured and healthy groups, with cross-validation 
performed to assess classification accuracy, yielding 100%. 

The SVM model (Alpaydin, 2020) can be interpreted as a hyperplane, essentially 
a line in 2D in the specific case due to the two PCs, that separates the two groups 
in a manner that maximizes the margin, i.e. the distance between the hyperplane 
and the closest points from each group. This hyperplane is the decision boundary 
created by the SVM algorithm. The points closest to this hyperplane are the support 
vectors, which essentially determine the position and orientation of the hyperplane. 
By adjusting the position and orientation of this hyperplane, the SVM algorithm 
finds the optimal boundary that best divides the two groups. 

Additionally, a classifier-oriented gait score was introduced by Christian et al. 
(2016) as a metric for gait quality. Therefore, the Euclidian distance along the normal 
vector of the hyperplane, indicating the direction of greatest separability, was calcu-
lated to rate the gait patterns. After manual therapeutic treatment, the injured group 
was re-evaluated using the SVM model. The results showed improved gait scores, 
indicating that the gait patterns of the injured group became closer to those of the 
healthy group. The improved gait score was consistent with the clinical rating of the 
patients. 

The study demonstrates that a SVM model for classification effectively detects 
gait alterations caused by an ACL injury, with findings aligning with clinical assess-
ments. Furthermore, the visualization capabilities facilitate the interpretation of key 
kinematic features, enhancing diagnostic integration.
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9.3.2 Regression 

9.3.2.1 Foundations and Biomechanical Applications 

ML regression algorithms focus on predicting numerical values within a continuous 
range (i.e., output) based on input data (Alpaydin, 2020). This involves training an 
algorithm to learn the relationships in labeled datasets, enabling it to make future 
predictions about unseen data. These algorithms serve as an essential instrument 
for tackling the distinct challenges posed by biomechanical variables, which are 
often complicated to assess and interpret due to the complex interplay of biological 
and environmental factors. Through its systematic examination of complex relation-
ships, regression provides a valuable framework for making predictions. For example, 
regression algorithms, when combined with wearable sensing, have recently been 
shown to achieve similar or even better performance for “in the wild” movement 
analysis compared to the use of traditional physics-based models (Dorschky et al., 
2023). 

The training of a regression algorithm starts with collected and often prepro-
cessed data, such as the determination of biomechanical variables of interest by using 
biomechanical modeling (e.g., joint forces). Various regression algorithms such as 
Linear Regression, Polynomial Regression, SVM Regression, or ANN can be applied 
depending on the complexity of the relationships being studied (Alpaydin, 2020). 
Studies have indicated that the requisite algorithm complexity varies according to the 
complexity of the movement; basic algorithms such as linear or polynomial regres-
sion have demonstrated efficacy in predicting joint angles and joint moments of one-
dimensional gym exercises, whereas more sophisticated algorithms have been neces-
sitated for the prediction during gait (Mundt, 2023). Independent of the complexity 
of the algorithm, they learn from the labeled dataset (i.e., supervised learning) to 
establish relationships between input data (e.g., joint angles) and the output data 
(e.g., joint forces). 

Following training, the regression model must undergo typical model evaluation to 
assess its performance and generalization (Sect. 9.2), which is crucial for determining 
the model’s reliability and effectiveness. After validating the model and confirming 
its accuracy within the desired scope, it can be applied to the specific biomechan-
ical task. Table 9.2 provides a selective overview of studies that utilized regression in 
biomechanical applications, with many focusing on predicting variables that are chal-
lenging to assess. Time series prediction using regression models plays a pivotal role 
in bridging the gap between laboratory-based research and real-world applications 
(Dorschky et al., 2023; Mundt, 2023). Both normal and pathological movement anal-
ysis across diverse domains, such as sports biomechanics and clinical biomechanics 
research, can benefit from joint angle, moment and force predictions.
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Table 9.2 Exemplary studies utilize regression to investigate human movement biomechanics 

Study Purpose Regression 
algorithm(s) 

Finding 

Argent et al. 
(2019) 

Prediction of hip and 
knee angle time series 
using a wearable 
sensor during lower 
limb rehabilitation 
exercises 

Linear 
Regression, 
Polynomial 
Regression, 
Decision Tree 
Regression, and 
RF 

Depending on the exercise 
different models performed best 
with an average RMSE across all 
exercises of 4.81° 

Stetter et al. 
(2019) 

Prediction of knee 
joint force time series 
based on wearable 
sensor data in sports 
movements 

ANN The predicted vertical knee joint 
forces showed good agreement (r 
≥ 0.81 and rRMSE ≤ 20.3%) 
with reference values for most 
movements 

Nicholson et al. 
(2022) 

Prediction of pitching 
arm kinetics to 
mitigate shoulder 
stress 

RF, SVM 
Regression, 
Gradient 
Boosting 
Machine, ANN, 
and Statistical 
Regression 

The Gradient Boosting Machine 
exhibited the lowest RMSE of 
0.013% BW*H for the elbow 
valgus torque and 1.7% BW for 
the shoulder distraction force 

Moghadam et al. 
(2023) 

Prediction of 
lower-limb joint 
kinematics, kinetics, 
and muscle force time 
series from wearable 
sensors 

RF, SVM 
Regression, 
Multivariate 
Adaptive 
Regression 
Spline, and 
CNN 

The RF and CNN outperformed 
the other algorithms: kinematics 
(RMSE: 3°–8°), kinetics (RMSE: 
0.05–0.27 Nm/kg), and muscle 
forces (rRMSE: 18–36%) 

RF Random Forest; SVM Support Vector Machine; ANN Artificial Neural Network; CNN Convo-
lutional Neural Network; r correlation coefficient; RMSE root mean square error; rRMSE relative 
RMSE; BW body weight; H height 

9.3.2.2 Exemplary Study: “Artificial Neural Network-Based Knee 
Joint Force Prediction” 

We conducted a study using ANN to predict knee joint forces (KJF) during sport 
movements based on data obtained from two wearable sensors (Stetter et al., 2019). 
The motivation was to overcome limitations in mobile assessment of internal knee 
joint loading, which are crucial for providing adequate injury prevention strate-
gies. Thirteen participants were instrumented with two wearable sensors (i.e., IMU) 
located on the right thigh and shank. Participants performed a variety of movements, 
including linear motions, changes of direction, and jumps, while IMU signals as well 
as full body kinematics and ground reaction forces were synchronously recorded. 
3D KJF were determined using a full-body biomechanical model. An ANN was then 
trained on a dataset combining IMU signals as ANN inputs and 3D KJF as outputs
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for all movements, learning the association between the IMU signals and the time 
series of KJF. 

The ANN model is illustrated in Fig. 9.2 and what happens during the training 
can be described as follows (Alpaydin, 2020): Weights, representing the strength of 
connections between neurons, and biases, which adjust the output along with the 
weighted sum of inputs, are initialized randomly. When the training starts, the input 
data are passed through the network, computing predictions. These predictions are 
compared with the actual outputs using a loss function to measure the disparity. 
Through backpropagation, gradients of the loss with respect to each weight and 
bias are computed, enabling adjustments to be made via an optimization algorithm. 
This iterative process, repeated for multiple rounds, called epochs, refines the algo-
rithm’s performance. To prevent overfitting, the algorithm’s performance is period-
ically assessed on a validation set, halting training early if improvement plateaus. 
This training process was repeated 13 times to perform a LOSOCV (see Sect. 9.2) 
and assess the models predictive performance on new, unseen data. 

The evaluation showed good agreement (correlation coefficients ≥ 0.81 and rela-
tive root mean square errors ≤ 20.3%) for the vertical KJF of the majority (11 out 
of 16) of the analyzed movements. Ten of the 16 movements showed comparable 
estimation accuracies (correlation coefficients ≥ 0.80 and relative root mean square 
errors ≤ 22.9%) for the anterior–posterior KJF. A pronounced drop in estimation 
accuracy for the medio-lateral KJF was observed (correlation coefficients ≤ 0.60 
and relative root mean square errors ≥ 27.7%). 

In summary, the study serves as an example of how ML regression combined with 
wearable sensors can be used to predict valuable biomechanical variables (i.e., KJF) 
for assessing joint loading. By addressing limitations in mobile KJF assessment, the 
study introduced new possibilities for in-field diagnosis potentially enhancing injury 
prevention strategies in the future.

Fig. 9.2 Artificial Neural Network (ANN) using wearable sensors data as input (i1 to i12, illustrated 
in green) in order to predict three-dimensional knee joint forces as the biomechanical output (o1 to 
o3, illustrated in red) (mod. Stetter, 2021). The ANN shows two hidden layers (lightgrey boxes), 
one with 250 (n1 to n250) and one with 100 neurons (n1 to n100), which are connected to the input 
and output nodes. The circles represent the nodes of the ANN 
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9.4 Unsupervised Learning 

Unsupervised learning is a ML paradigm where the algorithm analyzes unlabeled 
data to uncover inherent patterns or clusters without explicit guidance from prede-
fined output labels (Alpaydin, 2020). In biomechanics, this can for example involve 
examining joint kinematics data without predefined categories or labels, with the 
aim of discovering meaningful relationships (e.g. coupled angular movements) 
or identifying characteristic groups (e.g., people with gait abnormalities) within 
high-dimensional data. 

Unsupervised learning encompasses two primary subtypes: dimensionality reduc-
tion (Sect. 9.4.1), which aims to capture the essential features of the data, and 
clustering (Sect. 9.4.2), where data points are grouped based on similarities. 

9.4.1 Dimensionality Reduction 

9.4.1.1 Foundations and Biomechanical Applications 

Dimensionality reduction involves algorithms aimed at reducing the number of 
features or variables in a dataset while preserving its essential information (Alpaydin, 
2020). The process reflects the transformation of high-dimensional data into a 
lower-dimensional representation, making it more manageable for biomechanical 
analysis and ML model development (see Sect. 9.2). Over the past decades, two 
primary domains of biomechanical application of dimensionality reduction have 
been established:

(1) Reduction of high-dimensional biomechanical data into meaningful kinematic 
or muscle synergies following the idea of a modular control architecture to 
simplify control. This is motivated by the complexity of the musculoskeletal 
system, which is composed of approximately 700 muscles and 300 mechanical 
degrees of freedom (Bernstein, 1967). This highly redundant system enables 
us to achieve movement tasks in countless ways. A longstanding question in 
motor control and biomechanical research is how the central nervous system 
(CNS) resolves this redundancy. Furthermore, throughout our lives, we acquire 
numerous motor skills, such as walking or playing golf. This raises another key 
question in motor control and biomechanical research: how does the CNS repre-
sent this versatility? To provide answers to these fundamental scientific ques-
tions, dimensionality reduction algorithms come into play, as they offer a solu-
tion for extracting meaningful low-dimensional representations, often called 
synergies, from high-dimensional biomechanical data. Such synergies can exist 
either on a kinematic or muscular level (Daffertshofer et al., 2004; Tresch et al., 
2006), and they typically represent compositional elements working together 
to produce results not obtainable by any of the elements alone (Fig. 4.1). 
For example, when conducting a PCA on high-dimensional kinematic data of

https://doi.org/10.1007/<span class='convertEndash'>978-3</span>-<span class='convertEndash'>031-67256</span>-9_4
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Fig. 9.3 Illustration for the application of dimensionality reduction, i.e. principal component anal-
ysis (PCA), to represent the high-dimensional walking movement by low-dimensional kinematic 
synergies. A short description of the aspects of the whole movement represented by each kinematic 
synergy is provided 

straight-line walking, walking a 90° turn, and walking upstairs, the first five 
synergies explain more than 80% of the variance in a 54-dimensional space 
(18 markers × 3D coordinates) for each movement task (Stetter et al., 2020). 
Similar PCA-based approaches have been used to study postural control and to 
quantify technique in sports (Federolf, 2016). Alternative dimensionality reduc-
tion algorithms, such as nonnegative matrix factorization, have specifically been 
proven valuable in assessing the hypothesis that movements might be produced 
through the combination of a small number of muscle synergies (Tresch et al., 
2006) (Fig. 9.3).

(2) Feature engineering or selection as a step in developing a ML model to improve 
performance for classification, regression or clustering. The foundation for 
that lies in the fact that the complexity of any ML algorithm (e.g., SVM) 
depends on the number of inputs. This determines both the runtime and required 
memory for computation, as well as the number of examples required to train 
such an algorithm (Alpaydin, 2020). Feature engineering involves selecting 
a subset of significant features from a dataset and discarding the rest, often 
achieved through dimensionality reduction algorithms. By eliminating redun-
dant features, the complexity of ML models can be reduced and overfitting 
caused by highly correlated or noisy features can be mitigated (Mundt, 2023). 
Additionally, good feature engineering is an important step in developing a ML 
model from high-dimensional biomechanical data, as it can lead to high model 
performance even with simple algorithms, such as Logistic Regression (Halilaj 
et al., 2018). However, reducing data dimensionality while maintaining enough 
relevant information is a non-trivial challenge. For this purpose, features can be 
selected manually based on domain knowledge (e.g., peak knee angle during 
a cutting movement), or a data-driven approach is employed, such as calcu-
lating summary metrices of time series (e.g., average of the signal; Halilaj et al., 
2018). Additionally, more open-source toolboxes [e.g., Tsfresh (Christ et al.,
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2018), or Chameleon (Thilakeswaran et al., 2021)] including various dimen-
sionality reduction algorithms have become available and are frequently used 
in ML applications in biomechanics (Mundt, 2023). For example, the study 
by Moghadam et al. (2023) (see Table 9.2) used the Tsfresh toolbox to extract 
features from EMG and IMU signals before training regression algorithms using 
the most important features. It’s crucial to bear in mind that while automatic 
feature extraction techniques, such as the widely used PCA, can capture some 
of the data’s significance, they may generate features that are difficult to inter-
pret or lack relevance to a specific output (Halilaj et al., 2018). According to 
Halilaj et al. (2018), when combining features representing diverse biomechan-
ical quantities (e.g., knee angles and moments), it’s essential to rescale features, 
like z-score normalization, based on the intended ML algorithm for further 
analysis. 

Table 9.3 provides a selected overview of studies utilizing dimensionality reduc-
tion algorithms. It focuses on the two primary domains of biomechanical appli-
cation: meaningful reduction of high-dimensional biomechanical data and feature 
engineering.

9.4.1.2 Exemplary Study: “Dimensionality Reduction of Plantar Force 
Data for Assessing Effects of Different Running Shoes” 

Trudeau et al. (2015) conducted a study investigating the application of a novel 
method, i.e. combining PCA and SVM, for assessing the effects of different footwear 
interventions on plantar loading. A PCA was used to extract different loading features, 
i.e. reducing the highly dimensional plantar loading patterns to its most impor-
tant information, from the stance phase of running. Afterwards, a SVM model 
(see Sect. 9.3.1) was used to determine whether and how these loading features 
were different across three shoe conditions varying in weight, cushioning and sole 
construction. Plantar pressure data during the stance phase of ten running strides 
were recorded for each shoe condition from 42 active recreational runners using an 
insole consisting of 99 force cells (represented by a cell matrix of 105 elements, with 
six elements set to zero). 

To begin the dimensionality reduction, a matrix with 126,000 rows (i.e., 42 partic-
ipants × 3 shoes × 10 trials × 100 time points) and 105 columns (i.e., force cells) 
was created and standardized by subtraction of the mean force-vector of each shoe 
across trials and participants. A PCA was applied to this input matrix. This process 
can be described as follows (Alpaydin, 2020): First, the covariance matrix is calcu-
lated, summarizing the relationships between variables (i.e., force cells) by indicating 
how much they vary together. Next, PCA performs eigenvalue decomposition on 
the covariance matrix to find its eigenvectors and eigenvalues. Eigenvectors repre-
sent the directions of maximum variance in the data, while eigenvalues indicate 
the magnitude of variance along these directions. The eigenvectors are ranked by 
their corresponding eigenvalues, with the highest eigenvalue representing the first
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Table 9.3 Exemplary studies utilize dimensionality reduction to investigate human movement 
biomechanics 

Study Purpose Dimensionality 
reduction algorithm(s) 

Finding 

Daffertshofer et al. 
(2004) 

Application of PCA for 
dimensionality 
reduction of 
high-dimensional 
kinematic and 
electromyography data 

PCA PCA reduced both 
kinematic and 
electromyography data 
into meaningful 
low-dimensional 
components 

Tresch et al. (2006) Comparison of 
different 
dimensionality 
reduction algorithms 
on electromyography 
data to extract muscle 
synergies 

PCA, FA, ICA, and  
NMF 

FA, ICA and NMF 
robustly identify 
muscle synergies and 
were similar in the 
solution they found 

Phinyomark et al. 
(2012) 

Dimensionality 
reduction as 
preprocessing step for 
hand motion 
classification 

Different LDAs, and 
PCA 

Extended LDA-based 
algorithms led to better 
classification results as 
without dimensionality 
reduction or using PCA 

Christ et al. (2018) Dimensionality 
reduction as 
preprocessing step for 
Machine Learning 
model development 

63 time series 
characterization 
algorithms to extract 
meaningful features 

A toolbox for feature 
selection from time 
series on basis of 
statistical hypothesis 
tests 

PCA Principal Component Analysis; FA Factor Analysis; ICA Independent Component Analysis; 
NMF Nonnegative Matrix Factorization; LDA Linear Discriminant Analysis; ML Machine Learning

PC. Subsequent eigenvectors represent orthogonal directions of decreasing variance. 
Finally, PCA projects the original data onto the new orthogonal axes defined by the 
PCs. This transformation results in a lower-dimensional representation of the data, 
known as the PC scores, capturing the most important patterns of variation. In the 
study’s application, the dimensionality was reduced to 35 PCs reflecting 99% of the 
data’s variance and combined with three residual vectors for further analysis. 

Following dimensionality reduction, pairwise linear SVM algorithms were 
applied to characterize systematic differences in force patterns between the shoe 
conditions by investigating the normal vector of the hyperplane (see Sect. 9.3.1). A 
LOSOCV was performed, and classification accuracies were higher than 94% for 
the three pairwise SVM models. Characteristic differences (e.g., greater force at the 
forefoot) between shoes were quantified and interpreted based on the PC scores, i.e. 
plantar loading features. 

The study demonstrates that dimensionality reduction is a helpful step in ML 
model development to make high-dimensional data interpretable, as well as to 
successfully apply classification algorithms. From a practical perspective, this study 
serves as an example of how ML can assist in selecting appropriate footwear or
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guiding footwear interventions for specific populations such as neuropathic patients 
(Trudeau et al., 2015). 

9.4.2 Clustering 

9.4.2.1 Foundations and Biomechanical Applications 

Clustering refers to ML algorithms that involve grouping similar data points together 
based on patterns or similarities within a dataset (Alpaydin, 2020). The objective of 
clustering is to discover inherent groupings in the data, where members within the 
same cluster share more similarities with each other than with those in other clus-
ters. In the field of biomechanics, a common objective is to determine the optimal 
intervention tailored to individuals, such as selecting the ideal footwear or opti-
mizing training protocols. While this task may sound almost trivial, it becomes quite 
challenging due to the fact that individuals respond to a given intervention in a 
person-dependent manner, resulting in the same intervention being beneficial for 
one person but not for another (Hoerzer et al., 2015). These individual responses 
have, for example, been observed across various interventions, including footwear, 
running surfaces, and orthotics (Hoerzer et al., 2015). Consequently, determine the 
most suitable intervention from a data analysis standpoint is far from straightforward. 
Exploratory data analysis, such as clustering movement patterns of individuals who 
react similarly to a specific intervention (e.g., a specific therapeutic treatment) or 
product (e.g., a running shoe), is a helpful concept to overcome this challenge. 

The process starts with data preparation, including the determination of vari-
ables of interest using biomechanical modeling, for example joint kinematics. 
Subsequently, relevant features can be selected or extracted from the often high-
dimensional dataset, which for example includes kinematic data from multiple joints 
and dimensions, with dimensionality reduction algorithms (see Sect. 9.4.1). Next, a 
clustering algorithm is chosen based on the dataset’s characteristics and the specific 
biomechanical task. Typical algorithms are k-Means, Hierarchical Clustering, or 
Self-Organizing Maps. These algorithms partition the dataset into clusters of similar 
data points according to the underlying clustering approach (Xu & Tian, 2015). A 
common approach is centroid- or partition-based clustering (e.g., k-Means), which 
works on the closeness (e.g., Euclidean distance) of the data points to chosen central 
values. Connectivity-based clustering, such as Hierarchical Clustering, assigns data 
points to clusters based on their distance (e.g., Euclidean distance) to each other. Data 
points that are close to each are grouped into the same cluster. Further approaches 
exist, such as distribution-based clustering that uses statistical distributions (e.g., 
Gaussian distribution) to cluster the data (Xu & Tian, 2015). Self-Organizing Maps 
are an alternative clustering approach. They are ANN that project high-dimensional 
data on a low-dimensional grid of nodes, typically two-dimensional, enabling the 
identification of groups of similar data points (Kohonen, 2001). Once the clustering 
is complete, the quality of the clusters is evaluated using metrics such as silhouette
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Table 9.4 Exemplary studies utilize clustering to investigate human movement biomechanics 

Study Purpose Clustering 
algorithm(s) 

Finding 

van Drongelen 
et al. (2021) 

Grouping of 
patients with 
similar gait 
compensating 
strategies due to 
unilateral hip OA 

Hierarchical 
Clustering, and 
k-Means 

Two clusters of patients with unilateral 
hip OA were identified, showing 
different deviations from healthy 
controls in spatio-temporal, kinematic, 
and kinetic parameters 

Herzog et al. 
(2023) 

Grouping of 
strategies during 
sit-to-stand and 
stand-to-sit 
movements in the 
context of rollator 
usage 

Hierarchical 
Clustering, and 
k-Means 

Three strategies for sit-to-stand 
(forward leaning, vertical rise, hybrid) 
and three strategies for stand-to-sit 
(backward lowering, vertical lowering, 
hybrid) were identified, each with two 
additional strategies observed in 
challenging balance conditions 

Giles et al. 
(2023) 

Grouping of 
different COD 
movement 
strategies in 
professional 
tennis 

Hierarchical 
Clustering 

Five clusters of different COD 
movement strategies were identified: 
cutters, gear changers, lateral changers, 
balanced changers, and passive 
changers 

David and 
Barton (2024) 

Objective 
assessment of 
individual 
movement 
strategies related 
to injury risk in 
athletes 

Self-Organising 
Maps 

Athletes with significantly different 
movement strategies when 
sidestepping were identified, with one 
strategy clearly associated with ACL 
injury risk factors 

OA osteoarthritis; COD change of direction; ACL anterior cruciate ligament 

score or within-cluster sum of squares (Halilaj et al., 2018). This evaluation helps 
assess how well and robust the clusters represent the underlying structure of the 
data. Finally, the clusters can be interpreted and visualized using techniques like 
scatter plots, or dendrograms to gain insights into the data’s patterns. Clustering has 
been used in various biomechanical fields of application ranging from sports [e.g., 
grouping of individuals based on running kinematics (Hoerzer et al., 2015)] to clin-
ical applications [e.g., grouping of distinct walking patterns in cerebral palsy (Roche 
et al., 2014)]. Table 9.4 presents a selected overview of studies that utilized clustering 
to investigate human movement biomechanics. 

9.4.2.2 Exemplary Study: “Clustering to Identify Gait Compensating 
Strategies Due to Hip Osteoarthritis” 

In a study by van Drongelen et al. (2021), clustering was utilized to group patients 
with unilateral hip osteoarthritis based on gait adaptations. These patients often show
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deficits in gait biomechanics even after total hip replacement surgery. A preoperative 
identification of patients at risk for persistent movement abnormalities after joint 
replacement is helpful for adapting or individualizing the rehabilitation program. 
Improved rehabilitation could for example prevent the development of degenerative 
joint disease in neighboring joints. The conducted analysis consisted of three consec-
utive steps: first, dimensionality reduction of gait kinematics; second, clustering the 
data of hip osteoarthritis patients (n = 51); and third, statistically comparing the gait 
biomechanics of the patients in the different clusters with healthy controls (n = 46). 

PCA was used for dimensionality reduction, resulting in three PCs explaining 
70% of the thorax, pelvis, hip, knee and foot kinematic gait cycle time series data. 
Hierarchical clustering based on the scores of the first three PCs was used for deter-
mining the appropriate number of clusters, and involved assessing the scree plots and 
silhouette coefficients. The scree plot illustrates the within-cluster sum of squares 
plotted against the number of clusters. As the number of clusters increases, the sum 
of squares decreases, but at a declining rate. The optimal number of clusters is indi-
cated at the “elbow” of the curve, where the rate of decrease slows and the curve 
flattens. Silhouette coefficients measure the similarity of objects within clusters, 
when compared to points in other clusters, helping to select the number of clusters 
with the highest average silhouette score. These analyses helped identify the optimal 
number of two clusters. Using such tests is important to ensure that additional algo-
rithms that determine cluster centers best represent the underlying structure of the 
data (Halilaj et al., 2018). 

Subsequently, the k-Means algorithm with the defined number of two clusters 
was applied to identify the patients in the different subgroups. Thereby, the algo-
rithm starts by randomly selecting centroids for each cluster, then assigns data 
points (i.e., patients) to the nearest centroid, updates centroids based on the mean of 
assigned data points, and iterates until convergence, meaning that the centroids no 
longer change significantly (Alpaydin, 2020). The goal is to minimize within-cluster 
variance, making data points within clusters similar and those in different clusters 
dissimilar. 

The results of the study revealed that the clusters were characterized by differ-
ences in peak hip extension, with the cluster exhibiting less hip extension deviating 
significantly more from healthy controls. At least one year after total hip replace-
ment, the gait pattern approached that of healthy individuals, but was not completely 
normalized, as both clusters still exhibited deviations from healthy controls. Overall, 
the study demonstrates that clustering is useful for identifying subgroups of hip OA 
patients exhibiting different types of gait adaptations. In the future, preoperative 
gait assessment and allocation to characteristic groups may help tailor rehabilitation 
programs for better postoperative outcomes.
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9.5 Reinforcement Learning 

Reinforcement learning is as ML paradigm based on the idea of an agent learning to 
take actions in an environment based on feedback in form of rewards and penalties to 
achieve specific goals (Alpaydin, 2020). In the context of biomechanics, reinforce-
ment learning has traditionally played a minor role (Halilaj et al., 2018; Wu et al., 
2021). However, with advancements in measurement technology, musculoskeletal 
modeling, and the emergence of technologies for ecological momentary assessment, 
such algorithms are becoming increasingly popular for addressing biomechanical 
research topics. For instance, reinforcement learning can optimize prosthetic limb 
control by enabling the algorithm to adapt its control strategy based on feedback 
about movement success or failure (Wen et al., 2020). Efforts to model control and 
biomechanics of movement have been ongoing in both the computer science and 
biomechanics communities (Halilaj et al., 2018; Seth et al., 2018). The simulation 
of physiologically accurate movement in diverse scenarios can support practitioners 
in tasks such as surgical planning and prototyping of assistive devices. However, 
existing methods are constrained by large and complex solution spaces of biome-
chanical models, restricting their applicability (Kidziński et al., 2018). Reinforce-
ment learning presents a promising approach to develop model controllers capable 
of generating physiologically feasible movements in high-dimensional biomechan-
ical systems (Kidziński et al., 2018). Additionally, reinforcement learning can offer 
alternatives to supervised ML or traditional analysis in biomechanics by estimating 
joint moments from electromyography or joint kinematics (Wu et al., 2021). 

Overall, reinforcement learning in biomechanics holds new opportunities for opti-
mizing movement patterns, personalized rehabilitation programs, and informing the 
development of adaptive assistive devices. Future research in this area holds the 
potential to significantly enhance human movement biomechanics and associated 
applications. 

9.6 Summary and Outlook 

The aim of this chapter was to provide an introductory overview of the application 
of ML in the context of human movement biomechanics. After a brief introduction 
to the topic in Sect. 9.2, examples of applications in biomechanics related to the 
three major ML paradigms of supervised learning (Sect. 9.3), unsupervised learning 
(Sect. 9.4), and reinforcement learning (Sect. 9.5) were presented. The focus was on 
ML algorithms related to the first two paradigms, which have primarily been used in 
biomechanics so far. In summary, ML complements traditional biomechanical anal-
ysis approaches by enhancing their analysis capabilities for high-dimensional data. In 
many applications of ML in biomechanics, the overall value is most likely dependent 
on both traditional biomechanical analysis steps and the quality of the ML model 
relevant to the specific biomechanical task. For example, the applied biomechanical
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measurement systems, signal processing procedures, and modeling techniques used 
to generate training data for a ML algorithm can significantly impact the outcome. 
In addition, interpreting the results of a ML model often requires incorporating 
biomechanical findings, which may have been derived using classic biomechanical 
approaches. 

Looking ahead, the intersection of ML and biomechanics promises to enhance 
human movement analysis. ML algorithms enable researchers to extract nuanced 
patterns from high-dimensional biomechanical data, fundamentally altering our 
capabilities for analyzing human movement. One significant trend on the horizon 
is the deeper integration of advanced ML algorithms, such as Deep Learning. For 
example, Convolutional Neural Networks (CNN), ANN with many processing layers, 
are a type of Deep Learning algorithm (Alpaydin, 2020). In CNN, convolutional 
layers can automatically extract relevant features from the data. These layers prove 
effective for time series wearable sensor data due to the inherent correlation across 
both time and sensor axes (Dorschky et al., 2023). However, caution is warranted, as 
Deep Learning may only be appropriate when either a large dataset or a pretrained 
network is available (Halilaj et al., 2018). 

The application of ML extends to real-time monitoring and feedback systems. By 
harnessing wearable sensors and biomechanical models, personalized feedback loops 
can be created to optimize movement patterns, prevent injuries, and enhance perfor-
mance across various domains, including sports, rehabilitation, and ergonomics (Díaz 
et al., 2020; Dorschky et al., 2023). Interdisciplinary teams from diverse backgrounds 
and data sharing initiatives are expected to drive innovation in the field. As the 
prevalence of ML continues to grow, it’s essential to establish good practices for 
conducting and reporting research at the intersection of biomechanics and ML, inte-
grating important aspects such as rigorous model evaluation. This ensures that the 
conclusions drawn are valid and reproducible (Halilaj et al., 2018). 

As ML becomes integrated into biomechanics, trust and confidence in the results 
are crucial for user acceptance. Explainable ML can help achieve this by making 
ML algorithms more transparent and traceable, specifically by developing white-
box models instead of black-box models, for instance, through ML interpretability 
methods (Linardatos et al., 2021). Additionally, enhancing transparency would assist 
in practical solutions to meet legal requirements, such as the General Data Protection 
Regulation (GDPR) of the European Union, which mandates the traceability of ML 
models. 

In conclusion, the outlook for ML in biomechanics is promising, with the potential 
to transform our understanding of human movement biomechanics and optimize 
movement patterns, prevent injuries, and enhance human health and performance. 
Through the responsible integration of advanced technology and collaborative efforts, 
we can unlock new insights that have far-reaching implications for human well-being.



158 B. J. Stetter and T. Stein

References 

Alpaydin, E. (2020). Introduction to Machine Learning (Vol. Fourth edition). The MIT Press. 
Argent, R., Drummond, S., Remus, A., O’Reilly, M., & Caulfield, B. (2019). Evaluating the use 

of machine learning in the assessment of joint angle using a single inertial sensor. Journal of 
Rehabilitation and Assistive Technologies, 6, 2055668319868544. https://doi.org/10.1177/205 
5668319868544 

Bernstein, N. (1967). The co-ordination and regulation of movements. Pergamon Press. 
Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time series feature extraction on 

basis of scalable hypothesis tests (tsfresh—a python package). Neurocomputing, 307, 72–77. 
https://doi.org/10.1016/j.neucom.2018.03.067 

Christian, J., Kröll, J., Strutzenberger, G., Alexander, N., Ofner, M., & Schwameder, H. (2016). 
Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury. 
Clinical Biomechanics, 33, 55–60. https://doi.org/10.1016/j.clinbiomech.2016.02.008 

Daffertshofer, A., Lamoth, C. J. C., Meijer, O. G., & Beek, P. J. (2004). PCA in studying coordination 
and variability: A tutorial. Clinical Biomechanics, 19(4), 415–428. https://doi.org/10.1016/j.cli 
nbiomech.2004.01.005 

David, S., & Barton, G. J. (2024). Characterization of movement patterns using unsuper-
vised learning neural networks: Exploring a novel approach for monitoring athletes during 
sidestepping. Journal of Sports Sciences. https://doi.org/10.1080/02640414.2023.2300570 

Díaz, S., Stephenson, J. B., & Labrador, M. A. (2020). Use of wearable sensor technology in gait, 
balance, and range of motion analysis. Applied Sciences, 10(1). https://doi.org/10.3390/app100 
10234 

Dorschky, E., Camomilla, V., Davis, J., Federolf, P., Reenalda, J., & Koelewijn, A. D. (2023). 
Perspective on in the wild movement analysis using machine learning. Human Movement 
Science, 87, 103042. https://doi.org/10.1016/j.humov.2022.103042 

Federolf, P. A. (2016). A novel approach to study human posture control: “Principal move-
ments” obtained from a principal component analysis of kinematic marker data. Journal of 
Biomechanics, 49(3), 364–370. https://doi.org/10.1016/j.jbiomech.2015.12.030 

Giles, B., Peeling, P., Kovalchik, S., & Reid, M. (2023). Differentiating movement styles in profes-
sional tennis: A machine learning and hierarchical clustering approach. European Journal of 
Sport Science, 23(1), 44–53. https://doi.org/10.1080/17461391.2021.2006800 

Hafer, J. F., Vitali, R., Gurchiek, R., Curtze, C., Shull, P., & Cain, S. M. (2023). Challenges 
and advances in the use of wearable sensors for lower extremity biomechanics. Journal of 
Biomechanics, 157, 111714. https://doi.org/10.1016/j.jbiomech.2023.111714 

Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., & Delp, S. L. (2018). 
Machine learning in human movement biomechanics: Best practices, common pitfalls, and 
new opportunities. Journal of Biomechanics, 81, 1–11. https://doi.org/10.1016/j.jbiomech.2018. 
09.009 

Herzog, M., Krafft, F. C., Stetter, B. J., d’Avella, A., Sloot, L. H., & Stein, T. (2023). Rollator 
usage lets young individuals switch movement strategies in sit-to-stand and stand-to-sit tasks. 
Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43401-6 

Hoerzer, S., von Tscharner, V., Jacob, C., & Nigg, B. M. (2015). Defining functional groups based 
on running kinematics using self-organizing maps and support vector machines. Journal of 
Biomechanics, 48(10), 2072–2079. https://doi.org/10.1016/j.jbiomech.2015.03.017 
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Chapter 10 
Artificial Intelligence-Based Motion 
Capture: Current Technologies, 
Applications and Challenges 

Melanie Baldinger, Kevin Lippmann, and Veit Senner 

Abstract Markerless motion capture has emerged as a significant technology in 
the research and application of motion capture systems. Unlike traditional marker-
based approaches, markerless motion capture enables precise tracking and analysis 
of movements without the need for markers placed on the body. This offers a range of 
advantages, including improved user-friendliness, greater freedom of movement, and 
broader applicability in various environments, both within laboratories and outdoors. 
The aim of this chapter is to provide an overview of current markerless motion 
capture technologies, as well as their validity and applications in sports and health. 
We complement this literature review by providing two practical examples of our 
own research and summarize the main challenges that need to be tackled in future 
research. 

Keywords Markerless Motion Capture · Pose Estimation · Depth Camera ·
Openpose · Kinect · Validation · Application 

10.1 Markerless Motion Capture 

Motion capture (MoCap) is used to study human movements in biomechanics, 
sports science, and clinical applications. MoCap helps analyze and optimize the 
performance of any kind of athletic movement, e.g. sprint start analysis or running 
analysis. Furthermore, motion analysis can be used to determine asymmetries and 
abnormalities in movements or for functional screening, balance, and agility testing. 
Rehabilitation or clinical applications include gait analysis, long-term monitoring of 
rehabilitation processes, or alteration in gait. 

Current gold standard solutions use a marker-based approach where the subject 
is equipped with artificial markers on prominent anatomical landmarks. Movements
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are recorded using a set of video cameras in a calibrated movement space. Dedicated 
MoCap software tracks the markers and provides tools for kinematic analysis. This 
classical marker-based motion analysis is a highly specialized task that comes with 
constraints and challenges. It requires elaborate preparation of the measurement 
space as well as of the subject to be measured. A large number of high-precision 
and usually high-speed cameras that are calibrated and synchronized is necessary. 
Constant lighting conditions need to be ensured. In this way, the measurement is 
usually restricted to indoors and to a limited measurement volume. Therefore, the 
demands on the infrastructure result in a very costly procedure. Furthermore, the 
placement of the markers on subject’s anatomical landmarks requires an expert to 
ensure the optimal placement. Light reflections, occlusions, and markers that are too 
close to each other can cause problems in tracking the markers, leading to inaccurate 
coordinates. 

In recent years, markerless technologies have evolved in the field of MoCap. 
Considering the constraints and prerequisites of marker-based MoCap it becomes 
evident that markerless MoCap technologies could help overcome these challenges. 
They bear the potential to be used outside the laboratory, for everyday training envi-
ronments, or during athletic competitions. Colyer et al. (2018) provide an overview 
of the evolution of motion analysis towards markerless systems that appear to be 
promising for motion analysis in daily training or competitions. 

Three main technologies of markerless MoCap systems can be distinguished: 
wearable-based MoCap, typically consisting of Inertial Measurement Units 
(IMUs), Depth Cameras that capture three-dimensional data using depth infor-
mation, and so-called Pose Estimation algorithms that rely on computer vision. 
Figure 10.1 shows examples of these three technologies. 

In the following section, all three technologies are briefly described. However, the 
focus of this chapter lies on methods using Artificial Intelligence, where we want to 
go further into detail.

Fig. 10.1 Examples of markerless motion capture technologies: a Full body suit for IMU 
MoCap (Retrieved 07.02.2024 from https://www.movella.com/products/motion-capture/mvn-ana 
lyze). b 3D models of human subjects recorded and tracked using a Microsoft Kinect (Retrieved 
07.02.2024 from https://docs.microsoft.com/de-de/azure/kinect-dk/body-sdk-setup). c Skeleton 
tracking of the OpenPose pose estimation algorithm (Cao et al., 2021) 

https://www.movella.com/products/motion-capture/mvn-analyze
https://www.movella.com/products/motion-capture/mvn-analyze
https://docs.microsoft.com/de-de/azure/kinect-dk/body-sdk-setup
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10.1.1 IMU 

IMUs contain a combination of accelerometers, gyroscopes, and magnetometers. 
Using the gyroscopes, the spatial orientation (position) of the body can be obtained 
in the form of three angular components (e.g., in Euler angles). Using the three 
acceleration components, the position-time curve can be calculated for all Cartesian 
spatial directions. Magnetometers are integrated to provide the orientation in the 
magnetic field of the earth (Poitras et al., 2019). A few specialized manufacturers, 
such as Xsens (XSens Technologies B.V.) or Rokoko (Rokoko Electronics), have 
developed wearable IMU full-body tracking systems for MoCap (see Fig. 10.1a). 

Wearables or IMU sensors, in particular, offer, to some extent, advantages over 
marker-based MoCap systems. They are portable and do not require a lab envi-
ronment, cameras or marker placements and in this way, enable the monitoring of 
athletes in real sports environments. Due to their small and lightweight design, they 
are unobtrusive for sports movements (Adesida et al., 2019). IMUs are potentially 
low cost and provided by numerous commercial suppliers. However, they also come 
with restrictions and challenges. Measurement accuracy of joint angles is highly 
dependent on the precise positioning of the sensors. Furthermore, ferromagnetic 
objects can disturb measurements, and a potential loss of signal during recording can 
occur when transferring the data wirelessly or due to interference with other devices 
(Adesida et al., 2019). Another issue to consider with IMUs is drift. Positional data is 
calculated via integration from acceleration data. Therefore, small deviations in the 
acceleration signal can result in considerable deviations in positional data, especially 
when integrating over a long period of time (Adesida et al., 2019). 

10.1.2 Depth Camera 

The second markerless MoCap technology we want to introduce is the depth camera 
or time-of-flight (TOF) camera. These cameras can capture three-dimensional models 
using depth information, which is based on the time-of-flight principle. A light 
impulse sent from the recording system is reflected by the object and sent back to the 
image sensor of the camera. Using the time that passes until the light is detected, the 
distance of the object to the camera can be inferred. In this way, the sensor captures 
the distances of each point in space from the camera instead of or in addition to the 
RGB data (Colyer et al., 2018). In this way, a three-dimensional image is created. 
One example of a TOF-camera is the Microsoft Kinect. A detailed description of 
the first and the second version of the Kinect is provided by Clark et al. (2019). 
In 2019 the latest version, the Azure Kinect, was introduced. Using the dedicated 
(human) body tracking algorithm (Shotton et al., 2013), a three-dimensional skeleton 
consisting of 32 joints can be extracted. From there on, kinematic parameters can be 
derived. Figure 10.1b shows an example of two 3D models tracked using the Kinect 
camera.
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10.1.3 Pose Estimation 

The third technology comes from the field of computer vision. Videos or images are 
digitally analyzed using image processing algorithms that rely on Artificial Intelli-
gence. These so-called human pose estimation algorithms seek to predict position 
and orientation of body segments in images, thereby facilitating automated tracking 
and analysis of human kinetics and kinematics. 

One of the big advantages of Pose Estimation is its ease of use. The algorithms 
only need video data or images as input for tracking and estimation of body poses. 
There is no need for specialized cameras or equipment, for example depth cameras, 
or instrumentation of the subject as in marker-based MoCap or IMU-based MoCap. 
This is a tremendous advantage in terms of financial and timely matters. Additionally, 
movements outside the lab can be recorded and analyzed. In this way, more diverse 
movements and sports can be studied. Moreover, even historical video data or videos 
from crashes can be studied. Hence, MoCap and motion analysis are available for a 
broader range of research questions, applications, and even for use in everyday life. 

10.1.3.1 How Pose Estimation Works 

Neural Networks and Deep Learning techniques are typically used for pose esti-
mation. These models are trained on large datasets of images or videos containing 
annotated human poses, such as the Microsoft Common Objects in Context (COCO) 
Dataset (Lin et al., 2014) or the Max Planck Institute for Informatics (MPII) Human 
Pose Dataset (Andriluka et al., 2014). 

Single-Person Pose Estimation detects the pose of a certain person in an 
image. The approaches can be distinguished between regression-based methods 
and heatmap-based methods depending on the key point detection (Dang et al., 
2019; Zheng et al., 2023). The former method regresses key points directly by 
learning a mapping using a Deep Neural Network. In the heatmap-based approach, 
a heatmap with the key point existence probability is generated first. Key points are 
then predicted based on those heatmaps. A detailed overview of both methods is 
provided by Zheng et al. (2023). 

In Multi-Person Pose Estimation body poses of more than one person can be 
tracked in the same image. Two main methodologies can be distinguished: top-down 
and bottom-up. In the top-down pipeline, the person is detected first. Key points 
of the body are estimated within the detected bounding box in the second step. In 
contrast, the bottom-up approach estimates all body joints first and groups them to 
form a pose of a person (Dang et al., 2019). Both pipelines are described in detail by 
Zheng et al. (2023). 

Human body models are then usually represented as one of three types: skeleton 
model, planar model and volume model. The skeleton model is composed of a set of 
joints connected with each other. The planar model consists of different rectangles
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organically connected and the volume model is represented by geometric shapes (Ji 
et al., 2023). 

The most commonly used Deep Learning methods applied for 2D pose estima-
tion in the literature are: CNNs (Convolutional Neural Networks), GANs (Genera-
tive Adversarial Networks), GNNs (Graph Neural Networks), and RNNs (Recurrent 
Neural Networks) (Samkari et al., 2023). 

A number of reviews investigated different 2D and 3D pose estimation algorithms 
evolving in recent years (Dang et al., 2019; Desmarais et al., 2021; El Kaid & Baïna, 
2023; Ji et al., 2023; Munea et al., 2020; Samkari et al., 2023; Wang et al., 2021a, 
2021b). 

10.1.3.2 Examples of Pose Estimation Algorithms 

OpenPose 

One of the most prominent human pose estimation approaches is OpenPose (Cao 
et al., 2021). It is an open-source system that enables multi-person 2D pose estimation 
in images and videos or in real-time. This skeleton-based approach estimates 25 key 
points based on heatmaps and so-called Part Affinity Fields (PAFs). PAFs are sets of 
2D vector fields that encode the position and orientation of body segments (Cao et al., 
2021). Examples of movements tracked using OpenPose are shown in Fig. 10.2. 

DeepPose 

DeepPose is a single person pose estimation model and was one of the first human 
pose estimation approaches based on Deep Neural Networks (DNNs). Joint coordi-
nates as key points are estimated by a cascade of DNN-based regressors (Toshev & 
Szegedy, 2014).

Fig. 10.2 Example of different movements tracked using the OpenPose algorithm 
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AlphaPose 

Another example is AlphaPose. It is a regional multi-person pose estimation (RMPE) 
framework that is able to handle inaccurate human bounding boxes (Fang et al., 2017). 

DensePose (Mask R-CNN) 

DensePose represents a different approach in pose estimation. It aims to estimate the 
surface of the whole human body instead of joints as key points. The DensePose-
COCO dataset is a manually annotated human body surface. Based on that, a 
DensePose-R-CNN (Region-based Convolutional Neural Network) is trained for 
pose estimation (Guler et al., 2018). 

Theia3D 

An example of commercial software for 3D human pose estimation based on Deep 
Learning techniques is Theia3D (Theia Markerless Inc., Kingston, ON, Canada). This 
software can be used together with standard commercial motion capture cameras and 
systems. 

10.2 Validity of Markerless Motion Capture 

10.2.1 Pose Estimation 

10.2.1.1 Evaluation Against Datasets 

Pose estimation algorithms can be validated against existing (annotated) datasets, 
such as the COCO Dataset (Lin et al., 2014) or the MPII Human Pose Dataset 
(Andriluka et al., 2014). 

A number of metrics and datasets to evaluate the accuracy of markerless MoCap 
have been proposed in the literature (Badiola-Bengoa & Mendez-Zorrilla, 2021; 
Dang et al., 2019; Desmarais et al., 2021; El Kaid & Baïna, 2023; Ji et al., 2023; 
Samkari et al., 2023). Some of these metrics include:

• Percentage of Correct Parts (PCP): determine if a body segment (limb) is correct.
• Percentage of Correct Keypoints (PCK): determination of correctness of indi-

vidual joints.
• Object Keypoint Similarity (OKS): measures how close the predicted keypoint is 

to the ground truth.
• Mean Per Joint Position Error (MPJPE): mean of Euclidean distance between 

estimated and ground truth coordinates.
• Mean Per Joint Velocity Error (MPJVE): the first derivative of the pose sequence.
• Mean Per Joint Angle Error (MPJAE): a measure of angle errors of joint segments. 

Desmarais et al. (2021) and Zheng et al. (2023) report and discuss the accuracy of 
the best performing state-of-the-art markerless approaches against common datasets.
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10.2.1.2 Evaluation Against Marker-Based MoCap 

Another way to obtain markerless MoCap validity is to compare it with marker-based 
MoCap data. Accuracy is evaluated comparing kinematic variables of both methods. 
Colyer et al. (2018) give an overview of validation studies of different markerless 
technologies compared to marker-based systems. 

Several studies exist that compare the performance of different pose estimation 
approaches. Needham et al. (2021) investigated three pose estimation algorithms 
based on Deep Learning: OpenPose, AlphaPose, DeepLabCut, with respect to the 
gold standard of marker-based motion capture. They compared 3D joint center loca-
tions of their participants during walking, running, and jumping. Results suggest that 
3D joint center locations are not yet accurate enough. Still these technologies remain 
promising for out-of-the-lab environments. Mehdizadeh et al. (2021) examined the 
validity of gait variables using AlphaPose, OpenPose and Detectron. The evaluation 
against a 3D MoCap system revealed that temporal but not spatial gait measures 
correlate significantly with the marker-based system. Itokazu (2022) compared the 
reliability, validity, and accuracy of OpenPose and DeepLabCut against conventional 
marker-based MoCap software. Joint angles of the lower extremity were analyzed 
during standing up. Results confirmed high reliability and validity of both methods 
with an estimation error of fewer than 10° for hip and knee joints. 

OpenPose Validation during Lunges, Counter Movement Jump and Rowing 

We conducted a study comparing joint angles of OpenPose and a marker-based 
MoCap System (Vicon). 20 healthy subjects (8 female, 12 male; age: 25.1 ± 
5.0 years; BMI: 23.11 ± 2.52 kg/m2) took part and participated in a protocol of 
three different movements: a set of lunges, countermovement jump, and rowing on 
a rowing ergometer (see Fig. 10.3). 

Movements were recorded using an RGB video camera (GoPro Hero10 Black) 
mounted on a tripod. Joint angles from the marker-based system were extracted 
directly from the Vicon Nexus Software (version 2.10.3) using the Plug-in Gait 
model with 31 markers. OpenPose key points were extracted, and joint angles were 
calculated using a custom Python script.

Fig. 10.3 Movements of the OpenPose validation study: lunges, counter movement jump and 
rowing on a rowing ergometer 
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Fig. 10.4 Comparison of joint angles between OpenPose and the marker-based MoCap system 
(Vicon) for rowing for one subject

Exemplary results of the comparison between the marker-based MoCap system 
(Vicon) and OpenPose for the elbow and knee joint angle are shown in Fig. 10.4 for 
rowing and in Fig. 10.5 for lunges. 

Moreover, OpenPose has been validated during gait analysis (D’Antonio et al., 
2021; Ino et al., 2023; Stenum et al., 2021a, 2021b) bilateral squat (Ota et al., 2020), 
single-leg squat (Haberkamp et al., 2022), treadmill walking and running (Ota et al., 
2021), and cycling (Bini et al., 2023). Nakano et al. (2020) investigated the accuracy 
of 3D motion capture using OpenPose during walking, countermovement jump, and 
ball throwing. 

The validity and reliability of the commercial software Theia3D were examined in 
multiple studies. Gait kinematics (Kanko et al., 2021a), spatiotemporal gait parame-
ters (Kanko et al., 2021c) and inter-session repeatability (Kanko et al., 2021b) show  
promising results.
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Fig. 10.5 Comparison of joint angles between OpenPose and the marker-based MoCap system 
(Vicon) for a set of lunges for one subject

10.2.2 Depth Camera 

The validity of depth cameras, i.e., the Microsoft Kinect, is likewise evaluated in 
human movement studies against marker-based MoCap systems. A variety of vali-
dation studies exists in the literature. Springer and Yogev Seligmann (2016) provide 
an overview of studies evaluating the Kinect camera for gait analysis. Gray et al. 
(2017) validated the accuracy of Microsoft Kinect V2 during drop vertical jump. Ma 
et al. (2018) studied the measurement validity in upper-body movements using a reha-
bilitation game. Kinect’s validity and reliability in upper body kinematics of stroke 
patients were furthermore investigated by Faity et al. (2022). Jo et al. (2022) exam-
ined the agreement of the Azure Kinect and a marker-based MoCap system during 
functional movements, such as squats, forward and lateral reach, and lunges. Thomas 
et al. (2022) validated the accuracy of the Azure Kinect during a sit-to-stand test. 
Bertram et al. (2023) evaluated the Azure Kinect as a clinical assessment tool testing 
static posture, postural transition, and locomotor function against a marker-based 
MoCap system.
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10.2.3 IMU 

MoCap using IMU sensors has extensively been studied in the literature. As MoCap 
using IMU data is not the main focus of this chapter, we would like to refer to the 
systematic literature review of Poitras et al. (2019). The authors investigated the 
validity and reliability of wearable IMU sensors for joint angle estimation across 42 
studies. 

10.3 Application of Markerless Motion Capture 

Markerless MoCap systems are utilized both inside and outside the lab in a diverse 
range of use cases nowadays. Some of these applications in the context of sports and 
health are presented in the following section. Additionally, there exists a literature 
review that comprehensively examines the applications of pose estimation across the 
lifespan (Stenum et al., 2021a). 

10.3.1 Sports Performance Analysis 

In the field of sports and exercise science, there exist literature reviews addressing 
the applications of human pose estimation in general (Badiola-Bengoa & Mendez-
Zorrilla, 2021) and OpenPose in particular (Baldinger & Senner, 2022). Use cases 
include bodyweight exercises, running, as well as team sports, such as soccer or 
volleyball, and even slower movements with more complexity, such for example, 
Taichi and Yoga. Pose estimation is used for detecting and predicting different 
parameters of specific sports, such as trajectories in table tennis, punching kine-
matics in boxing, or estimating jump height (Badiola-Bengoa & Mendez-Zorrilla, 
2021; Baldinger & Senner, 2022). 

A systematic review of the use of wearable technology in sports is provided by 
Adesida et al. (2019). 

10.3.2 Training Assistance 

Difini et al. (2021) summarize use cases of markerless motion capture as a training 
assistance tool. Sports include cheerleading, golf, skiing, and soccer, among others. 
Typical tasks are the analysis of the quality of movement to unburden the coach 
or instructor, give feedback on possible improvements in movements, or follow the 
expert’s movement from a video or augmented reality.
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10.3.3 Technique Evaluation (Bench Press) 

In multiple exploratory studies, we examined the feasibility of the Azure Kinect in 
determining motion errors during bench press. As part of the validation, a number 
of studies were carried out on both powerlifters (“experts”) and recreational athletes 
(“amateurs”). Both completed multiple sets of bench press motions. The expert addi-
tionally performed predefined error movements. Marker-based MoCap, the Azure 
Kinect, as well as IMUs mounted on the forehand and upper arm were used to capture 
the movements. The bench press motion and the Kinect’s representation are shown 
in Fig. 10.6. 

Kinematic parameters of the movements of the amateur and the expert were 
analyzed. Differences between the predefined error movements compared to the 
ideal movement were studied in detail. Based on that, an evaluation and comparison 
algorithm was implemented to provide automated feedback to the trainee. 

A similar approach is presented by Wang et al. (2019). The authors propose an 
AI coach based on human pose estimation to provide personalized athletic training 
assistance for Freestyle Skiing. The framework consists of the following steps: detec-
tion and tracking of the athlete in the video, pose estimation, classification of “bad 
poses”, and training suggestions.

Fig. 10.6 Marker-based motion capture and body tracking using Azure Kinect during bench press 
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10.3.4 Clinical Applications 

Knippenberg et al. (2017) give an overview of markerless MoCap systems used as part 
of a virtual reality (VR) training device in neurological rehabilitation. Application, 
target population, training content, and training efficacy are reported across eighteen 
selected studies. Results show that up to 2017, Kinect was used in the majority of 
studies. The target population of these training programs was mainly stroke patients, 
followed by persons with dementia, brain injury, cerebral palsy, Multiple sclerosis, 
and Parkinson’s disease. 

More recent reviews of clinical applications are provided by Hellsten et al. (2021), 
Wade et al. (2022), and Lam et al. (2023). Use cases include balance assessment to 
assess fall risk, and supervision and feedback on homebased exercises as part of 
therapy after surgery or stroke (Hellsten et al., 2021). Other tasks include automated 
clinical tests and continuous monitoring of patients in their homes (Wade et al., 2022). 
Furthermore, markerless MoCap has the potential to be used as an early screening tool 
for diseases by detecting and identifying symptoms (Lam et al., 2023). Kidziński et al.  
(2020), for example, developed a method to predict clinically relevant gait parameters 
from video data. The workflow uses the extracted keypoints from OpenPose and feeds 
them into a Neural Network to predict walking speed, cadence, knee flexion angle, 
and Gait Deviation Index. In this way, it enables outside-the-lab access to quantitative 
motion analysis for neurological and musculoskeletal disorders. 

10.4 Current Challenges of Markerless Motion Capture 

In our own experiments, we were mainly challenged by rare joint or body positions, 
such as in the bench press motion. The subject performing the bench press is lying 
on a bench instead of standing upright, which can impede the body pose estimation. 
Another issue we encountered was (self-) occlusions of body parts or occlusions of 
the sport equipment, for example, the rowing machine or the bar bell of the bench 
press. 

This is consistent with the literature. Occlusion is often reported as a challenge in 
markerless MoCap (Desmarais et al., 2021; Jo et al.,  2022; Zheng et al., 2023) and can 
be overcome by the use of multiple cameras (Difini et al., 2021). Furthermore, motion 
blur and fast movements hinder pose estimation (Wang et al., 2019). As many datasets 
are still captured indoors, generalization to in-the-wild scenarios is still challenging 
(Desmarais et al., 2021). Reduced accuracy due to loose-fitting clothes (Wade et al., 
2022) or poor contrast between background and subject (Difini et al., 2021) are other 
issues to consider. Difini et al. (2021) summarize the limitations of pose estimation 
used as a training device for different types of sports and ideas to overcome those 
challenges, whereas shortcomings and research directions in clinical biomechanics 
are summarized by Wade et al. (2022).
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Robustness of pose estimation can be further improved by more diverse datasets 
in terms of poses, movements, human shapes, and contexts (Desmarais et al., 2021; 
Wade et al., 2022). 
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Chapter 11 
Machine Learning in Tennis 

Fernando Vives, Javier Lázaro, José Francisco Guzmán, Miguel Crespo, 
and Rafael Martínez-Gallego 

Abstract The analysis of sporting performance, particularly in tennis, has been 
studied for several decades. The use of new technologies and tracking systems, such 
as Hawk-Eye, has advanced research in this field. A review of scientific articles 
shows the recent evolution of Machine Learning (ML) techniques and their potential 
impact on tennis. Finally, a practical example of a predictive model is presented to 
demonstrate the process and results of this study. 

Keywords Performance Analysis · Sport Analytics · Coaching · Tracking 
Technology · Tactical 

11.1 Introduction 

The study of sports performance has been the subject of numerous investiga-
tions, utilizing biomechanics and notational analysis during both competition and 
training sessions. This has become an invaluable tool for coaches in their technical-
tactical planning, for players to achieve greater performance, and for researchers 
to gain a better understanding of sporting performance (Hughes & Bartlett, 2008; 
O’Donoghue, 2014). 

In tennis, as in other sports, there has been significant evolution in obtaining and 
interpreting records. These records can be used to optimise the training process or 
prepare more effectively and specifically for competition (Morgulev et al., 2018). 
Currently, a wide range of devices, such as high-speed cameras, GPS, tracking, and
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tagging systems, are used for data collection (Barris & Button, 2008; Jindo et al., 
2022). 

Hawk-Eye (HE) technology was first used on 21 April 2001 during a cricket match 
between Pakistan and England at Lord’s Cricket Ground. The technology uses high-
speed cameras, computers, and electronic screens to track the ball’s trajectory. It was 
later introduced to professional tennis tournaments, with the Hopman Cup in Perth 
being the first to use it in 2006 (Shigh Bal & Dureja, 2012). This system employs 
ten cameras positioned around the court to track the three-dimensional position of 
the ball during each point using an algorithm. The estimated average error is 3.6 mm 
(Baodong, 2014; Mecheri et al., 2016). 

The introduction of Hawk-Eye technology in tennis has allowed access to a wide 
range of data that has been the subject of study in various research projects. One of 
the most analysed aspects has been the serve, given its fundamental role in initiating 
the point and the advantage it can provide to the player. Studies such as Kolbinger and 
Lames (2013) examined the distribution of the serve in right-handed male hard court 
players. Other studies, such as Rioult et al. (2015) and Mecheri et al. (2016), evaluated 
serve efficiency and factors such as speed, direction and court surface. In addition, 
Kovalchik and Albert (2017) developed a model to analyse pre-serve routines, while 
Whiteside and Reid (2017) identified the characteristics of first serves to achieve an 
ace. More recently, the serve has been studied in the doubles discipline (Martínez-
Gallego et al., 2021a, 2021b; Vives et al., 2022). Theoretical models have also been 
proposed to improve serve and return efficiency in elite tennis, such as Vives et al. 
(2023) and Fitzpatrick et al. (2023). 

In addition to the serve, playing strategies and physical characteristics of players 
have been explored. Studies such as Loffing et al. (2010) analysed the presumed 
tactical advantages of left-handed players, while Reid et al. (2016) examined gender 
differences in hitting and movement dynamics in Grand Slam. Differences between 
junior and professional players have also been studied for better training planning, as 
demonstrated by Kovalchik and Reid (2018).  Cui et al.  (2019) explored performance 
indicators based on anthropometric characteristics and self-assessments in different 
groups of players. Finally, Meurs et al. (2021) investigated the Positional Advantage 
Index as a tool to identify a player’s on-court advantage over his opponent. 

11.2 Machine Learning in Tennis 

11.2.1 Machine Learning in Sport 

As discussed in the previous section, the introduction of Hawk-Eye technology in 
tennis has enabled access to a vast amount of data, which has been utilized to develop 
various research projects. 

Similarly, other sports also generate a plethora of data that can be analyzed or used 
to predict future events. In the field of sports, Machine Learning (ML) algorithms aim
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Table 11.1 Use of ML algorithms in team sports (Beal et al., 2019; Horvat & Job, 2020) 

SVM Random forest/ 
Decision tree 

Linear/Logistic 
regression 

Neural networks Other 

Football ✔ ✔ ✔ ✔ ✔ 
Basketball ✔ ✔ ✔ ✔ ✔ 
American football ✔ ✔ ✔ ✔ 
Cricket ✔ ✔ ✔ 

to assist in evaluating player or team performance, preventing injuries, identifying 
talent, and aiding decision-making by players and coaches (Horvat & Job, 2020). 

Table 11.1 below displays the primary ML methods used in various team sports, 
including football, basketball, American football, and cricket. 

11.2.2 Machine Learning Techniques for Tennis 

The use of ML in tennis is a recent development, primarily due to advancements in 
technology for data collection through tagging and tracking systems. This is a brief 
overview of the evolution of ML in tennis, from the earliest studies to the present 
day. 

The prediction of results is a major field of study in the world of tennis. Innovative 
approaches have been implemented to address specific considerations, such as the 
type of playing surface, the variability of players’ skills, and the use of historical 
data from professional tournaments. Various algorithms, such as Logistic Regres-
sion (LR), Random Forest (RF), Decision Tree (DT), Artificial Neural Networks 
(ANNs), Naive Bayes (NB) and Support Vector Machine (SVM), have been used to 
predict outcomes. However, their effectiveness varies, highlighting the importance 
of considering multiple factors and data quality (Cornman et al., 2017; Learning, 
2017; Peters, 2017). 

Different ML techniques have been used by various authors to obtain effective 
predictive models in tennis. One of the pioneering studies in this field is that of Boulier 
and Stekler (1999), who evaluated the effectiveness of classification in basketball and 
tennis as predictors of results using base rate forecasts and Brier scores. In a similar 
context, Kovalchik (2016) investigated 11 predictive models to predict the results 
of more than 2000 men’s professional tennis matches. Hostačný (2018) analysed 
the accuracy of LR models, RF, DT and ANNs using data from individual men’s 
matches. In comparative studies, Ghosh et al. (2019) and Sekar (2019) evaluated the 
performance of different classification algorithms, concluding that the decision tree 
outperformed other algorithms. 

In addition, novel approaches have been proposed, such as Lerner et al. (2019), 
who used live match data and recurrent neural networks to calculate win probabilities, 
and Bayram et al. (2021), who used network analysis to derive a surface-specific,
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time-varying score for professional tennis players. More recent research in 2022, such 
as that of Yue et al. (2022) and Solanki et al. (2022), has continued to explore statistical 
methods and ML models to improve score prediction in tennis, while Bunker et al. 
(2023) compared Elo and Weighted Elo scoring methods, highlighting the accuracy 
of the alternating DT and LR model in the experimental framework Sports Result 
Prediction Cross Industry Standard Process for Data Mining (CRISP-DM). 

The serve is considered the most decisive stroke in modern tennis, one of the first 
major analyses of the serve was conducted by Mecheri et al. in 2016, with a sample of 
262,596 serves they determined that the serve has a significant effect on the outcome 
of the point. Service direction has also been addressed in other studies such as that 
of  Wei et al.  (2015), by a specific player in a given context, or that of Zhu and Naikar 
(2022) who found an accuracy on first serves of 49% for men and 44% for women. 
Attempts have also been made to determine the main features to achieve an ace in 
both singles (Whiteside & Reid, 2017) and doubles (Vives et al., 2023). Finally, Gao 
and Kowalczyk (2021) identified the serve as a crucial predictor of match outcome. 

Besides the service, other game situations have been studied, thus Wei et al. (2016) 
used spatio-temporal tracking data to make predictions of the direction of the next 
shot during a match in real time. Along the same lines, Shimizu et al. (2019) proposed 
a method for predicting the direction of the next shot using Long Short-Term Memory 
(LSTM) networks, based on sequential information about the player’s posture and 
position on the court. In contrast, Makino et al. (2020) analyzed in detail the rallies of 
professional players with the aim of developing a predictive model of point outcome. 
Lastly, Zhou and Liu (2024) found that the player’s position and the court area of 
the stroke determined the selection of groundstroke stances. 

Several authors have conducted different studies to classify different stroke types 
and patterns. Kovalchik and Reid (2018) developed a classification of stroke types 
used by professional players during a match based on various criteria, such as speed, 
direction, spin and intention of the stroke. The rest was also analysed in depth in 2022 
by Kovalchik and Albert, identifying six unique impact styles of returned serves in 
professional tennis. The latest study by Martínez-Gallego et al. (2021b) determined 
specific patterns of volley positions in both men and women. Such information may 
prove valuable for player-specific preparation and the creation of effective strategies 
for competition. 

Tennis is a dynamic and highly competitive sport, several studies have tried to 
analyse and understand other aspects of the game. For example, Cui et al. (2019) 
analysed the performance of male Grand Slam tennis players using a point-by-point 
approach to identify key success factors. Other study of Giles et al. (2020) developed 
an approach for the automatic detection and classification of change of direction 
movements in professional players. Giles et al., (2021, 2023) continued this same 
line of research with two further studies to differentiate the movement styles of 
professional players. Future sport performance has also been examined in different 
studies through the morphological characteristics of athletes. Such as Panjan et al., 
(2010) with Slovenian junior tennis players, Deshpande and Klotzman (2022) with 
top 100 ranked professional female players, or Siener et al. (2021) who analysed 
different ML techniques used as a tool to predict future success.
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Finally, other areas have also been addressed in different recent studies. Filipcic 
et al. (2014) analysed the criteria for identifying and ranking players, providing rele-
vant information on the characteristics that distinguish the best male tennis players. 
On the other hand, Rosker and Majcen Rosker (2021) examined how visual adaptive 
ability influences performance in tennis and Hao and Hu (2023) investigated how 
technological applications can contribute to the development and improvement of 
tennis performance. The application of sensors has also started to be used in work 
such as that of Perri et al. (2022) or Wu et al.  (2023), looking for improved real-time 
assessment during training sessions. 

A table-summary (Table 11.2) has been created to display the primary tennis-
specific contributions in the area of Sport Sciences. The focus has been on sports 
performance analysis of both male and female players. These contributions have 
practical implications in the preparation of training sessions and technical-tactical 
decision making during matches. The table includes information on the authors, data 
collection and processing, the study field area, and the ML techniques used in the 
process.

11.3 Application of a Novel Method 

To enhance reader comprehension of the various techniques employed in an ML 
model, we will present a case study of a previous investigation on the first serves in 
men’s professional doubles tennis as an example. 

11.3.1 Object of the Study 

The study aimed to identify differences between first services ending in 1 (Type 1), 
2 (Type 2), 3 (Type 3), and 4 or more shots (Type 4) in terms of their incidence at 
the point. Analysis revealed significant differences only between Type 1 and Type 
4 effectiveness. We therefore identified the most relevant characteristics in the first 
type of services (Type 1) and trained the model to determine the variables and their 
values that best predicted service effectiveness. 

11.3.2 Methodology 

A pipeline that included all XAI (Explainable Artificial Intelligence) processes from 
Data Processing to training the predictive model (Deep Neural Network) was built 
to calculate the most important variable (Feature Importance), select values that 
maximize probabilities (Probabilistic and Statistical Inference), and test the results 
on a synthetic dataset.
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Table 11.2 Main tennis-specific papers of ML published in the area of sports sciences 

Author(s) Data set Data collection ML 

Wei et al. (2015) 4.758 first serves 
2.292 secod serves 
Men’s singles 
(2012–2014) 

Hawk-Eye Logistic Regression 
Decision Tree 

Kovalchik (2016) 2.395 matches 
Men’s singles (2014) 

ATP website Regression-based (4) 
Point-based (3) 
Paired comparison (2) 
Bookmaker consensus 

Whiteside and Reid 
(2017) 

25.680 first serves 
Men’s singles 
(2012–2015) 

Hawk-Eye Decision Tree 
K-Means Clustering 

Kovalchik and Reid 
(2018) 

Men’s singles: 
270.023 shots 
Women’s singles 
178.136 shots 
(2015–2017) 

Hawk-Eye Multi-stage Clustering 

Cui et al. (2019) 29.675 points 
Men’s singles 
(2011–2016) 

Australian Open, 
Roland Garros, 
Wimbledon and US 
Open website 
Doppler radar (IBM) 

Classification Tree 
(CHAID) 

Makino et al. (2020) Men’s professional 
singles from 1970 

Match charting 
project (MCP) 

L1-regularized 
Logistic Regression 

Giles et al. (2021) 157.841 change of 
direction 
513 matches 
(2016–2018) 

Hawk-Eye Hierarchical Clustering 

Kovalchik and Albert 
(2022) 

142.803 returns serve 
Men’s singles 
(2018–2020) 

Tracking data Latent Style Allocation 
Model 
Finite Mixture Models 

Vives et al. (2023) 14.146 serves 
97 doubles matches 
Davis Cup 
(2010–2019) 

Hawk-Eye Feature Importance 
Deep Neural Network 

Zhou and Liu (2024) 36 players 
Men’s singles 
(2019– 2021) 

Kinovea Bayesan Network

The process is shown in Fig. 11.1.

Exploratory Data Analysis and Data Processing 

The study analysed a total of 14.146 first serves in Davis Cup men’s doubles matches 
played from 2010 to 2019. It involved 160 players in 123 teams from 34 different 
countries, with an average age of 30.03 ± 4.73 years. 

The dataset consisted of the variables presented in Table 11.3.
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Fig. 11.1 Pipeline workflow architecture

Table 11.3 The derived variables included 

Target variables Input features 

Court side: SPEED: Mean speed of the serve 

DEUCE/AD POSITION: Position of the server when hitting the 
serve 

Efectiveness: TIME: Time between ball impact and ball bounce 

TYPE 1: The point finishes with 1 shot SPEED LOSS: Loss of speed of the ball after its 
bounce 

TYPE 2: The point finishes with 2 shots IMPACT Z: Height of the ball at impact 

TYPE 3: The point finishes with 3 shots NET CLEARANCE: Height of the ball when passing 
over the net 

TYPE 4: The point finishes with 4 shots SERVE ANGLE: The angle formed between the 
bounce of the ball and the centre of the service box 
from the position of the server 

VERTICAL PROJECTION ANGLE: The angle 
formed by the bounce of the ball, the point of impact, 
and the trajectory of the ball from the ground 

dL: Distance from ball bounce to the sideline of the 
service box 

Following the Exploratory Data Analysis, which included correlation matrices, 
boxplots, histograms, and Kernel Density Estimation plots (KDE), the data was 
prepared for the application of ML classification algorithms. Non-informative vari-
ables, with a variance equal to or close to 0, were identified. To address class imbal-
ance, weak target samples were oversampled. Feature selection was performed using 
a combination of tennis knowledge criteria, correlation analysis, and feature selection 
algorithms like Permutation feature importance and SHAP importance (Rajbahadur 
et al., 2021). Statistical methods like histogram analysis, boxplot analysis or analysis
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of correlation matrix were used to detect and filter outliers. Furthermore, ensuring 
model interpretability without compromising performance required addressing non-
normal distributions and collinearity issues among variables, particularly for serve 
angle and dL. 

Training the Deep Learning Model 

AutoGluon and FastAI were utilized in this study. AutoGluon helped with fast exper-
imentation on several ML algorithms. However, it exhibited a lack of the flexibility 
required for this research. For this reason, we opted for FastAI, as it is a tool that was 
a more flexible fit for our model and allowed us to include different options such as 
automating the training process or selecting the number of hidden layers. 

The Deep Learning high level description of the model is the following: 

1. Backbone Network: 
A model with 5 layers of feature size [256, 128, 128, 128, 64]. The basic layer 

block (named LinBnDrop) is formed by the next transformations:

• Linear Layer (torch.nn.linear)
• Reactified Linear Unit—ReLU (torch.nn.relu)
• Batch Normalization—BatchNorm1d (torch.nn. BatchNorm1d) 

2. Loss Function: 
Focal Loss Flat (Lin et al., 2017). The focal loss works specially well with 

imbalanced data as it adapts its weights to focus learning on hard misclassified 
examples. 

3. Optimization Algorithm: 
Adam (Kingma & Ba, 2015). 

Feature Importance Algorithms 

The SHAP (SHapley Additive exPlanations) and Feature Permutation Importance 
techniques, which indicate the relative importance of each variable, were used to 
identify the most important variables of the first serves. However, only the results 
obtained with the first method (SHAP) were finally published. 

SHAP Summary Plots are visual tools used to determine how each feature 
contributes to the predictions of a model. To do this, the algorithm proceeds to 
calculate the SHAP values, then they are sorted by their relative importance in the 
prediction and finally, the results are displayed graphically (Lundberg & Lee, 2017). 

Probabilistic and Statistical Analysis 

In order to optimize the effectiveness of the serve and understand how the selected 
characteristics affect the target variables, an innovative semi-automated algorithm 
based on classical statistical methods was designed. 

The Kernel Density Estimation (KDE) algorithm was applied to model a smoothed 
distribution of the data for each class, using statistical estimators such as the mean, 
Maximum Likelihood Estimation (MLE) and the percentiles 5 and 95 for the relevant 
characteristics.
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Finally, optimal values were identified by selecting regions on the graph that 
exhibited a higher density of points corresponding to the desired outcome (type 
1 effectiveness) and a lower density for the undesired outcome (type 4 effective-
ness). The integration of these statistical estimators was essential to understand the 
underlying probability distribution and guide the value selection process. 

Synthetic Data-Set Generation 

In the final step a synthetic dataset using the selected values was generated, and the 
prediction was simulated. The values outside the desired selected threshold were 
substituted by random values inside the new calculated limits for the most important 
variables. Finally, predictions on the whole dataset were performed using the Deep 
Learning Model previously trained. Then the final rate of type 1 and type 4 was 
calculated. By doing this, the approach was validated. Note that this step is using 
the model trained beforehand. We consider the predictions using this model reliable 
because the evaluation metric of the model (averaged f1-score) reached 93%. 

11.3.3 Results 

Our proposed pipeline obtained an F1-score of 95% for the type 1 and 94% for the 
type 4. Likewise, the overall classification accuracy on the evaluation test set was 
94%, precision and recall values of the model also exhibited high levels, close to 
90%. Hence, this model has demonstrated its reliability in delineating the attributes 
of first serves that culminate in an ace and the first serves enduring for 4 or more 
shots. 

The next step was to identify the most relevant variables of the model for each 
type of effectiveness (Type 1 and Type 4). SHAP was used to determine the most 
important variable, which turned out to be serve angle and dL, in addition to the 
speed, for both the Deuce and Advantage sides. SHAP is a technique that provides 
values indicating the average impact of each variable on the model’s outputs. These 
results highlight the significance of serve angle and dL, besides of the speed, in 
predicting the effectiveness of the first serve in men’s double tennis. 

The final step involved generating a dataset where the original values were 
replaced with the recommended values for the most important variable obtained in 
the previous step. The results with the recommended values, as shown in Table 11.4, 
demonstrated a significant improvement for both the variable dL (between 0 and 
28 cm) and the serve angle (between 5.7° and 8.7°), regardless of the serving side. 
In contrast, the speed variable showed minimal variation once it reached 187 km/h.
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Table 11.4 Results of the predictions using the trained model 

Variable Side Values (min–max) Effectiveness before 
(%) 

Effectiveness after 
(%) 

dL (m) Deuce 0–0.28 33.05 83.40 

AD 30.64 81.26 

Both 33.49 88.48 

Serve angle (deg) Deuce 5.7–8.7 33.70 88.68 

AD 29.77 88.21 

Both 33.25 89.04 

Speed (km/h) Deuce 187–220 35.17 45.75 

AD 34.36 44.13 

Both 30.38 39.91 

11.3.4 Discussion 

The serve has become the most decisive shot in modern tennis, allowing servers 
to gain an advantage over their opponents. This study identifies key variables for 
achieving an ace in men’s professional doubles tennis. The serve angle and the 
distance from the ball bounce to the sideline were found to be crucial in producing 
an ace, along with the speed variable. The model enhances the effectiveness of 
first serves to almost 90% when the serve angle values are between 5.7° and 8.7°. 
Similarly, recommended values below 29 cm for the distance from the ball bounce 
to the sideline would push the model’s effectiveness beyond 85%. These findings are 
consistent with previous research in men’s singles tennis, where it was observed that 
when the service angle was equal to or greater than 5.88° and the bounce distance 
from the line was less than 15.27 cm, the probability of hitting a direct serve reached 
almost 80% (Whiteside & Reid, 2017). 

However, speed does not exhibit the same pattern once it exceeds 187 km/h. Unlike 
in individual tennis, where previous studies have identified speed as the determining 
factor for a direct serve (Rioult et al., 2015; Brown,  2021), our findings suggest a 
more nuanced relationship in doubles tennis. 

11.3.5 Conclusion 

Based on the results of this study, it can be observed that, while the speed of the serve 
is relevant, extremely high speeds do not guarantee greater success in direct serves. 
Instead, factors such as the angle of the serve and the accuracy of the bounce near 
the sidelines have a significant impact on the likelihood of hitting an ace. 

These results could prove highly valuable for coaches and players when planning 
training sessions focused on serving and making technical-tactical decisions during



11 Machine Learning in Tennis 189

competition, optimizing the performance of the first serve in high-performance 
matches. 
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Chapter 12 
Using Convolutional Neural Network 
to Predict Sports 

Arisoa S. Randrianasolo 

Abstract Convolutional Neural Networks, powerful Machine Learning tools for 
image classifications, can also be employed to perform sports outcome predictions. 
To use a Convolutional Neural Network for sports predictions, we arranged the 
statistics of the two opposing teams or players into a grid representation. We have 
exploited this two-dimensional input arrangement to expand the training set for our 
Convolutional Neural Network. The expansion consisted of shifting each grid that 
represented a game by one and two columns to the right. This shifting idea made 
it possible to employ Convolutional Neural Networks in predicting sports events 
without relying on extensive historical data. We used the Men Euro 2020 and Women 
US Open 2021 as test cases to illustrate this approach. The most performant models 
from our exploration registered a 70.2% accuracy in predicting the Women US Open 
2021 and a 69.8% accuracy in predicting the Men Euro 2020. These accuracies are 
considered as improvements. The ensemble techniques we previously used on these 
datasets had an accuracy of 64.9% on the Women US Open 2021 and 67% on the 
Men Euro 2020. 

Keywords Sports Predictions · Convolutional Neural Networks ·Machine 
Learning 

12.1 Introduction 

Predicting the outcome of a sporting event is an activity that is popular among fans, 
players, coaches, team managers, and team owners. Fans want to know ahead of 
time the probability of their favorite team winning a particular game. They may be 
interested in such forecasts just for the fun of the game or for betting purposes. The 
users of popular sports betting sites like bet365, betway, and many more, will fall 
under this case. Coaches on the other hand want to know their chances of winning to
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select the best tactics to use against the opponents. Whether the reason is fun, money, 
marketing, or strategy, sporting event stakeholders are always interested in predicting 
the outcome of competitive games. Along with the evolution and improvement of 
technology, more data is generated about games, tournaments, and competitions. 
The abundance of data has led many researchers to look into the possibility of using 
Machine Learning algorithms to predict the outcome of head-to-head games. A small 
collection of the research done in this area is summarized in the related section below. 
The application of Machine Learning to predict sporting events, for the most part, is 
reserved for events where plenty of historical data is available to train the algorithms. 
To list a few examples, the research conducted by Hsu (2021) that used candlestick 
charts and a Convolutional Neural Network used more than 18 thousand games. 
The research conducted by Candila and Palazzo (2020) that used Artificial Neural 
Networks to predict the outcome of tennis games used more than 26 thousand of 
games. The research conducted by Alfredo and Isa (2019) that used various tree-
based Machine Learning algorithms used more than 3 thousand games. What do 
we do then if we want to predict an event that lacks extensive historical data? This 
is where we believe that the usage of Convolutional Neural Networks can come in 
handy. Convolutional Neural Networks accept the input as a 2-dimensional grid. We 
can exploit this grid representation to shift the input by one or more columns to create 
new inputs and therefore expand the training data. 

12.2 Related Work 

In the last few years, Machine Learning algorithms have slowly become the preferred 
tool for researchers working on sports predictions. Pretorius and Parry (2016) and 
Parry employed a Random Forest to forecast the 2015 Rugby World Cup. Wilkens 
(2021) created an ensemble technique to predict the 2010–2019 tennis games. Alfredo 
and Isa (2019) tested C5.0, Random Forest, and Extreme Gradient Boosting on the 
games from the 2007–2017 season of the English Premier League (EPL). Beal et al. 
(2021) used a Random Forest to predict the games from the 2016 to 2019 season of 
the EPL. Saiedy et al. (2020) used a Support Vector Machine and a Random Forest 
to predict the EPL games from the 2018–2019 season. 

Neural networks and their variants have also been used in sports predictions. 
Rahman (2020) utilized Long Short-Term Memory units to construct a Deep Neural 
Network to predict the 2018 FIFA World Cup. A deep network containing 2 hidden 
layers of 10 and 2 units respectively was trained on a dataset that contained inter-
national football game results from 1872 to 2018. This approach had an accuracy 
of 63.3% in predicting the group stage of the 2018 FIFA World Cup. Cheng et al. 
(2003) used backpropagation networks and a learning vector quantization to predict 
the outcomes of football games from the Italian Serie A. Three different backpropa-
gation networks were created for each team in the league. The first network captured 
the situation where the team was playing a weaker team. The second network captured 
the situation where the team was playing another team of equal strength. The third
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network captured the situation where the team was playing a stronger team. Given 
input data about a game, the difference between the two teams’ scores and net goals 
was calculated, then the learning vector quantization would select which backprop-
agation network should be used. Data from the days 6 to 17 of the 2001–2002 Serie 
A season were used to train this approach. The approach had an accuracy of 52.29% 
in predicting the games for the days 18–34. 

Convolutional Neural Networks have also been used in different ways in sports 
predictions. Shen et al. (2024) utilized a Convolutional Neural Network to extract 
football players’ abilities from game recordings. The Convolutional Neural Network 
was trained on 10 randomly selected 10-min videos from the European Women’s 
Champions League in 2021–2022. The network’s accuracy in classifying football 
actions and goal angles from the 2021–2022 dataset exceeded the 95% mark. 

Lin et al. (2018) used a Convolutional Neural Network to predict the outcome 
of games from the National Basketball Association (NBA). The data used to train 
the network consisted of games from October 2014 to April 2017 for a total of 
4147 games. Each game was represented by a 16 × 16 grid that contained the 
performance comparison between the 16 players from each team. The network had 
two convolutional layers. The first convolutional layer had 8 × 8 units followed by a 
pooling layer of size 3 × 3. The second convolutional layer had 2 × 2 units followed 
by a polling layer of size 2 × 2. The fully connected neural network part of this 
network had 3 hidden layers. The optimization used was the Adam optimizer. By 
using a tenfold cross-validation, this approach had an accuracy of 79% in predicting 
the games from the dataset. 

Hsu (2021) trained a Convolutional Neural Network on a dataset that contained 
18,944 American football games. The network used as an input a 10 × 10 candlestick 
chart image with 4 channels. The network had two convolutional layers that used a 3 
× 3 local receptive field. The first layer had 8 channels and the second layer had 16 
channels. Two max-pooling layers with a 2 × 2 window and two drop-out layers with 
0.5 probability were also used. One drop-out layer was placed after the last max-
pooling and the other was placed before the output layer in the fully connected neural 
network. The fully connected neural network had one layer of 128 units followed by 
another layer that had 2 units. The network used a rectified linear activation function 
in the units. The Convolutional Neural Network outputted the winning probabilities. 
This output was combined with the past head-to-head results between the two teams 
and was injected into a Logistic Regression to produce the final predictions. This 
approach had an accuracy of 69.29% in predicting the test set from the American 
National Football League games. 

12.3 Short Introduction to Convolutional Neural Network 

This section will briefly explain the various sections of a Convolutional Neural 
Network. This section is aimed to provide a general overview. Readers who need 
more details are encouraged to refer to Fukushima (1980) and Lecun et al. (1998).
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Fig. 12.1 Topology of a 
Neutral Network with two 
hidden layers 

12.3.1 Neural Network 

A neural network is a Machine Learning technique that was inspired by the way 
the brain works. The network consists of one or more layers. Each layer represents 
a column of units. Each unit simulates the functionality of the neuron in the brain. 
Each unit receives multiple inputs, calculates a weighted sum of the inputs, plugs 
the weighted sum into an activation function, and finally fires out an output signal. 
Theoretically, a neural network can represent any function by using more layers and 
more units. Usually, a neural network is fully connected; this means each unit in a 
layer is sending a signal to all units in the next layer. A neural network contains an 
input layer, one or more hidden layers, and an output layer. The network learns by 
backpropagating the errors from the expected output and the produced output back 
to units in each layer. A simple topology of a neural network can be seen in Fig. 12.1. 

12.3.2 Convolutional Neural Network 

A Convolutional Neural Network is a variant of a neural network. A Convolutional 
Neural Network is characterized by the presence of one or more convolutional layers 
placed before the fully connected neural network. The input to the network is a grid, a 
2-dimensional pixel image, and not a 1-dimensional like the regular neural network. 
The convolutional layers are not fully connected. A smaller group of units, of size 3 
× 3 for example, is connected to another unit in the next layer. This smaller window 
can be slid by one column to the right or one row down to make sure that all units 
from the previous layer are connected to some units in the next layer. To further 
simplify the output of the convolutional layer, a pooling layer is usually used. A unit 
in the pooling layer takes a group of convolutional units, 2 × 2 for example, and 
outputs a value like the maximum of the 2 × 2 area, or the average, or the L2. The 
usage of the convolutional layer and the pooling layer is based on the principle that
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Fig. 12.2 Simplified topology of a Convolutional Neural Network 

the existence of the pattern is what is important and not the location of the pattern. 
The last convolutional layer or pooling layer, depending on the structure, is flattened 
into a 1-dimensional column of units and is connected to a fully connected neural 
network. Convolutional Neural Networks also have the particularity of not having 
just one grid of units in the convolutional or pooling layer. Multiple grids of units can 
exist in the layers. The number of grids in each layer is called the layer’s channel. 
Figure 12.2 describes an example of a Convolutional Neural Network. 

Convolutional Neural Networks are commonly used for image classification. In 
image classification, pixels’ values are extracted from the pictures. The pixels are 
sent to the convolutional layers so that the network can perform feature extrac-
tions. The extracted features are finally sent to a fully connected neural network 
to perform the actual classification. Various researchers have applied Convolutional 
Neural Networks to image classification tasks. To list a few examples, Wang et al. 
(2021) used a Convolutional Neural Network to classify flowers. Hao et al. (2023) 
used a Convolutional Neural Network to classify images of Alzheimer’s disease from 
a set of magnetic resonance images. Tan and Teoh Teik (2023) used a Convolutional 
Neural Network to classify Pneumonia images from X-rays. 

12.4 The Approach 

Let us start by explaining how to represent each game that will be used to train the 
Convolutional Neural Network. Each game is represented by a n × n grid. The top 
half, n/2 × n, of the grid contains the statistics for the first team, and the bottom 
half, n/2 × n, contains the statistics for the second team. Rows in the n/2 × n can be 
padded with 0 s if the statistics from each team cannot fill the n/2 × n grid assigned 
to them. Figure 12.3 illustrates an example of a game representation. The grid shall 
be, on purpose, made a bit larger to allow shifting to happen in order to expand the 
training data.

As already mentioned in the introduction, the training set is expanded by shifting 
each game representation. Each game representation can be shifted by one, two, or 
three positions to the right to create a new representation. As each representation
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T eam1Stat1 T eam1Stat2 T eam1Stat3 T eam1Stat4 T eam1Stat5 T eam1Stat6 

T eam1Stat7 T eam1Stat8 T eam1Stat9 T eam1Stat10 T eam1Stat11 T eam1Stat12 

T eam1Stat13 T eam1Stat14 0 0 0 0  
T eam2Stat1 T eam2Stat2 T eam2Stat3 T eam2Stat4 T eam2Stat5 T eam2Stat6 

T eam2Stat7 T eam2Stat8 T eam2Stat9 T eam2Stat10 T eam2Stat11 T eam2Stat12 

T eam2Stat13 T eam2Stat14 0 0 0 0  

Fig. 12.3 An example of a game representation

0 T eam1Stat1 T eam1Stat2 T eam1Stat3 T eam1Stat4 T eam1Stat5 

T eam1Stat6 T eam1Stat7 T eam1Stat8 T eam1Stat9 T eam1Stat10 T eam1Stat11 

T eam1Stat12 T eam1Stat13 T eam1Stat13 0 0 0  
0 T eam2Stat1 T eam2Stat2 T eam2Stat3 T eam2Stat4 T eam2Stat5 

T eam2Stat6 T eam2Stat7 T eam2Stat8 T eam2Stat9 T eam2Stat10 T eam2Stat11 

T eam2Stat12 T eam2Stat13 T eam2Stat14 0 0 0  

Fig. 12.4 An example of a game representation shifted by one position 

is shifted, we have to make sure that we do not lose any of the statistics from each 
team. A wrap-around approach can be taken if not enough room is available to do 
more shifting. The picture below, Fig. 12.4, illustrates this case. 

This idea of shifting the data in the grid representation to expand the training set 
is a common practice in using Convolutional Neural Networks to perform image 
classification. In the image classification cases, pixel values are moved one or more 
columns to the right. We are adapting this very same technique to a grid that contains 
the team’s statistics and not pixel values. In addition, we add a restriction that any 
shift we perform shall not make us lose any of the statistics from the grid. 

In addition to the shifting, the training dataset is also balanced by listing each 
game twice. In the second listing, the order of the teams is changed and the outcome 
is set to the opposite of the outcome in the first listing. 

12.5 Case Studies 

We picked two cases to illustrate the application of this approach. In both cases, we 
created a Convolutional Neural Network that comprised a 6 × 6 input grid, followed 
by a convolutional layer that had 6 channels of 4 × 4 units, followed by a max-
pooling layer that contained 6 channels of 2 × 2 units. The fully connected neural 
network end had 6 × 2 × 2 = 24 input units. The structure of the fully connected 
network was different for each of the case studies we considered. 

The two Convolutional Neural Networks we created used a stochastic gradient 
descent optimization function with the following setting: learning rate = 0.00001, 
momentum = 0.9, and batch size = 1. A rectified linear unit function was used as 
an activation in the convolutional layer, the first hidden layer of the fully connected
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neural network, and the second hidden layer of the fully connected neural network. 
A linear activation function was used in the two units on the output layer. The game-
winner was determined by applying a one-hot encoding on the outputs from these 
two units. 

12.5.1 The Case of Tennis 

We collected statistics of women tennis players from wtatennis.com for the year 
2020. We used these statistics to create game representations for the Women US 
Open in 2021. After performing the correlation analysis in Fig. 12.5, we used a  
total of 10 predictors: player’s rank, number of matches, and the percentages for the 
following: first serve, first serve points, breakpoints, service games won, first return 
points, second return points, return games won, and break points converted. Most of 
these predictors were percentages and were in the range of 0–100. 

Fig. 12.5 Correlation analysis of Women US Open 2021 predictors
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Fig. 12.6 Topology of the Convolutional Neural Network for the Women US Open 2021 

The Convolutional Neural Network was trained on the game representations from 
the first round of the Women US Open 2021. As stated in the approach section, we 
added to the training set the shifted representations. For this case, we shifted each 
representation by one and two positions to the right. We started with 60 unbalanced 
games. When the balancing was performed, the training set had 120 games. The shift 
by one position resulted in 240 games. The shift by two positions resulted in 360 
games. The topology of the network is described in Fig. 12.6. 

12.5.1.1 The Case of Tennis 

We studied the effect of the shifted game representations. We wondered whether or 
not the shifted representations help the Convolutional Neural Network. To answer this 
question, we trained our Convolutional Neural Network with three variations of the 
same dataset. The first variation consisted of the original dataset without the shifted 
representations added. The second variation consisted of the first variation plus the 
game representations shifted by one position to the right. The third variation consisted 
of the second variation plus the game representations shifted by two positions to the 
right. 

We ran the dataset multiple times through the Convolutional Neural Network. At 
the end of each run, also known as epoch, we tested the accuracy of the network. 
The dataset was split into two sets. 80% were used for training and 20% were used 
for testing. We repeated this experiment 100 times. The average accuracy of the 
network for each epoch is captured in Fig. 12.7. We also captured additional statistics 
such as maximum, minimum, median, and standard deviation from the 100 runs in 
the experiment. These additional statistics were captured at the last epochs. The 
Additional statistics for shift 2, our best-performing representation, are available in 
Fig. 12.8.
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Fig. 12.7 Effect of the 
shifted game representations 
on the Women US Open 
2021 dataset 

Fig. 12.8 Box plot of the 
additional statistic captured 
at the last epochs for shift 2 
on the Women US Open 
2021 dataset 

12.5.1.2 Prediction 

The Convolutional Neural Network model produced from the training was used to 
predict the second, third, and fourth rounds, quarterfinals, semifinals, and the final 
of the Women US Open 2021. In total, we predicted 57 games. Table 12.1 captures
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Table 12.1 Accurracy of the 
best model in prediction the 
Women US Open 2021 

Testing from training 77.1% 

Prediction 70.2% 

Prediction F1-score 0.7118 

Fig. 12.9 Precision and recall curve from the prediction of the Women US Open 2021 

the results of the prediction. Figure 12.9 shows the precision and recall curve from 
the prediction. 

12.5.2 The Case of Football 

We gathered data from uefa.com from the qualifying stages of the Men Euro 2008, 
2012, and 2016. In total, we collected 17 predictors and they are: goals scored, goals 
from penalties, number of games, shots on target, shots off target, shots blocked, the 
count of assists, number of corners, the count of offsides, goals saved, goals taken, 
the count of own goals, penalties saved, number of fouls committed, numbered fouls 
endured, the amount of yellow cards collected, and the amount of red cards collected. 
The correlation analysis for these predictors is captured in Fig. 12.10.

These predictors served to craft the 6 × 6 grid game representations for the 
head-to-head matches from the Euro tournaments in 2008, 2012, and 2016. The 
Convolutional Neural Network was trained on these game representations. There 
were 88 unbalanced games. After the balancing, this number doubled to 176. The 
shift by one position resulted in 352 games and the shift by two positions resulted in 
528 games. Figure 12.11 describes the topology of the network.
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Fig. 12.10 Correlation analysis of the Men Euro 2008, 2012, and 2016 predictors

Fig. 12.11 Topology of the Convolutional Neural Network for the Men Euro 2020 

12.5.2.1 Effect of the Shifts 

We ran a similar study as what we did in the case of tennis, in the previous section, 
for the case of football. The goal was to discover whether or not the shifted represen-
tations helped the convolutional network reach a better accuracy or not. The average
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of the 100 runs of this experiment is captured in Fig. 12.12. The additional statistics 
for shift 2, captured at the last epochs, for the Men Euro 2020 are in Fig. 12.13. 

Fig. 12.12 Effect of the 
shifted game representations 
on the Men Euro 2020 
dataset 

Fig. 12.13 Box plot of the 
additional statistic captured 
at the last epochs for shift 2 
Men Euro 2020 dataset
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Table 12.2 Accuracy of the 
best model in predicting the 
Men Euro 2020 

Testing from training 75.2% 

Prediction 69.8% 

Prediction F1-score 0.7234 

Fig. 12.14 Precision and recall curve from the prediction of the Men Euro 2020 

12.5.2.2 Prediction 

After training on the game representations from the Men Euro 2008, 2016, and 
2012, the model produced was used to predict the Men Euro 2020. The data from 
the qualifying stage of the Euro 2020 was used to create the game representations 
for the main tournament. None of the game representations from the Men Euro 2020 
were used in the training. In total, we predicted 43 games. Table 12.2 captures the 
results of the prediction. Figure 12.14 shows the precision and recall curve from the 
prediction. 

12.6 Discussion 

Convolutional Neural Networks can be useful tools in sports predictions. The 2-
dimensional grid demanded by Convolutional Neural Networks provides opportuni-
ties to augment the dataset by shifting the input. We have shown from the case studies, 
previously described, that the accuracies of the Convolutional Neural Networks that 
we used got better when shifted representations were added to the dataset. The most 
performant models, Tables 12.1 and 12.2, from our exploration registered a 70.2%
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accuracy in predicting the Women US Open 2021 and a 69.8% accuracy in predicting 
the Men Euro 2020. These accuracies are an improvement. The ensemble techniques 
we previously used on these datasets had an accuracy of 64.9%, in Randrianasolo 
and Pyeatt (2023), on the Women US Open 2021 and 67%, in Randrianasolo (2023), 
on the Men Euro 2020. 

More works are still left to be explored in using Convolutional Networks in sports 
predictions. We do not claim to have explored all the possible topologies for the 
network. We manually searched for what we thought should be the best topology. 
We guided our search with the constraints that the input representation should allow 
representation shifting and the network should not overfit by memorizing the dataset. 
The possibility that there is another Convolutional Neural Network structure that 
can do better than the ones we used is high. We have not explored all the possible 
parameters that one can have with a Convolutional Neural Network. There is still 
more work to do in exploring the values for the learning rate, momentum, batch size, 
and the type of optimizer. 

The game representation can also be explored further. Instead of using a 6 × 6 
grid, one can use a larger grid that will allow more shiftings to augment the dataset. 
We, however, suspect that there will be a point where the addition of more shifted 
representations may not increase the accuracy of the model any higher. This suspicion 
came from observing the average accuracies in Figs. 12.7 and 12.12. The average 
accuracies are very close for the dataset with shift 1 added and the dataset with shift 
2 added. 

12.7 Conclusion 

The ability to predict the outcomes of games is an important advantage in competitive 
sports. Such ability can help in coaching teams and players and can help in improving 
financial gains as well. In this paper, we summarized our attempt to predict the 
outcomes of sports games using a Convolutional Neural Network. Our approach 
expanded the training set by shifting each grid that represented a game by one and 
two columns to the right. With this approach, we slightly improved our accuracy in 
predicting the Men Euro 2020 and Women US Open 2021. 

As stated in the discussion, we have not explored all the possible configurations 
and parameters involved with a Convolutional Neural Network. We are convinced 
that Convolutional Neural Networks have a lot of potential that can still be explored 
within the arena of sports predictions. 

References 

Alfredo, Y. F., & Isa, S. M. (2019). Football match prediction with tree based model classification. 
International Journal of Intelligent Systems and Applications, 11, 20–28.



12 Using Convolutional Neural Network to Predict Sports 207

Beal, R., Middleton, S. E., Norman, T. J., & Ramchurn, S. D. (2021). Combining machine learning 
and human experts to predict match outcomes in football: A baseline model. Proceedings of the 
AAAI Conference on Artificial Intelligence, 35(17), 15447–15451. https://doi.org/10.1609/aaai. 
v35i17.17815 

Candila, V., & Palazzo, L. (2020). Neural networks and betting strategies for tennis. Risks, 8(3), 
11542. 

Cheng, T., Cui, D., Fan, Z., Zhou, J., Lu, S. (2003) A new model to forecast the results of matches 
based on hybrid neural networks in the soccer rating system. In Proceedings fifth international 
conference on computational intelligence and multimedia applications. ICCIMA 2003 (pp. 308– 
313). 

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of 
pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202. 

Hao, Y., Pengzhou, C., Moyuan, F., & Toe, T. T. (2023). Alzheimer’s disease image classification 
based on efficient convolutional neural network. In Proceedings of the 2022 7th international 
conference on biomedical imaging, signal processing. ICBSP ‘22 (pp. 6–11). Association for 
Computing Machinery, New York. https://doi.org/10.1145/3578892.3578894 

Hsu, Y.-C. (2021). Using convolutional neural network and candlestick representation to predict 
sports match outcomes. Applied Sciences, 11(14), 46594. https://doi.org/10.3390/app11146594 

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document 
recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 

Lin, S.-H., Chen, M.-Y., & Chiang, H.-S. (2018) Forecasting results of sport events through 
deep learning. In Proceedings of the 2018 international conference on machine learning and 
cybernetics (ICMLC), vol. 2 (pp. 501–506). https://doi.org/10.1109/ICMLC.2018.8526954 

Pretorius, A., & Parry, D. A. (2016). Human decision making and artificial intelligence: A compar-
ison in the domain of sports prediction. In Proceedings of the annual conference of the South 
African institute of computer scientists and information technologists. SAICSIT ‘16. Association 
for Computing Machinery, New York. https://doi.org/10.1145/2987491.2987493 

Rahman, M. A. (2020). A deep learning framework for football match prediction. SN Applied 
Sciences, 2(165), 1821. https://doi.org/10.1007/s42452-019-1821-5 

Randrianasolo, A. S., & Pyeatt, L. D. (2023). Using genetic algorithm to create an ensemble machine 
learning models to predict tennis. In Proceedings of the future technologies conference. FTC 
2022, vol. 1 (pp. 681–695). Springer, Cham. 

Randrianasolo, A. S. (2023). Predicting euro games using an ensemble technique involving genetic 
algorithms and machine learning. In Proceedings of the IEEE 13th annual computing and 
communication workshop and conference. CCWC 2023 (pp. 0470–0475). 

Saiedy, S., Qachmas, M., & Amanullah, F. (2020). Predicting epl football matches results using 
machine learning algorithms. International Journal of Engineering Applied Sciences and 
Technology, 5, 83–91. 

Shen, L., Tan, Z., Li, Z., Li, Q., & Jiang, G. (2024). Tactics analysis and evaluation of women 
football team based on convolutional neural network. Scientific Reports, 14, 255. 

Tan, Y., & Teoh Teik, T. (2023). Pneumonia image classification method based on improved convo-
lutional neural network. In Proceedings of the 2022 5th international conference on sensors, 
signal and image processing. SSIP ‘22 (pp. 6–12). Association for Computing Machinery, New 
York, NY. https://doi.org/10.1145/3577148.3577150 

Wang, Z., Wang, K., Wang, X., & Pan, S. (2021) A convolutional neural network ensemble for flower 
image classification. In Proceedings of the 2020 9th international conference on computing and 
pattern recognition. ICCPR ‘20 (pp. 225–230). Association for Computing Machinery, New 
York, NY. https://doi.org/10.1145/3436369.3437427 

Wilkens, S. (2021). Sports prediction and betting models in the machine learning age: The case of 
tennis. Journal of Sports Analytics, 7, 1–19.

https://doi.org/10.1609/aaai.v35i17.17815
https://doi.org/10.1609/aaai.v35i17.17815
https://doi.org/10.1145/3578892.3578894
https://doi.org/10.3390/app11146594
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICMLC.2018.8526954
https://doi.org/10.1145/2987491.2987493
https://doi.org/10.1007/s42452-019-1821-5
https://doi.org/10.1145/3577148.3577150
https://doi.org/10.1145/3436369.3437427


Chapter 13 
Learning to Run Marathons: On 
the Applications of Machine Learning 
to Recreational Marathon Running 

Barry Smyth, Ciara Feely, Jakim Berndsen, Brian Caulfield, 
and Aonghus Lawlor 

Abstract The widespread adoption of mobile devices and wearable sensors has 
created an explosion of exercise-related data. In this chapter we consider how these 
data can be used to support individuals as they train and compete, focusing in partic-
ular on recreational marathon runners. We discuss why the marathon is an interesting 
data science application domain, and we present several case studies to demonstrate 
how ideas from machine learning and recommender systems can be used to help 
marathon runners. 

Keywords Marathon Running · Machine Learning · Performance Prediction ·
Injury Prediction · Pacing Recommendation 

13.1 Introduction 

As we have come to better appreciate the important role that exercise has to play 
in our increasingly sedentary lives (Lieberman, 2015), more and more people, from 
all walks of life, are turning to various forms of endurance exercise to improve their 
cardiovascular fitness, mental health and general well-being (Sharma et al., 2006; 
Vina et al., 2012). Running is one of the most popular forms of exercise due to its 
low barrier to entry and well-documented physiological and mental health benefits 
(Cantwell, 1985; Grunseit et al., 2018; Pedisic et al., 2020; Shipway & Holloway, 
2010; Szabo & Àbrahám, 2013). Among runners the marathon is widely considered 
to be one of the ultimate endurance challenges. Every year big-city marathons attract 
tens of thousands of runners to tackle these challenging 26.2 mile (42.2 km) events. 
This level of interest, combined with the widespread adoption of mobile devices and 
wearable sensors, and all the data produced as a result, makes marathon running
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an exciting application domain from a Machine Learning perspective (Brady et al., 
2005; Dunne et al., 2005; Kiernan et al., 2018; Willy, 2018). 

In this chapter, we outline a growing body of research on this topic and present 
several case studies on the use of Machine Learning for recreational runners as they 
train for, and compete in, marathon events. The purpose of this chapter is not to 
introduce new research—expanded versions of the case studies presented have been 
published elsewhere (Berndsen et al., 2019a; Feely et al., 2021, 2022, 2023)—but 
rather to provide an integrated vision of a body of research targeted at recreational 
marathon runners. In doing so we highlight several important research opportunities 
worthy of explanation. 

13.2 Related Work 

Activity data has the potential to tell us not just about how we have been exercising, 
but also how we should be exercising (Smyth et al., 2022). This is especially true for 
recreational marathon runners because of the many challenges they face. These chal-
lenges present several opportunities for technological intervention as summarised in 
Fig. 13.1; the interested reader is referred to Smyth et al. (2022) for further examples 
and additional discussion.

13.2.1 Supporting the Physical Aspects of Marathon Training 

Not surprisingly, current research on the application of Machine Learning for the 
marathon has focused on ways to support the physical aspects of training, from 
the estimation of important fitness metrics to the provision of more targeted and 
personalized training advice, to predicting race performance. 

13.2.1.1 Estimating Physiological Fitness Indicators 

Sports scientists use a variety of metrics to estimate the fitness levels of individuals, 
such as the well-known VO2max score (Noakes, 2003; Daniels, 2013; Billat et al., 
1994). VO2max measures the maximum rate of oxygen consumption during exercise 
and serves as a key indicator of physiological fitness. With the advent of smartwatches 
and wearable sensors, it is now possible to estimate VO2max directly from training 
data using variables such as training load, intensity, heart rate response etc. (Akay 
et al., 2011, 2013; Abut et al.,  2016; De Brabandere et al., 2018; Webb et al., 2014), 
but without the need for expensive laboratory tests. Similar approaches can be applied 
to predict other key fitness-related metrics too (Billat et al., 2003; Faude et al., 2009; 
Poole et al., 2008). These problems can be framed as supervised learning tasks, and 
the resulting models have the potential to improve training programs by providing
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Fig. 13.1 The opportunities for technological interventions in marathon running, during training, 
on race-day and beyond. Several opportunities relate to supporting the runner with the physiological 
aspects of training and recovery, but other opportunities exist too, to help runners stay motivated 
and interested during the long months of training; see also (Smyth et al., 2022)

more targeted, personalized advice, and tailored recommendations to athletes, based 
on their evolving fitness levels and realistic performance goals. 

13.2.1.2 Recovery and Injury Risk 

How a runner recovers is a critical part of marathon training (Noakes, 2000). The 
right recovery strategy can help to maximise fitness gains and minimise injury risk, 
but exactly what this strategy should be is not always clear, especially for recreational 
runners. Therefore, an important opportunity exists to estimate recovery needs, based 
on an athlete’s current fitness levels and recent training effort, and to recommend 
appropriate recovery actions; see (Barros et al., 2017; Bowen et al., 2019; Lazarus 
et al., 2017; Malisoux et al., 2015; Thornton et al., 2017). Although modern fitness 
devices often include some recovery estimation features, there is considerable room 
for improvement (Pulkkinen & Saarikoski, 2010) by generating more insightful and 
actionable recovery recommendations (Glaros et al., 2003). It may soon be possible 
to use activity data to identify novel patterns of behaviour linking training, recovery, 
and injury. This may lead to novel early warning systems for athletes, alerting them 
to changes in their performance efficiency, which may be a precursor to the onset of
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illness or injury (Carey et al., 2017; Claudino et al., 2019; Gabbett, 2016; Kampakis, 
2016; López-Valenciano et al., 2018; Rossi et al., 2018). 

13.2.1.3 Personalized Training Programs and Coaching 

In the past, most athletes have tended to follow fixed training programs. For example, 
a recreational runner training for a marathon might use a 12–16 week training 
program designed to achieve a 4-h marathon based on 4 days of training per week. 
The obvious shortcoming of such programs is that they do not adapt to the changing 
needs of an individual runner as they train. A fortunate few may be able to avail of 
a personal coach, who will optimise their training based on how they respond to a 
given program, but most will not. Now there is an additional option: the use of AI 
techniques to generate personalized training programs based on a runner’s goals and 
training habits. Indeed, the idea of a virtual AI coach has been proposed in the liter-
ature (Fister et al., 2015; Rauter, 2018) for resistance training and mountain biking; 
see also (Loepp & Ziegler, 2018; Ni et al., 2019). Similar ideas may be suitable for 
developing personalized programs for other endurance athletes, by harnessing real-
time data about an individual’s fitness, training, and goals; e.g. (Feely et al., 2020a, 
b; Tragos et al., 2023). 

13.2.1.4 Performance Prediction and Race Planning 

As race day approaches, runners will begin to carefully consider their goal time and 
their race strategy. In the marathon, participants must plan how to pace their race 
to maximise their performance across the full marathon distance. In doing so, they 
will need to consider their current fitness level, the topology of the course, weather 
conditions on the day, and their fueling strategy. Starting too fast can cause late race 
slowdowns, but starting too cautiously can be equally detrimental (Smyth, 2018) and 
if a runner gets their pacing or fueling strategy wrong, then they can even hit the 
dreaded wall (Buman et al., 2008; Ely et al., 2008; Smyth,  2018). Planning pacing 
correctly requires an accurate estimate of a runner’s likely finish time. A runner can 
use this to determine a suitable average pace, which can be adjusted for different 
stages of the race to accommodate the start section, hills, etc. The existing literature 
uses linear models to predict future race times from previous race times (Bartolucci & 
Murphy, 2015; Keogh et al., 2019; Schmid et al., 2012) but translating a goal time 
into a specific pacing plan is less well explored, although some preliminary work 
has been conducted (Smyth & Cunningham, 2017b, 2018a, b).
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13.2.2 Supporting the Secondary Aspects of Marathon 
Training 

In addition to the physical aspects of marathon training, Fig. 13.1 highlights several 
secondary interventions, from keeping runners motivated to recommending suitable 
races and suggesting appropriate equipment. Many of these are familiar recom-
mendation tasks (suggesting products, people, places, etc.), but the connection with 
marathon running adds an interesting new dimension. 

13.2.2.1 Recommending Races and Events 

In the recommender systems literature there are several examples of event recom-
mendation (Macedo et al., 2015; Minkov et al., 2010; Qiao et al., 2014) and it is 
likely that similar techniques could be easily adapted for marathon runners. Many of 
these approaches rely on social network information to identify events that friends 
plan to attend. With the rise of social networks for sports (e.g., Strava) it should be 
possible to use similar ideas to identify upcoming races or other events that may 
suit a target runner. Moreover, by incorporating information about a runner’s current 
training progress and goals, it may be possible to recommend specific races that will 
challenge the runner in the right way and at the right time. This may improve their 
training outcome as well as adding a new training component to help with motivation. 

13.2.2.2 Recommending Training Routes and Training Partners 

In the past, recommender systems have also been used for route planning (Mc-
Ginty & Smyth, 2001; Chakraborty, 2012), often in tourism applications (Borràs 
et al., 2014; Gavalas et al., 2014; Ricci, 2002; Werthner & Ricci, 2004). Once again, 
similar ideas can be used to suggest interesting and challenging training routes to 
runners, especially when a runner travels to a new location; indeed, combining aspects 
of tourism with activities like running or cycling is increasingly popular. Moreover, 
since running can be a social activity, it may also be useful to recommend training 
partners, perhaps based on availability and ability, or even based on their interests, 
so that the conversation can flow during long runs; see, for example, (Goyal et al., 
2018; Kurade, 2014; O’Donovan et al., 2008, 2009; Tang et al., 2013). 

13.2.2.3 Recommending Equipment and Content 

Even though running places a relatively low equipment burden on a runner, matching 
the right equipment with the right runner is important (Ryan et al., 2011). Recom-
mender systems have a long history in product recommendation and by profiling a 
runner based on their sex, age, gait characteristics, training, running routes, home
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weather, etc., it should be possible to make personalized gear recommendations; see, 
for example, (Frejlichowski et al., 2016; Hwangbo et al., 2018; Marks, 2017; Wakita 
et al., 2015; Zrenner et al., 2018). Similarly, recommending relevant content (articles, 
podcasts etc.) based on a runner’s current training and interests (Álvarez et al., 2019, 
2020; Chen et al., 2020; Vall et al.,  2019) may also help to motivate runners (Pilloni 
et al., 2017) and distract them from their toughest long runs (Han & Xu, 2016). For 
example, recommending a podcast about the importance of interval training may be 
a useful way to motivate a runner about their next (interval) training session, while 
suggesting an article to read about fueling their long runs might help them succeed 
with their next long run. 

13.3 The Strava Dataset 

This work is based on research conducted using an anonymized dataset of training 
activities (2014–2017) made available under a data-sharing agreement between 
Strava Inc. and the authors’ institution. Each logged activity, for some runner, 
r, includes distance, timing and elevation data, sampled at various frequencies 
depending on the tracking device [smartphone, smartwatch, Global Position Systems 
(GPS) sensor, etc.] used. Thus, each runner is associated with a set of training activi-
ties A(r) = {A1,…An} with each Ai = (di, Di, Ti, Ei, Ci, HRi), where di is the activity 
date and Di, Ti, Ei correspond to distance (m), time (sec), elevation (m) time-series 
data. Ci and HRi correspond to cadence and heartrate data when present. Due to 
variations in sampling frequencies and signal errors, we resampled these raw data 
at 100 m intervals to produce a new set of time-series representing the meantime, 
elevation, cadence, and heartrate for each 100 m intervals of an activity. We also 
calculated the average pace (mins/km) for each 100 m interval from the distance and 
time data. 

We extracted marathon races by identifying runners with marathon-length activ-
ities in the same location at a similar time on a specific date, to focus primarily on 
organised marathon events. The resulting dataset is summarised in Table 13.1. In the  
case studies that follow, we used various subsets of this marathon dataset depending 
on the requirement of the study and the complexity of the analysis required.

13.4 Case Study 1: Predicting Marathon Performance 

A very common question from marathon runners concerns the link between their 
training efforts and their expected marathon performance (Doherty et al., 2019). 
Most runners follow a training plan to prepare them for a finish time range (e.g. 
4–4:30 h), but many are interested in more precise finish time estimates or revised 
estimates as training progresses. We describe a case study, based on (Feely et al., 
2022), to explore the relationship between different aspects of marathon training
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Table 13.1 The Strava dataset of marathon runners used in this work shows summary runner details 
(sex, age) and key training and performance metrics (marathon finish time, training sessions per 
week and total distance per week) for each dataset year 

Year Sex Runners Age Race-time 
(mins) 

Sessions/ 
week 

Distance/week 

2014 F 6340 41.2 ± 60.4 261.1 ± 50.6 3.4 ± 1.5 35.6 ± 17.9 
M 36,636 41.7 ± 34.7 240.4 ± 50.9 3.5 ± 1.6 38.5 ± 21.0 

2015 F 14,725 39.9 ± 33.0 263.6 ± 51.8 3.6 ± 1.6 37.0 ± 21.1 
M 73,194 41.2 ± 30.5 241.1 ± 52.8 3.6 ± 1.7 39.5 ± 21.2 

2016 F 27,396 29.1 ± 29.4 266.2 ± 51.7 3.6 ± 1.6 36.8 ± 18.0 
M 119,946 40.7 ± 29.4 243.0 ± 53.6 3.6 ± 1.7 39.6 ± 21.6 

2017 F 43,207 38.2 ± 24.0 267.8 ± 51.2 3.7 ± 1.6 36.9 ± 18.39 
M 167,078 39.8 ± 21.8 244.8 ± 54.1 3.6 ± 1.7 39.8 ± 21.4 

In the case of age, racetime, sessions and distance per week, the data is presented as mean with 
standard deviation values

and race performance. We use Case-Based Reasoning (CBR) for this, which is a 
popular Machine Learning approach in which new problems are solved by retrieving 
and adapting the solutions to similar problems (cases) that have occurred in the past 
(de Mántaras et al., 2005; Bridge et al., 2005). Each case corresponds to a feature-
based summary of a runner’s training history (the case description) and an actual 
marathon time (case solution) and we predict the performance of a new runner, using 
the marathon times of cases with similar training histories. 

13.4.1 Feature Representation 

C(r, w) is a case for runner r, w weeks before their race; see Eq. 13.1. MT is the  
marathon time achieved and F (r, w) consists of the features used to represent the 
training for week w (weekly) and the training weeks up to week w (cumulative); see 
Table 13.2. We also extract the previous (fastest) marathon finish time (PMT) for 
runners, because the work of (Smyth & Cunningham, 2017a, b) has shown that past 
race times can be very effective when it comes to predicting future times. 

C(r, w) = (F(r, w), MT , PMT ) (13.1)
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Table 13.2 A summary of the training activities feature-set 

Feature Unit When Description 

Total distance km Weekly Total weekly distance 

Max (total distance) km Cumulative Max weekly distance 

Mean (total distance) km Cumulative Avg. weekly distance 

Long run km Weekly Max activity distance (in week) 

Max (long run) km Cumulative Max long run distance 

Mean (long run) km Cumulative Mean long run distance 

Training days Unit Weekly Num active days 

Max (training days) Unit Cumulative Max weekly activities 

Mean (training days) Unit Cumulative Mean weekly activities 

Mean pace (mins/km) Weekly Mean pace (in week) 

Min (mean pace) (mins/km) Cumulative Fastest weekly pace 

Mean (mean pace) (mins/km) Cumulative mean weekly pace 

Fastest 10 km (mins/km) Weekly Fastest 10 km pace (in week) 

Min (fastest 10 km) (mins/km) Cumulative Min fastest 10 km pace 

Mean (fastest 10 km) (mins/km) Cumulative Mean fastest 10 km pace 

13.4.2 Case-Based Prediction Models 

We use the following approaches to predict the finish time for a target runner rt in 
week w, by selecting the k most similar cases, using a standard Euclidean distance 
metric, and calculating the average of their finish times (Feely et al., 2022). 

13.4.2.1 Previous Marathon Time (PMT) Model 

This model uses only the past marathon time (PMT) and the sex of the runner to 
identify a set of similar cases. It is included as a benchmark, based on the work of 
(Smyth & Cunningham, 2017a, b, 2018a, b), against which to evaluate the influence 
of training history data. 

13.4.2.2 Training Activity Model (TA) 

This model uses a stepwise, forward, sequential feature selection process to identify 
the subset of training features to use each week, as the basis for case similarity. This 
means a case for week w can include a different set of features depending on which 
features were found to be most useful in predicting marathon times at that point in 
training. For reasons of space we do not include any further details on the feature
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selection process here, but the interested reader is referred to Feely et al. (2022) 
where it is discussed in detail. 

13.4.2.3 Combined (C) and Ensemble (E) Models 

We also include two ways to combine these models: (i) in C the past race times and 
training features are combined into a single representation; (ii) in E the race time and 
training features remain separate but the predictions from each are averaged. 

13.4.3 Evaluation 

To evaluate these prediction models we generate marathon time predictions for Strava 
runners, at various points in their training, and compare the predicted times to the 
actual marathon times that these runners went on to achieve. 

13.4.3.1 Dataset 

The dataset used includes just over 160,000 16-week training histories from 85,000 
unique runners, comprising more than 8 million training activities. 

13.4.3.2 Method 

A standard tenfold cross-validation approach is used to evaluate the marathon time 
predictions for the various techniques, using the mean absolute percentage error as 
a performance metric; e.g. an error of 10% means that the predicted marathon time 
differs from the actual marathon time by 10%. 

13.4.3.3 Performance vs. Training Week 

Figure 13.2 shows the predicted performance for males (a) and females (b). The 
predictions from the PMT model (and the actual previous marathon time) remain 
static with training week, as they do not depend on training. Interestingly, using 
the actual previous marathon time of rt outperforms the use of past marathon times 
from similar runners (kNN). Using information about rt’s recent training improves 
predictions for males and females as training progresses; the more we know about a 
runner’s training, and the closer we get to race day, the more accurate the predictions. 
Combining past race times and training information improves predictions further and 
using a single combined representation (C) outperforms the ensemble approach (E).
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Fig. 13.2 Percentage error for different weeks in training for each of the previous race-time, training 
activities, and combined models for males (a) and  females (b) 

13.4.3.4 Performance Versus Ability 

To evaluate the influence of runner ability on prediction accuracy, Fig. 13.3 shows the 
prediction accuracy of model C at different points in training based on runner ability. 
Faster runners (<3:30 marathoners) and slower runners (>4:30 marathoners) are asso-
ciated with less accurate predictions than the recreational runners who complete the 
marathon in the 3.5–4.5 h range. Arguably, these are likely to be runners who are most 
focused on achieving improvements in their finish times, especially those targeting 
the iconic sub-4-h marathon. The results also show slightly better predictions closer 
to race day when we control for runner ability. Of course, additional factors may be 
at play here. For example, injuries during training can certainly impact performance 
and how a runner paces their race can also determine their finish time. Both of these 
issues will be discussed in the case studies that follow.

13.4.4 Discussion 

This case study is important for several reasons. First, many marathon programs 
design sessions based on a runner’s eventual race pace; for example, a particular 
session might be specified as 30 min at marathon pace or a long run at 40 s per 
km slower than marathon pace. Thus, runners need to know their marathon time/ 
pace so that they can correctly tune their training. Second, providing a runner with 
regular marathon time predictions can help them to understand how their training 
is progressing. Improving finish time predictions can build a runner’s confidence, 
while a lack of improvement may signal a need for some change in training (Feely 
et al., 2023). Finally, as race day approaches, a runner needs to know their likely
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Fig. 13.3 Percentage error of the combined-features model by marathon finish times (mins) for 
males (a) and  females (b) at 3, 6, 9 and 12 weeks from race day

finish time, to help ensure they execute a well-paced race and avoid hitting the wall 
(Smyth, 2021) late in the race. 

13.5 Case Study 2: Forecasting Injury Risk 

Injuries are an ever present risk for marathon runners (Kluitenberg et al., 2015). 
Identifying their cause is challenging and predicting the risk of injury is important 
(Bache-Mathiesen et al., 2023; Toresdahl et al., 2022; Lövdal et al., 2021). Here, 
we describe an attempt to forecast injury risk based on a runner’s training history, 
using the Strava dataset. Since this dataset has no explicit information about injuries, 
we will use training disruptions—consecutive days without training—as a proxy for 
injuries, based on the work of (Feely et al., 2021). 

13.5.1 Representing Disruption/Injury Cases 

Once again, we adopt a CBR approach. Each case C(r, w) consists of a set of training-
related features F(r, w) as well as an injury status indicator, which indicates whether 
the runner experienced a training disruption of at least 7 days [based on the consensus 
definition used by (Yamato et al., 2015)] in the weeks following. F(r, w) are based 
on the features in Table 13.3, aggregated across the previous 4 weeks of training as 
follows:

1. Average: the mean total weekly distance, longest run distance, number of sessions 
etc. during the previous 4 weeks, F(r, w − 3), …, F(r, w).
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Table 13.3 The basic features used to derive the weekly training representation 

Feature Description 

Number of sessions Weekly sessions/activity count 

Total distance (km) Total weekly distance 

Longest distance (km) Distance of longest activity 

Mean training pace (mins/km) The mean weekly pace 

Fastest 10 km pace (mins/km) The pace of the fastest 10 km segment per week 

2. Standard Deviation: the standard deviation of these features over the past 4 weeks. 
3. Relative Change: the mean change for each feature for the past 4 weeks. 

We also include the so-called acute chronic workload ratio (ACWR) (Hulin et al., 
2016) as an additional case feature to measure the weekly training load of a runner. 
We calculate ACWR from the total training distance in the current week (the acute 
load) divided by the average weekly distance over the last 4 weeks (the chronic 
load); see Eq. 13.2. ACWR > 1.1 is usually not recommended and higher ACWR 
values are associated with a greater likelihood of injury (Toresdahl et al., 2022). 

ACWR = distw 
(distw +  · · ·  +  distw−3)/4 

(13.2) 

We use the Strava data to produce two types of cases. A positive disruption case 
C+(r, w) corresponds to a runner r who suffers a ≥7-day training disruption after 
week w, and is associated with two additional features: (i) DW (r, w), the week in 
which the disruption occurred; and (ii) DL(r, w) the length of the disruption in days; 
see Eq. 13.3 and note that we abbreviate F (r, w) as  Fw without loss of generality. 
A negative disruption case, C−(r, w), denotes a runner who does not experience a 
≥7 day disruption after week w; see  Eq.  13.4 Note that, for positive and negative 
cases, we use the training history features for the preceding 4 weeks (Fw, Fw−1, 
Fw−2, Fw−3). 

C+(r, w) = {Fw−3, Fw−2, Fw−1, Fw} → disrupted , DW (r, w), DL(r, w) (13.3) 

C−(r, w) = {Fw−3, Fw−2, Fw−1, Fw} → undisrupted (13.4) 

During training, each runner can be associated with several different cases 
according to their future injury status. There are more negative (undisrupted) cases 
than positive ones, leading to an unbalanced case base. To address this, the case base 
was balanced by randomly undersampling the negative cases to produce the same 
number of negative cases as there are positive cases; see Hasanin and Khoshgoftaar 
(2018).
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Table 13.4 Number of 
positive and negative cases 
for different weeks in training 

Weeks to race Positive Negative 

3 43,406 74,842 

6 47,409 111,316 

9 55,860 140,682 

12 67,590 165,386 

13.5.2 Predicting Training Disruptions 

To predict the injury/disruption status for rt at week w, we select the k most similar 
(week w) cases, using a standard Euclidean distance metric. The majority class 
(positive or negative) of these k cases is the predicted class, and the proportion of 
positive cases among these k cases is the disruption risk score. 

13.5.3 Evaluation 

We evaluate this approach using the Strava dataset to determine how reliably we can 
predict whether a runner will experience a training disruption given their training 
history. 

13.5.3.1 Dataset 

Table 13.4 summarises the dataset used in terms of the number of positive and 
negative cases at different key points in training (3, 6, 9, and 12 weeks from race 
day) prior to undersampling. 

13.5.3.2 Method 

We perform a standard tenfold cross-validation to evaluate the model’s performance. 
For rt we identify the k nearest neighbours (k = 15) to use for classification and 
risk-score prediction. We compare the predicted class (positive or negative) with the 
actual class of the target case to calculate an accuracy score based on the fraction 
of correct classifications. Separately, to evaluate the accuracy of the risk score we 
calculate the correlation coefficient between the risk scores and the actual fraction 
of runners that experience a disruption for a given risk score range.
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Fig. 13.4 a the prediction accuracy and the correlation coefficient for weeks leading up to race-day; 
b prediction accuracy for the undisrupted/negative and disrupted/positive classes 

13.5.3.3 Results 

Figure 13.4a shows how prediction accuracy and risk-score correlation vary with 
the number of weeks before race day. Prediction accuracy is modest (≈68%), 
reflecting the challenging nature of the task but it improves slightly closer to race day. 
Figure 13.4b separates the prediction accuracy for the positive and negative classes 
(true positive and true negative rates). The model is slightly better at predicting 
disruptions than it is at predicting non-disruptions, but again the difference is modest. 

13.5.4 Discussion 

We have summarised recent work on predicting whether or not a runner is likely 
to experience a training disruption based on their training history as a proxy for 
predicting injuries. The lack of explicit injury data in the Strava dataset makes this 
task particularly challenging. However, the results show that it may be feasible to 
make reasonably accurate disruption predictions. In the future, we might expect more 
accurate predictions if more reliable labeled injury data becomes available. 

13.6 Case Study 3: Recommending Pacing Adjustments 

In our final case study, we turn our attention to race day and how runners pace their 
marathons. The prevailing wisdom is for runners to adopt an even pacing strategy, 
by running each segment of the race at a similar pace. The common mistake of 
starting too fast can lead to significant finish time costs and even cause runners to 
hit the dreaded wall (Smyth, 2018, 2021) later in the race, but saving energy for
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a fast finish is also problematic (Smyth, 2018). Even with an appropriate pacing 
plan, race day does not always go as expected, and runners often have to reevaluate 
if problems occur. In this final case study, which is based on work presented in 
Berndsen et al. (2019b), we attempt to help runners complete their marathons to the 
best of their ability even when problems occur. We use Machine Learning to predict 
whether a laterace slowdown is likely and then use ideas from recommender systems 
(Smyth, 2007) to suggest suitable pacing adaptations to avoid such slowdowns. We 
do this using Strava data from 7931 unique runners of New York, London and Dublin 
marathons, chosen because their marathon data includes cadence (steps per minute) 
and heart rate (HR) information, which allows us to track their effort during the race, 
in addition to the usual time, distance, and pacing data. 

13.6.1 Predicting Late-Race Slowdowns 

To predict late-race slowdowns, we extract several features from the pacing, cadence, 
and heart-rate time series. As an initial feature set, we use the average pace, cadence, 
and HR every 500 m of the race; we refer to these as the original features. We also 
produce an extended feature set by using the TSFresh time-series feature extraction 
method (Christ et al., 2018) to compute more detailed features from the pacing, HR 
and cadence data; because of the computational cost of this, we restrict it to the 
10 km, half-way (21.1 km) and 30 km landmarks. 

Then, for each point in the race (every 500 m for the original features and the 
landmarks for the extended features) we train an XGBoost (Chen & Guestrin, 2016) 
model to predict the second-half slowdown of a runner based on their race so far. 
The results of a tenfold cross-validation evaluation are shown in Fig. 13.5a as the  
mean absolute prediction error at different points in the race. The extended features 
offer improved performance, but at the expense of “granularity”, because predictions 
can only be made every so often. In reality, it should be straightforward to make 
predictions at finer levels of granularity (e.g. every 5 km or even every 1 km) but it 
is unlikely that recreational runners will benefit from finer granularity than this in 
practice.

Predictions improve as the race unfolds. This is not surprising because the model 
has increasing information available. By the halfway mark the extended feature model 
can predict the slowdown magnitude with an error of about 6% which is sufficient 
in practice for alerting the runner to potential future pacing problems. 

13.6.2 Recommending Pace Adaptions 

Next, we suggest mitigating actions for runners who are predicted to slow. We do 
this by taking advantage of the fact that some past runners, whose early race data 
suggested they would slow, nevertheless made good decisions about their pacing,
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Fig. 13.5 a The prediction error (MAE) associated with late-race slowdowns when using the orig-
inal and extended features; b The distance between recommended pacing profiles and those pacing 
profiles that mitigated slowdowns (no slowdown) and those that did not (slowdown). See (Berndsen 
et al., 2019b) for further details

and avoided this predicted slowing. We view their pacing decisions as examples of 
successful adaptions, which avoided late-race slowing, and we use these runners and 
their pacing decisions, as mitigation cases in a CBR system. If our model predicts 
a runner, rt is at risk of slowing significantly, then we suggest a pacing adaptation 
based on the pacing of the most similar mitigation cases according to the following 
approach: 

1. Find the k most similar runners, {r1, …,  rk} to  rt; 
2. Calculate the average pacing profile of these runners, P (ri); 
3. Normalise the pacing profile of these similar runners with respect to rt 

P′(ri) = 
P(ri) 

P(r) 

4. Use the average finish time, for these similar runners as rt’s new target finish 
time; 

5. Calculate the required pace, over the remaining race, for rt to finish in this target 
time. 

6. Multiply this average pace by the normalised pacing profile to produce a 
personalized pacing profile for the remaining race for r. 

To evaluate this approach, we begin with runners who were predicted to slow 
by our XGBoost model. They can be divided into (i) those who avoided slowing 
by adjusting their pace (slowdown) and (ii) those who did not (no slowdown). To 
evaluate our pacing recommendations for some rt we compare rt’s remaining pacing 
to the corresponding pacing of these groups by computing the distance between the 
recommended pacing profile and the pacing profiles in (i) and (ii). We used a tenfold 
cross-validation procedure to produce the results in Fig. 13.5b. These results show 
that the recommended pacing profiles are closer to those found in the no-slowdown 
group than the slowdown group, at the 10 km, halfway, and 30 km landmarks and these
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differences were found to be statistically significant with p < 0.0005; see Berndsen 
et al. (2019b). 

13.6.3 Discussion 

This case study considered how to provide runners with guidance during a race to 
help them better optimise their finish times by predicting late-race slowdowns and 
suggesting useful mitigating pacing adjustments at several points in the marathon. A 
limitation of this study is that it is retrospective rather than prospective. It does not 
evaluate recommendations made to real runners in real-time as they race. However, 
the results are consistent with the hypothesis that, if runners adjust their pace as 
recommended, then they may avoid slowing later in the race. Nonetheless, additional 
work is required to establish whether this approach will deliver similar benefits in a 
real-world race setting. 

13.7 Conclusions 

This chapter highlights several ways Machine Learning and recommender systems 
can support recreational runners, as they train for, and participate in, marathon races. 
The case studies target different aspects of marathon preparation using a large-
scale, real-world dataset. The findings show how marathon runners can benefit from 
performance prediction, injury risk assessment, and race planning techniques. 

Although this work has focused on running marathons, the ideas presented also 
apply to several other endurance sports. For example, related challenges exist in 
skating (Smyth & Willemsen, 2020), cycling (Mattern et al., 2001), and multisport 
events such as triathlons (Wu et al., 2015) and adventure racing. 

As the technology continues to improve—for example, new types of sensors are 
appearing frequently (e.g. blood oxygen, power meters, etc.)—it will be possible to 
measure and estimate many important physiological phenomena. And as the sports 
science community adapts to these ideas and results, we will likely benefit from 
important new insights into how we train, compete, and recover. 
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Chapter 14 
Data-Driven Methods for Soccer Analysis 

Sylvio Barbon Junior, Felipe Arruda Moura, and Ricardo da Silva Torres 

Abstract This chapter delves into the potential of utilising data-driven methods 
for soccer analysis. Particularly soccer, with its intricate player interactions and 
abundant data sources, serves as an ideal canvas for applying these methodologies. 
The core concept of the chapter revolves around establishing a data-driven pipeline 
in soccer and sports science. This pipeline automates the collection, transformation, 
processing, and analysis of data, creating a systematic flow from raw data to insightful 
decision-making. We aim to provide a comprehensive overview of how data-driven 
techniques are revolutionising soccer performance analysis. This chapter covers the 
promises and possibilities that the confluence of Artificial Intelligence (AI) and sports 
science holds, offering a roadmap for optimising athlete and team performance. 

Keywords Soccer Analysis · Data Science · Artificial Intelligence · Machine 
Learning · Deep Learning 

14.1 Introduction to Data-Driven Methods 

Data-driven methods in the scope of Artificial Intelligence (AI) refer to approaches 
that rely heavily on data to support decisions, draw insights, and improve systems 
performance. These methods utilise extensive datasets to train Machine Learning 
models, extract patterns, and generate predictions or decisions based on the collected 
data. Particularly, the field of sports science has undergone a profound transforma-
tion propelled by the integration of cutting-edge data-driven methods. This paradigm
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shift represents a departure from conventional approaches, as researchers and practi-
tioners increasingly rely on data analytics, Machine Learning, and advanced sensing 
technologies (e.g., wearable) to unravel the complexities of athletic performance, 
injury prevention, and coaching strategies. 

Data-driven solutions in soccer for engineers refer to the innovative integration of 
data analytics, sensor technologies, and computational methods to optimise player 
performance, injury prevention, and strategic decision-making (Gamble et al., 2020). 
Soccer, in particular, has become a focal point for data-driven methods owing to the 
intricate nature of the game, characterised by dynamic player interactions that tradi-
tional analysis struggles to capture comprehensively. The sport offers an abundance 
of rich data sources, including player tracking through GPS devices, video footage, 
and detailed match statistics, providing a robust foundation for sophisticated anal-
ysis (Goes et al., 2021a, b). Advancements in technology, such as wearable sensors 
and high-resolution cameras, have made data collection more accessible, allowing 
soccer teams to implement advanced methods for real-time and post-match anal-
ysis. In the fiercely competitive world of soccer, teams are incessantly searching 
for strategic advantage, and data-driven methods offer insights into opponents’ 
strategies, optimise player performance, and enhance overall team dynamics. 

Beyond the competitive realm, data-driven approaches play a pivotal role in 
injury prevention and player health by monitoring physical conditions, workload, and 
recovery patterns (Huang & Jiang, 2021). Coaches and analysts leverage data-driven 
insights to understand patterns of play, player positioning, and team formations, 
enabling them to devise effective game plans and make strategic decisions during 
matches (Shaw & Glickman, 2019). The global popularity of soccer contributes to the 
demand for an engaging fan experience, and data-driven methods provide advanced 
analytics, statistics, and visualisations that deepen fans’ understanding of the game. 
Moreover, these methods are instrumental in talent identification and player recruit-
ment, allowing clubs to assess player performance, potential, and suitability for their 
teams through informed decisions in the transfer market (Larkin & O’Connor, 2017). 

In essence, soccer’s embrace of data-driven methods based on data processing 
pipelines to support competitive advantage. A data-driven pipeline, also known as 
a data pipeline, refers to a series of processes and tools that are orchestrated to 
automate the collection, transformation, processing, and analysis of data. The goal 
of a data-driven pipeline is to efficiently and reliably move data from diverse sources 
to its destination, making it accessible and usable for analytics, decision-making, 
and other applications. This concept is particularly prevalent in the fields of data 
engineering, data science, and business intelligence. 

Figure 14.1 shows the traditional data-driven pipeline in soccer and sports science 
involves a systematic flow of processes and tools to collect, process, analyse, and 
derive insights from data related to soccer performance and athlete well-being. The 
exemplified pipeline has the initial phase regarding the collection of raw data from 
diverse sources. This includes extracting information, for example, from player 
tracking devices, wearable sensors worn by athletes, recorded video footage of 
matches, health monitoring, and detailed match statistics. The gathered data encom-
passes a broad spectrum of information crucial for analysis. This includes tracking
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player movements on the field, capturing physiological parameters, such as heart 
rate and distance covered, logging various game events, and considering contextual 
factors like weather conditions and team dynamics. In the next step, following the 
collection phase, the raw data undergoes meticulous processing to ensure its cleanli-
ness, proper formatting, and standardisation. This preparation is vital for maintaining 
consistency and creating a uniform dataset suitable for analysis. Subsequently, the 
processed data becomes the subject of in-depth analysis. Statistical methods and 
exploratory data analysis are applied to unveil patterns, identify trends, and extract 
key performance indicators. This stage provides a comprehensive understanding of 
the intricacies of players’ performance and match dynamics, which could open the 
possibility for two different branches: Data Visualisation and Data (or Predictive) 
Modelling. 

Data Visualisation provides insights gained from the analysis; results are often 
visualised using charts, graphs, dashboards, or other visual representations. Visu-
alisation tools assist coaches, analysts, and stakeholders in interpreting complex 
data and making informed decisions. On the other hand, the predictive modelling 
phase involves the application of techniques by data scientists and sports analysts. 
Machine Learning models, statistical models, and domain-specific algorithms are 
employed to derive actionable insights from the processed data. These models 
serve various purposes, including predicting injuries, profiling player attributes, 
conducting tactical analyses, and addressing other aspects of sports science. Both 
phases compose Decision Support Tools, aiding coaches, analysts, and stakeholders 
in making informed decisions related to player development, game strategy, and 
overall team performance.

Fig. 14.1 General pipeline for a data-driven soccer analysis 
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This chapter endeavours to provide an in-depth exploration of the multifaceted 
applications of data-driven techniques within the realm of sports science, focusing on 
soccer to elucidate how these methodologies contribute to a holistic understanding 
of athlete dynamics and pave the way for optimised solutions. The confluence of 
AI and sports holds the promise of refining performance analysis and revolution-
ising athlete management, AI-based, and strategic decision-making in individual 
and soccer teams. 

14.2 Data Collection 

For a quantitative analysis of athletes’ performance during competition and training 
situations, a series of manual and computational tools have been developed over the 
years since 1960s (Hughes & Franks, 1997; Reep & Benjamin, 1968). The first studies 
that sought to analyse the movements of players on the field used a methodology that 
consisted of, initially, quantifying the stride length of football athletes at different 
speeds. Then, the researchers filmed all the athlete’s movements during the game 
and, using the images, estimated how many steps the player took at each speed. 
Despite the inherent errors associated with this type of data collection, such as the 
manual nature of the process, the authors were able to provide records of the distances 
covered by professional football players during an entire match at the time (Reilly, 
1976; Withers, 1982). 

In the late 1990s and early 2000s, several methods were developed with the main 
objective of identifying the player’s position on the field as a function of time. Once 
players’ positions were determined, it allowed, initially, the quantification of phys-
ical performance variables of athletes, such as distances covered and speeds, with 
greater accuracy. In that period, the first studies collected data from Global Posi-
tioning System, Local Positioning Systems, and the video-based tracking systems. 
A recent survey (Rico-González et al., 2020) identified that optic-based systems, 
Global Positioning System/Global Navigation Satellite Systems, and Local Posi-
tioning systems represented 60, 33, and 7% of studies focused on the assessment of 
collective behaviour. These systems are briefly described next. 

14.2.1 Video-Based Systems 

Since the early 2000s, advances in video technology and computer processing perfor-
mance have motivated the interest of researchers in using computer vision and image 
processing techniques for the automatic analysis of sports games by videogrammetry 
(Figueroa et al., 2006b). While in the past the poor spatial and temporal resolution of 
the cameras represented a challenge to efficiently identify players for every frame, 
the current commercial and mobile phone cameras provide great spatial (4 K or 
more) and temporal (120 Hz or more) resolution. Thus, considering the cameras and
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the computational resources available at each moment of the timeline regarding data 
collection in sports, different methods have been developed in the last two decades. 

One of the first studies (Intille & Bobick, 1994) dealing with the automatic tracking 
of American Football players presented the concept of a closed-world tracking 
method, referred to as a space–time region in an image in which the taxonomy 
of all objects are known and all pixels of this region is associated with one of those 
objects. The key idea of the algorithm was (1) to compute the closed-world region 
around the players for the current frame, (2) to assign each pixel of the region to 
one of the objects within the closed-world region, (3) to determine context-specific 
features for the creation of a template of each player within the closed-world region, 
and (4) to track the player on the next frame based on the previous templates. A 
few years later, tracking soccer players was possible (Taki et al., 1996) based on the 
extraction of the static objects of the image by thresholding and line detection based 
on Hough transformation. Then, a body part of the player was manually identified 
as the initial template and players were tracked frame by frame by correlation-based 
template matching. Other studies (Matsui et al., 1998; Seo et al., 1997) proposed 
tracking players from TV broadcast images, however, considering that performance 
analysis is dependent on determining the positions of all players, these methods are 
limited. For most of the studies, the methods performed well for isolated players, but 
for regions with more than one player, tracking was challenging. 

To improve the tracking methods, Figueroa et al. (2006b) proposed a method 
based on at least four static cameras which together cover the whole pitch. 

Each camera had its own unique approach to image segmentation, diverging from 
the methods reported in the literature (Choi & Seo, 2011; Martín & Martínez, 2014; 
Xu et al., 2004), by background extraction based on a non-parametric morphological 
levelling operation (which deals with the specific problem of lighting changes in 
the scene during the match) (Figueroa et al., 2006a). By considering a model of the 
players and specific morphological operations, occlusion problems were treated by 
splitting segmented blobs. The splitting process was done using a graph representa-
tion in which the nodes were represented by the players’ blobs and the edges were 
defined considering the information regarding the blobs, such as distance between 
blobs, colour, and movement direction. Although applied studies (Barros et al., 2007; 
Moura et al., n.d.) using this method reported the best automatic tracking rate as 
94%, in general, manual operator intervention is excessively high and prone to errors. 
Additionally, image segmentation may compromise several hours considering image 
spatial and temporal resolutions, and the computational resources available. In this 
sense, recent advances in Deep Learning and Machine Vision Algorithms allowed 
the capture of relevant data (e.g., positional data) based on automatic segmentation 
and/or detection for both fixed cameras and TV broadcasts. Developments in such 
areas fostered scaling-up analysis based on large volumes of data. Soccer analysis 
using machine vision has been associated with SOTA results in several applications 
(Manafifard et al., 2017), ranging from dribbling detection (Barbon et al., 2022) 
to the prediction of successful actions (Stival et al., 2023) based on spatiotemporal 
patterns. More recently, studies proposed the concept of pose detection, motivated by



238 S. Barbon Junior et al.

biomechanical research questions related to limb kinematics and estimated kinetics, 
with relevant applications in soccer (Monteiro et al., 2022). 

14.2.2 Time Series 

Time series data comprises a sequence of data points recorded at regular time inter-
vals, showcasing the evolution of variables over time. Each data point is associated 
with a specific timestamp or time period, creating a temporal order. The granularity 
of the data is determined by the time interval between consecutive observations, 
exemplified by instances like player tracking data recorded every second during a 
soccer match. Individual observations, such as scores, player positions, ball trajec-
tories, or physiological metrics, are captured at specific time instances, contributing 
to the dynamic nature of the dataset. 

Temporal patterns, both seasonal and long-term trends, are evident in time series 
data (Borrie et al., 2002). Seasonal patterns reveal recurring trends within specific 
time periods, exemplified by teams performing differently in certain seasons due to 
factors like weather conditions or player form. Long-term trends, on the other hand, 
depict gradual improvements or changes in team performance over extended periods, 
influenced by strategic alterations or player development. 

Event sequences, capturing the order of occurrences could encompass player 
movements, such as dribbling (Barbon et al., 2022), providing insights into the 
dynamic buildup during a match. Each data observation is accompanied by a times-
tamp, indicating when player performance metrics or other variables were recorded. 
Periodic events, like matches scheduled weekly during a league season, contribute 
to the structured nature of time series data. 

Anomalies in time series data denote unusual or unexpected patterns, serving as 
indicators of noteworthy occurrences. For instance, sudden spikes in player heart 
rate or unexpected changes in team performance can be identified through anomaly 
detection techniques. 

A diverse array of sensors is employed to capture a comprehensive range of data. 
General Positioning Systems (GPS) trackers, worn by players, furnish real-time data 
on their positioning, distance covered, speed, and acceleration during both training 
sessions and matches (Buchheit et al., 2014). Wearable accelerometers complement 
this by measuring accelerations, decelerations, and changes in direction, offering 
valuable insights into physical exertion and workload. Heart rate monitors, another 
integral component, track players’ heart rates, delivering critical information on 
cardiovascular load, fatigue, and overall fitness levels. Smart jerseys, equipped with 
sensors, capture data on players’ movements, posture, and biomechanics, thereby 
aiding in injury prevention and performance optimization (McDevitt et al., 2022). 

Ball tracking systems employ cameras and sensors to monitor the movement 
of the ball, providing insights into ball possession, trajectory, and pivotal events 
such as shots on goal. Furthermore, pressure sensors embedded in cleats measure 
foot pressure and offer insights into players’ stride patterns, balance, and ground
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contact forces. Environmental sensors are important to capture data on factors like 
temperature, humidity, and altitude, influencing player performance and contributing 
to injury prevention strategies. Also, biomechanical sensors attached to players’ 
bodies capture data on joint movements and muscle activation, providing insights 
into biomechanics and potential injury risks. Inertial Measurement Units (IMUs) 
worn by players capture data on movement, orientation, and changes in velocity, 
contributing to a detailed analysis of player kinetics (Zhang, 2014). 

14.2.3 Tabular Data 

Tabular data refers to information organised in a table-like structure, where data is 
presented in rows and columns. This format is highly structured, making it suitable 
for various analytical and computational purposes. Each row typically represents an 
individual record or observation, while columns correspond to different attributes 
or variables associated with those records. Tabular data is prevalent in numerous 
domains, including databases, spreadsheets, and datasets used in machine learning 
and data analysis. 

Tabular data is amenable to various data analysis techniques, including statistical 
analysis, the creation of Machine Learning models, and exploratory data analysis. The 
structured nature of tabular data simplifies tasks like filtering, sorting, and aggregating 
information. Additionally, it serves as a foundational format for creating datasets that 
can be utilised to train machine learning models for predicting outcomes, uncovering 
patterns, and making informed decisions in the realm of soccer analytics and sports 
science. 

Consider player statistics, where each row is dedicated to a specific player, and 
columns encapsulate essential attributes such as player ID, name, position, goals 
scored, and assists. This tabular arrangement offers a comprehensive overview of 
individual player performance metrics, creating datasets (Brooks et al., 2016). 

Similarly, when examining match data, the tabular format aligns each row with 
a distinct match, while columns detail pertinent information including match ID, 
date, participating teams, and the final score. This structured presentation enables 
a systematic evaluation of match-related variables, aiding in comprehensive match 
analysis. 

Team performance metrics, another crucial facet, are encapsulated within rows 
representing individual teams. Within this tabular construct, columns house attributes 
such as team ID, name, points earned, and goals conceded, providing a systematic 
and detailed portrayal of team-level performance. Delving into injury records, for 
example, the tabular structure organises data by allocating each row to a specific 
instance of a player’s injury. Associated columns document pertinent information 
such as player ID, injury type, date of occurrence, and recovery time. This systematic 
arrangement facilitates a detailed examination of player injuries, contributing to 
injury prevention strategies and player well-being assessments.
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The utilisation of tabular data in these contexts adheres to structured principles, 
allowing for systematic organisation and analysis of pertinent information critical 
for sports analytics and decision-making processes within the realm of soccer and 
sports science. 

14.2.4 Graph Representations 

Another recent trend relies on using graphs to model players in their interactions. 
In existing formulations, players are modelled as vertices, and edges are used to 
represent their relationships. Examples of applications include pass exchange anal-
ysis based on passing graphs (Zhou et al., 2023) or tactical analysis based on player 
location on the field (an edge exists if two players are close to each other) (Stival 
et al., 2023; Rodrigues et al., 2019). 

14.3 Process and Analysis Techniques 

Data processing and analysis is a step of the data-driven pipeline, which plays a pivotal 
role in transforming raw data into meaningful insights, providing models to automa-
tise complex tasks and even discover patterns. Finally, this phase transforms all 
collected data into actionable insights, ranging from heatmaps to Machine Learning 
models. Preprocessing, in which data is cleaned and formatted; feature engineering, 
enhancing data representation for visualisation and Machine Learning modelling; 
data modelling for model selection and optimisation, choosing and fine-tuning the 
right model. 

14.3.1 Data Preprocessing 

The goal of data preprocessing is to improve data quality, revolving around the idea 
of preparing and cleaning raw data to make it suitable for analysis or modelling. 
Common issues found in raw data include missing values, the presence of noise, 
and lack of normalization. To address those challenges, several data transformation 
methods are employed, and their choice depends on the kind of data (e.g., image, 
time series, structure data) and the sensors’ quality (e.g., noise, missing values, and 
resolution). The main tasks that need to be handled, include the following: 

• Handling Missing Values: Identification and treatment of missing data points to 
avoid biases and inaccuracies in subsequent analyses (Emmanuel et al., 2021). 
Handling missing values can be addressed through deletion methods, like listwise
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or pairwise deletion, where rows or pairs with missing values are removed. Imputa-
tion methods include mean, median, or mode imputation, forward and backwards 
fill, Linear Regression, K-Nearest Neighbours, and multiple imputations, each 
replacing missing values based on specific criteria. 

• Data Cleaning: Removal of irrelevant or redundant information, correction of 
errors, and addressing inconsistencies in the dataset to improve overall data quality 
(Chu et al., 2016). Principal Component Analysis (PCA) for feature reduction, 
spell-checking algorithms for textual data correction, statistical outlier detection 
for numerical inconsistencies, cross-validation with external sources for veri-
fication, and rule-based validation checks based on domain knowledge can be 
employed. 

• Normalisation and Standardisation: Conversion of categorical variables into 
numerical representations for compatibility with Machine Learning methods. 
Normalisation is the process of scaling numerical features to a standard range, 
typically between 0 and 1. The goal is to ensure that all features contribute equally 
to the model training process, preventing certain features with larger scales from 
dominating the learning process. Standardisation involves transforming numer-
ical features to have a mean of 0 and a standard deviation of 1. Machine Learning 
models often require numerical input, making the conversion of categorical 
variables necessary. 

• Feature Engineering: Creation of new features or transformation of existing ones 
to enhance the representation of information, improving the learning capabilities 
of Machine Learning models (Nargesian et al., 2017). Techniques include creating 
polynomial features to capture non-linear relationships, introducing interaction 
terms to represent synergies between features, discretising numerical features into 
bins for non-linear relationship capture, log-transforming numerical features for 
symmetry, scaling features to ensure uniformity, generating time-based features 
like lag features for time-series data, encoding categorical variables into numerical 
forms using techniques like One-Hot Encoding, and extracting features from text 
data using methods like TF-IDF or word embeddings. These techniques collec-
tively improve the learning capabilities of Machine Learning models by providing 
more informative and relevant features. The choice of methods depends on the 
nature of the data and the specific modelling goals. 

• Handling Imbalanced Data: Addressing class imbalances in the dataset to prevent 
models from being skewed towards the majority class (Rout, Mishra, & Mallick, 
2018). Various methods for handling imbalanced data include resampling tech-
niques such as over-sampling (e.g., SMOTE) and under-sampling, ensemble 
methods like Balanced Random Forest and Easy Ensemble, and anomaly detec-
tion with techniques like Isolation Forest. The goal is to handle imbalanced data, 
allowing for improved recognition of patterns in minority classes. 

• Noise Reduction: Identification and removal of noisy data or outliers that may 
distort the analysis or training of Machine Learning models (Garcia et al., 2016). 
Common methods for the identification and removal of noisy data or outliers 
in a dataset include visual inspection through plots such as box plots, statistical 
approaches based on measures like z-scores or IQR, and Machine Learning models
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such as Isolation Forests and Local Outlier Factor (LOF). The choice of method 
often involves a balance between statistical rigour and practical considerations 
based on the data at hand. 

• Frequent Pattern Analysis Preprocessing: In the context of frequent pattern anal-
ysis (e.g., association rule mining), preprocessing may involve the discretisation 
of continuous variables and the conversion of data into a transactional format 
suitable for pattern discovery (Aggarwal, 2014). 

The aforementioned methods are crucial to tackling different challenges in 
preparing soccer and sports data for analysis, visualisation, and modelling. 
Diverse sensor data and acquisition systems may necessitate distinct preprocessing 
approaches, yet they simultaneously face common challenges. Presently, the primary 
challenges in preprocessing revolve around ensuring the quality and consistency 
of data, particularly when confronted with diverse sources and formats. Inaccurate 
or inconsistent data has the potential to introduce biases in analyses and generate 
unreliable insights. Furthermore, delayed or outdated information can significantly 
constrain the effectiveness of in-game decision making processes. Addressing these 
challenges through robust preprocessing methodologies is paramount to fostering 
accurate, reliable, and timely analyses in the realm of sports data analytics. 

Additionally, it is crucial to employ methods aimed at mitigating temporal 
misalignment. For instance, utilising techniques like Dynamic Time Warping (DTW) 
(Barbon et al., 2009) for aligning temporal data, including events and player move-
ments, ensures synchronisation and diminishes the likelihood of misaligned temporal 
data. Addressing misalignment is imperative, as it can otherwise lead to erroneous 
conclusions and impede the accurate analysis of sequential events. By incorpo-
rating robust methods to reduce temporal misalignment, sports data analysts can 
enhance the reliability and precision of their analyses, contributing to a more accurate 
understanding of the dynamics unfolding during matches. 

14.3.2 Data Visualisation 

Data visualisation can be performed along several stages of the data-driven pipeline. 
Employing Exploratory Data Analysis (EDA) methods, such as histograms and 
scatter plots, allows for an initial understanding of the distribution of player statis-
tics and match events. For instance, employing dimensionality reduction techniques 
like t-Distributed Stochastic Neighbour Embedding (t-SNE) (Soni et al., 2020) aids  
in visualising high-dimensional player data, providing an intuitive representation of 
player similarities and differences. 

Performance metrics illustration, encompassing bar graphs or radar charts, facil-
itates the representation of crucial statistics, such as player ratings or team rank-
ings. The comparative analysis benefits from visualisation techniques like radar 
charts, enabling side-by-side assessments of player or team attributes. This visual 
approach empowers coaches and analysts to discern strengths and weaknesses across
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various performance dimensions. Player trajectory mapping, exemplified in (Mehrasa 
et al., 2018), leverages spatial visualisation techniques such as heatmaps and trajec-
tory plots. The utilisation of algorithms like kernel density estimation enhances 
the portrayal of player movement patterns, aiding in the identification of strategic 
hotspots on the field. Moreover, the application of clustering algorithms like K-Means 
facilitates the grouping of player trajectories based on movement similarities. 

In-game decision support necessitates real-time visualisations, incorporating 
methods like dynamic shot maps or live player performance updates. Machine 
Learning models, including those for predictive analytics like player performance 
forecasting, can be seamlessly integrated into these visualisations to assist coaches 
in making informed decisions during matches. On the other hand, post-match anal-
ysis benefits from animated replays, utilising methods like data-driven animations to 
recreate key moments. Tactical diagrams, generated through algorithms like graph 
visual rhythms (Rodrigues et al., 2019), Voronoi diagrams, or models based on 
players’ kinematics (Caetano et al., 2021) (as illustrated in Fig. 14.2), contribute 
to visualising team formations and player positioning during specific game phases. 

The integration of data visualisation methods and algorithms throughout the 
pipeline enhances the interpretation, communication, and utilisation of soccer-related 
data. The combination of EDA, dimensionality reduction, clustering, and interactive 
visualisation techniques contributes to a comprehensive and impactful data-driven 
analysis in the domain of soccer.

Fig. 14.2 Dominant regions for all players of the two teams based on kinetmatic data (Caetano 
et al., 2021) 
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14.3.3 Data Modelling 

Data modelling is a process of creating representations that mirror real-world context, 
their patterns, and the governing constraints. It involves generating an abstract repre-
sentation, such as decision tables, mathematical functions, or data structures, to 
comprehend the interrelationships among data elements. The primary objective is 
to support various applications and business requirements by providing a structured 
and organised view of the data. This section covers three primary approaches: super-
vised learning, semi-supervised learning, and unsupervised learning. Within these 
overarching topics, the methodologies and algorithms tailored to soccer analytics 
will be explored, providing an understanding of the diverse techniques employed for 
predictive modelling and pattern discovery in soccer-related data. 

14.3.3.1 Supervised Learning 

Machine Learning algorithms allow the creation of models able to predict outcomes, 
such as player performance, match results, or injury likelihood (Fister et al., 2015). 
Particularly, supervised learning aids in making informed decisions regarding player 
selection, game strategy, and overall team performance. Supervised learning stands 
as a fundamental paradigm predicting or estimating an output variable based on input 
features in a labelled dataset. This dataset comprises pairs of input–output examples, 
providing a foundation for the algorithm to learn a mapping from inputs to outputs 
during the training phase, ultimately allowing for the generalisation of this acquired 
knowledge to make predictions on unseen data. 

The input composition in supervised learning, particularly in the context of 
predicting outcomes in soccer analytics, is defined by the features or attributes 
that encapsulate relevant information about the entities under consideration. These 
features serve as the input variables for the Machine Learning algorithm to 
learn patterns and relationships, ultimately making predictions on new, unseen 
data. Supervised learning encompasses distinct methods, namely regression and 
classification. 

In regression, the algorithm is geared towards mapping inputs to a contin-
uous range of values, a technique applied when the target variable represents 
a numerical quantity. Algorithms like Linear Regression, Ridge Regression, and 
Gradient Boosting are frequently applied to create regression models. Linear Regres-
sion models the relationship between input features and continuous output, while 
Ridge Regression adds regularisation to handle multicollinearity. Gradient Boosting 
combines multiple weak learners to improve predictive accuracy. On the other hand, 
classification focuses on assigning inputs to predefined categorical classes, making it 
suitable for scenarios where the target variable represents labels or classes. For clas-
sification tasks, where the goal is to categorise inputs into predefined classes, algo-
rithms like Support Vector Machines (SVM), Decision Trees, and Random Forests
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(RF) are commonly utilised. SVM finds a hyperplane that best separates classes, 
while Decision Trees and Random Forests create tree-like structures to classify data. 

Algorithms are often referred to as versatile or hybrid models, and they can be 
applied to different types of predictive tasks. One such example is the RF algorithm. 
RF is an ensemble learning method that builds a collection of decision trees during 
training. In the context of regression, it can predict a numerical outcome, while in 
classification, it can categorise inputs into different classes. The versatility of RF 
makes it applicable to a wide range of tasks, making it a popular choice in various 
domains, including soccer analytics. Another example is Gradient Boosting, which 
is primarily used for regression but can be adapted for classification tasks as well. 
Gradient Boosting builds a series of weak learners to improve overall predictive 
performance. When used for regression, it predicts a continuous output, and when 
used for classification, it assigns inputs to predefined classes. 

Another important class of algorithms is Artificial Neural Networks (Perl & 
Dauscher, 2006), especially to create deep learning models. They can learn complex 
patterns and relationships in the data, making them adaptable to diverse tasks within 
the domain, whether it involves predicting match outcomes, player performance, 
or other relevant metrics. The flexibility and expressive power of neural networks 
contribute to their effectiveness in handling both regression and classification chal-
lenges. Deep Learning approaches, such as Convolutional Neural Networks (CNNs) 
(Russo et al., 2019), play an important role in supervised learning when dealing with 
image data. The importance of CNNs in this context lies in their ability to effectively 
extract hierarchical and spatial features from images, providing valuable insights 
for various tasks in soccer analytics, such as player tracking, movement analysis, 
and spatial pattern recognition. In simpler terms, CNNs can directly take images as 
input and generate the desired output without the need for an extensive preprocessing 
pipeline. 

The choice of the most suitable algorithm is contingent upon the specific char-
acteristics of the task, the nature of the data, and the overarching objectives of 
the analysis. Different algorithms exhibit varying strengths and considerations in 
different scenarios. The determination of the best algorithm involves experimenta-
tion and comparison of their performance in the specific context of the data-driven 
soccer application. Factors such as hyperparameter tuning, cross-validation, and the 
interpretability of the model also play pivotal roles in the decision-making process. 

14.3.3.2 Unsupervised Learning 

Unsupervised learning, another category of machine learning methods used in the 
sports and soccer context, focuses on extracting patterns and relationships from 
unlabelled data. Various strategies and algorithms are employed in unsupervised 
learning for tasks such as clustering and association rule mining (Celebi & Aydin, 
2016).
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One prevalent strategy in unsupervised learning is clustering, an approach that 
involves grouping similar data points based on underlying patterns in the data. K-
Means clustering is a widely employed algorithm in this context. It partitions the 
data into clusters, each represented by a centroid. The K-Means algorithm itera-
tively assigns data points to the nearest cluster centroid and updates the centroids 
to minimise the within-cluster variance. This process continues until convergence, 
resulting in distinct clusters. In addition to K-Means, Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) is another notable clustering algo-
rithm. DBSCAN identifies clusters based on the density of data points, allowing for 
the detection of clusters of arbitrary shapes. Unlike K-Means, DBSCAN does not 
require the specification of the number of clusters beforehand. Instead, it categorises 
points as core, border, or noise points, adapting to variations in cluster density. 

Finally, association rule mining serves as another valuable unsupervised learning 
strategy for uncovering intriguing relationships between variables in large datasets. 
Apriori, a widely adopted algorithm in association rule mining, plays a pivotal role 
in this process. It excels in identifying frequent itemsets within the data, thereby 
establishing patterns of co-occurrence among different variables. 

In addition to Apriori, FP-growth (Frequent Pattern growth) stands out as another 
influential algorithm in association rule mining. FP-growth employs a different 
approach compared to Apriori, utilizing a frequent pattern tree structure to efficiently 
mine frequent itemsets. By avoiding the generation of candidate itemsets, FP-growth 
enhances computational efficiency, particularly in scenarios involving large datasets 
with extensive itemset combinations. 

14.3.3.3 Semi-supervised Learning 

Semi-supervised learning is a paradigm that leverages both labelled and unlabelled 
data for training Machine Learning models. In the context of data-driven soccer 
applications, semi-supervised learning can be valuable when labelled data is limited, 
but a larger pool of unlabelled data is available (Vandeghen et al., 2022). The goal is 
to exploit the unlabelled data to enhance the model’s performance and generalisation. 
The utilisation of a combination of labelled and unlabelled data presents the oppor-
tunity for a potential reduction in the costs associated with the manual annotation 
of data. This reduction is particularly significant in scenarios where the annotation 
process is resource intensive. 

Semi-supervised learning encompasses some strategies and algorithms designed 
to leverage the availability of data labels for model training. One prominent strategy 
is self-training (Rosenberg et al., 2005), which involves iterative model training on 
labelled data, followed by the assignment of pseudo-labels to unlabelled instances 
with high confidence. Another approach, co-training, simultaneously trains multiple 
models on different feature subsets or representations, with the agreement between 
models used for labelling unlabelled instances. Multi-view learning is a strategy that 
utilises different data representations or views to enhance model performance by 
capturing complementary information.
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14.4 Applications 

Several works in soccer analytics apply a great part of the methods and concepts 
presented in the previous sections. Over the past 70 years, performance analysis in 
soccer changed from simple registering of match-related statistics (such as absolute 
and relative frequencies of passes, shots, fouls, goals scored, etc.) to complex data 
treatment generated from raw tracking data and events registering associated. Nota-
tion systems developed to register information on players’ actions during matches are 
traditional for both soccer professionals and specialised sports media. The outcome 
is tabular data generally used for descriptive purposes. More recently, multivariate 
techniques have been applied to discriminate winning from drawing and losing teams 
or to classify playing styles (Moura et al., 2014; Ruan et al., 2022). 

For instance, Principal Component Analysis and K-Means clustering applied to 
tabular data of game-related individual and team performance of 2006 World Cup 
allowed to identify ≈70% of the winning teams into the same group. Another way to 
better interpret the game-related statistics is to associate the players’ actions with the 
pitch local where every event was performed. This application was proposed previ-
ously for the full development of the tracking systems. From the coordinates of the 
event location associated with the pitch coordinate system, PCA was applied to repre-
sent the regions where the players visited most with ball possession, the variability 
of these locations, and to make inferences about team system of play (Barros et al., 
2006). With the development of the tracking systems, the identification of the system 
of play was possible for each timestamp via K-Means clustering from players’ coor-
dinates, allowing a more in-depth tactical analysis during attacking and defending 
sequences (Machado et al., 2017). Since the 2010s, world-class championships like 
UEFA European Championship, FIFA World Cup, and UEFA Champions League 
have provided in their official website information about team and player perfor-
mances. One of these performance indicators is the ‘heat map’ of each player, a 
coloured representation of the pitch of the frequency of the player position at a given 
location. From the coordinates of the region where a given player visited most, PCA 
was also applied to represent not only the player position variability during the match, 
but also throughout the championship (Moura et al., n.d.). 

From players’ position as a function of the time, teams’ tactical behaviour started 
to be explored in the early 2010s as time series. Players’ distribution on the pitch 
has been represented by the surface area (represented by the area of the convex 
hull), spread (as a general measure of the distances between team-mates), stretch 
index (a measure of distance among players and team centroid), and coupling 
distances, among others (Caetano et al., 2020; Moura et al., n.d.; Rico-González et al., 
n.d). From the identification of discrete values of the time series, previous studies 
showed the relation between tactical variables and the success during attacking and 
defending actions in soccer (Moura et al., n.d.). Frequency-domain analysis using 
Fast Fourier Transformation also showed that soccer professional teams increase 
the lower frequencies of the teams spread time series during the second half of the
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matches, suggesting that teams decrease the tactical performance in terms of organ-
ising the players while defending and attacking (Moura et al., n.d.). The same anal-
ysis was sensitive to show the variability of the tactical features time series, and how 
different categories of futsal matches (indoor soccer) present different behavioural 
demands (Bueno et al., n.d). 

The relationship between time series was also the focus of previous studies on 
tactical analysis in soccer. In terms of a systematic approach, during the match teams 
are conflicting and interacting, and attempts are made to perturb the stability of 
the opponent’s defensive system. Considering that tactical features describe how 
teammates and opponents behave, previous works presented different methods to 
measure the synchronisation between tactical time series, and its relation with perfor-
mance. For instance, during the early stages, attacking sequences ending in shots 
on goal present greater anti-phase between teams’ spread time series, compared to 
sequences ending in tackles, suggesting that success is associated with a break in the 
opponent stability (Moura et al., n.d.). For the movements performed by subgroups 
(defenders, midfielders, and attackers), a recent study reported a decreased inter- and 
intra-team synchrony of interactions involving the defenders of the attacking team 
during successful attacks in the longitudinal direction (Goes et al., 2021a, b). Using 
similar methods, (Duarte et al., 2013) showed large synergistic relations within teams 
from the English Premier League, considering the longitudinal movements that the 
players perform during the matches. The synchronisation of the movement between 
pairs of opponents, labelled as dyads, was also extensively explored in literature. 
For instance, a recent investigation showed that the offensive players of the dyads 
tend to’surprise’ the opponent causing greater disruptions on the dyad relation during 
sequences ending in shot to goal compared to the ones ending in defensive tackle 
(Caetano et al., 2023). Together, all these studies present a clear application of the 
time, frequency, and phase domain analysis to understand individual and collective 
behaviour in soccer. 

Since the development of tracking systems, millions of data have been gener-
ated with each match. Thus, providing objective feedback to players and coaches 
became challenging, especially in selecting the relevant moments of the match. 
Data visualisation tools help describe players’ behaviour and relations using simple 
representations. For instance, the concept of visual rhythm (Rodrigues et al., 2019) 
was used for a visual representation of temporal graphs. In soccer, graph is usually 
modelled having players as nodes and the edges represent a given relation among 
the players. Considering that players move and interact in every frame, temporal 
graphs are generated from which complex network measurements are extracted to 
represent the features of individual and team behaviour. These features were then 
used as a column of a new image, named visual rhythm image, a compact representa-
tion that allows efficient processing and analysis of huge volumes of sequential data 
(Rodrigues et al., 2019). Similar representations were reported also for the association 
of the players’ coordinates time series and teams’ tactical formation during the entire 
match (Machado et al., 2017), and for the shape description of the tactical organisa-
tion during the match (Bueno et al., n.d), using unique images. Some examples are 
available in Fig. 14.3.
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Fig. 14.3 Representation of visual rhythm applied to temporal graphs a Uchoa Maia Rodrigues 
et al. (2019), to players’ coordinates time series b Machado et al. (2017) and to shape description 
of the tactical organisation c Bueno et al. (n.d.) 

14.5 Conclusion 

The integration of data-driven methods within the scope of AI has not only revo-
lutionised sports science but has become the driving force behind transformative 
changes in the intricate realm of soccer. This chapter has unravelled the profound 
impact of data-driven solutions, emphasising their crucial role in optimising player 
performance, preventing injuries, and informing strategic decisions. Soccer, with 
its dynamic player interactions and diverse data sources, stands as a forefront area 
for benefiting from this data-driven revolution. As the soccer community continues 
to navigate the dynamic landscape of sports science, the integration of data-driven 
methodologies is poised to be an enduring catalyst for innovation, excellence, and 
success in the world’s most beloved sport. 
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Chapter 15 
Artificial Intelligence in Talent 
Identification and Development in Sport 

Alexander B. T. McAuley, Joe Baker, Kathryn Johnston, and Adam L. Kelly 

Abstract Talent identification and development in sport are complex processes that 
often produce large, multidimensional datasets. Technological approaches powered 
by Artificial Intelligence (AI) potentially offer an effective and efficient method 
to help interpret such information. Research conducted on talent identification and 
development processes in youth sport contexts using AI have not been well synthe-
sised. As such, the primary purpose of the present chapter is to provide an overview of 
contemporary investigations in this particular field of research. The chapter begins 
by outlining talent identification and development systems in sport before briefly 
describing the concept of AI. Subsequently, studies using AI to investigate research 
questions related to any of the inter-connected phases within talent identification and 
development processes are summarised. This is followed by an example of how AI 
is currently being employed in youth sport settings to support recruitment strategies. 
Finally, some strengths, weaknesses, opportunities, and threats of AI in this field of 
research are highlighted. 

Keywords Artificial Intelligence ·Machine Learning · Athlete Development ·
Expertise · Talent Selection 

15.1 Talent Identification and Development Systems 

Contemporary high-performance sports settings are extremely competitive, with 
substantial commercial and financial rewards accompanying success. This has 
resulted in large resource investments within professional sports organisations as

A. B. T. McAuley (B) · A. L. Kelly (B) 
Birmingham City University, Birmingham, England 
e-mail: alex.mcauley@mail.bcu.ac.uk 

A. L. Kelly 
e-mail: adam.kelly@bcu.ac.uk 

J. Baker · K. Johnston 
University of Toronto, Toronto, ON, Canada 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
C. Dindorf et al. (eds.), Artificial Intelligence in Sports, Movement, and Health, 
https://doi.org/10.1007/978-3-031-67256-9_15 

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-67256-9_15&domain=pdf
mailto:alex.mcauley@mail.bcu.ac.uk
mailto:adam.kelly@bcu.ac.uk
https://doi.org/10.1007/978-3-031-67256-9_15


256 A. B. T. McAuley et al.

well as [inter]national governing bodies to improve prospects on the global and 
national stage (Till & Baker, 2020). A principal area of focus has been recognising 
and nurturing young athletes with the potential to achieve expertise in the future 
through the design and implementation of Talent Identification and Development 
Systems (TIDS) (McAuley et al., 2023a). In the United Kingdom, for instance, 
approximately £300 million was invested in sports throughout the last Olympic and 
Paralympic cycles for both summer and winter games, as well as £70 million in direct 
athlete funding to develop potential high performers (UK Sport, 2023). From a sport-
specific perspective, several English soccer academies have reportedly spent up to 
approximately £5 million per annum on the development of their players (Larkin & 
Reeves, 2018). 

The processes within TIDS typically comprise the following series of progressive 
and inter-connected phases: (a) detection, discovering individuals with the poten-
tial to progress in the development environment of a respective sport but are not 
currently participating; (b) identification, recognising which current participants have 
the potential to become high performers in the future; (c) development, providing an 
optimal learning environment for performers to facilitate development and express 
their full potential; (d) selection, a cyclical procedure of choosing which participants 
within development programmes have displayed a requisite measure of performance 
to progress further and receive greater support; and (e) transfer, an opportunity for 
participants to switch to another sport where their unique characteristics and skills 
may be better suited to potentially achieve expertise (Collins et al., 2014; van Harten 
et al., 2021; Williams & Reilly, 2000; Williams et al., 2020). 

A central pillar underpinning the framework of TIDS is the concept of ‘talent’. 
However, despite being the cornerstone of integrating these recruitment and promo-
tion related processes, talent remains poorly understood and operationalised both 
in science and practice (Baker et al., 2024; Johnston et al., 2023; McAuley et al., 
2022a). Researchers have positioned talent at each end of the development continuum 
(i.e., the starting point and end product), and practitioner descriptions have often 
been grounded in the nature (i.e., absence or presence of specific biological mate-
rial) or nurture (i.e., opportunity and engagement with environmental affordances) 
dichotomy (Baker et al., 2023; Baker & Wattie, 2018; Johnston & Baker, 2022; 
Jones et al., 2020a, b). These inconsistencies in the application and interpretation 
of key terminology creates confusion, limits measurement precision, and makes 
performance forecasting more difficult (Johnston et al., 2023; McAuley et al., 2022a). 

To capture the nuances of the sporting domain, Baker et al. (2019) suggested 
conceptualising talent as: (a) innate, originating in biological elements present at 
birth; (b) multi-dimensional, consisting of capacities from a range of broad cognitive, 
physical, and psychological categories; (c) emergenic, involving interactions among 
factors that combine multiplicatively; (d) dynamic, evolving across developmental 
time due to interactions with environments and random gene expression; and (e) 
symbiotic, emphasising that cultural and social factors determine the ultimate value 
of an individual’s talent. Indeed, research has shown that athletic development is 
multifactorial, influenced by a number of performer constraints (e.g., anthropometric, 
genetic, physiological, and psychological factors), task constraints (e.g., engagement
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in deliberate practice and play as well as specialisation and sampling pathways), and 
environmental constraints (e.g., birthdate, birthplace, cultural, and socioeconomic 
effects) (Dimundo et al., 2021a; Kelly et al., 2020, 2022a, 2022b; McAuley et al., 
2023c; Murata et al., 2023; Wattie et al., 2015). 

An impressive number of studies have been conducted on these constraints and 
their associations with an individual’s developmental journey in sport. A scoping 
review of talent research in sport found nearly 2000 peer-reviewed articles written in 
English had been published between the years 1990 and 2018 (Baker et al., 2020). 
Other research syntheses highlighting the quality of evidence within and across 
different contextual settings have also been performed, with a marked increase over 
recent years (e.g., Barraclough et al., 2022; Bergkamp et al., 2019; Brown et al., 
2023; Dimundo et al., 2021b; McAuley et al., 2022b; Johnston et al., 2018; Sarmento 
et al., 2018; Verbeek et al., 2023; Williams et al., 2020). Despite numerous empirical 
investigations and having the results well-amalgamated, how and to what extent these 
elements of performance interact during development to facilitate expertise remains 
unclear (McAuley et al., 2021, 2023a). 

This ambiguity in the extant literature makes it challenging for decision makers 
within TIDS to make precise measurements and correct judgements regarding the 
prospective ability of young athletes. For instance, the efficacy of North American 
major professional sport draft systems has been questioned from an economic and 
performance perspective, as a recent review reported the majority of rounds are not 
very accurate in relation to measures of future success (e.g., career length, number 
of games played, and performance statistics) (Johnston et al., 2022). Furthermore, 
across soccer academies in England, only ~3% of players who progress through 
these TIDS play a match in the highest senior league, whereas only 30% attain 
a professional contract (Cunningham, 2022). Conventional prediction methods of 
athletic ‘potential’ are therefore considered unreliable, with poor validity (Baker 
et al., 2018; Till & Baker, 2020). 

The poor accuracy and low junior-to-senior transition rates reported are, in part, 
due to the combination of static measurements at one-off timepoints and the weak 
relationship that exists between early and future success (McAuley et al., 2023a). 
More specifically, to become a high performer at a senior level, it is not a prerequi-
site for an athlete to be a high performer at a junior level. For instance, a recent 
meta-analysis found the performance of over 13,000 Olympic athletes at junior 
ages accounted for just 2% of the performance variance observed at senior level 
(Barth et al., 2023). Another review of approximately 60,000 multi-sport athletes 
also reported that only 18% of senior international performers had achieved interna-
tional status at U17/18 level (Güllich et al., 2023). Currently implemented approaches 
appear to assume talent is a fixed capacity that remains stable over time instead of 
dynamic, emergent, and non-linear (Baker et al., 2023). 

Trying to predict an individual’s potential to achieve expertise, alongside how the 
demands of specific sports will evolve in the future, is clearly a difficult undertaking. 
This task is further confounded by the activities employed at present, as they create 
biased contexts where being relatively older (i.e., relative age effects) and/or maturing 
earlier are advantageous (Brown et al., 2023; Dimundo et al., 2021a, b; Hill et al.,
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2020; Johnston et al., 2018; Kelly et al., 2022a, b; McAuley et al., 2022b; Radnor 
et al., 2021). These environments also allow a wide range of cognitive biases (e.g., 
conformation bias, endowment effect, primacy effect, sunk-cost fallacy) to uncon-
sciously affect the efficiency of decisions (Johnston & Baker, 2020). Despite these 
issues, however, having individuals enter into TIDS at early ages is often viewed as 
a necessary evil due to resource constraints (i.e., limited number of personnel and 
facilities as well as available finances) (Till & Baker, 2020). 

Since this approach is unlikely to change in the short-term across many sport 
settings, it is imperative researchers strive to establish clear variables associated with 
the long-term development of expertise to increase the effectiveness and efficiency 
of TIDS. Research conducted in this area, however, has several methodological 
limitations. For instance, a number of reviews on talent identification and devel-
opment in sport reported most studies used cross-sectional and mono-disciplinary 
designs (Baker et al., 2020; Barraclough et al., 2022; Johnston et al., 2018; Verbeek 
et al., 2023). Similar observations have been made in sports genomics, as limited 
research exists on epistatic and epigenetic mechanisms, with most studies investi-
gating genetic variants independently using case–control designs (McAuley et al., 
2022b, 2023b, 2024). This means there is a lack of longitudinal, multidisciplinary, and 
gene-environmental research, despite the previous emphasis on talent being dynamic 
and multidimensional (Baker et al., 2019). 

Previously cited explanations for the underrepresentation of these methodologies 
include the difficulty associated with their administration and analysis requirements 
in terms of user knowledge, statistical power, and computational capacity (Barra-
clough et al., 2022; Johnston et al., 2018). However, irrespective of the complexities 
involved, and as a way to improve accuracy in determining (and eventually applying) 
causality to specific developmental variables, methodological approaches such as 
these will be necessary (McAuley et al., 2021). One potential avenue being explored 
by researchers in sport over recent years is the adoption and application of techno-
logical approaches powered by Artificial Intelligence (AI) (Chmait and Westerbeek, 
2021; Hammes et al., 2022; Rico-González et al., 2022; Sperlich et al., 2023). The 
purpose of the present chapter, therefore, is to provide an overview of contemporary 
investigations in this field of research. 

We begin by outlining the concept of AI, including the way it is defined, a brief 
history of its evolution to date, and how it has been implemented in the sports domain. 
Next, we explore and summarise studies that have used AI to specifically investi-
gate research questions related to any of the inter-connected phases within a TIDS. 
Following this overview, we present some practical examples of how companies 
providing AI-powered technological solutions are being employed by sports organ-
isations to support their athlete recruitment and promotion strategies. Finally, we 
provide an analysis on the strengths, weaknesses, opportunities, and threats of AI in 
TIDS before concluding.
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15.2 Definition and History of Artificial Intelligence 

AI has been defined as the theory and development of computer systems able to 
perform tasks that normally require human intelligence (Sperlich et al., 2023). For 
instance, comprehending natural language, decision-making, learning from experi-
ences, recognizing patterns, solving problems, and video analysis (Cossich et al., 
2023). From a sports perspective, Hammes et al. (2022) proposed the ‘Sense-Model-
Plan-Act’ concept, whereby AI is viewed as a loop beginning with observation, 
creating a model based on these observations, developing a plan from this model, 
then exerting an action on the world. AI encompasses all forms of classical Machine 
Learning (ML), Deep Learning (DL), and modern Artificial Neural Networks (ANN), 
with the combination of amplified computational power and overall digitisation 
enabling the processing of large amounts of information (i.e., Big Data) (Chmait 
and Westerbeek, 2021). 

The field of AI emerged in the 1950s, and despite the significantly reduced interest 
and funding in the 1970s and 1980s (i.e., a period referred to as the “AI winters”), 
by the end of the 1990s, AI research was at the forefront of technological innovation 
(Hammes et al., 2022). Since the early 2000s, AI began to infiltrate various sectors to 
different degrees, with a notable area being its performance in board (e.g., Checkers, 
Chess, GO, Shogi) and virtual (e.g., Dota2 and StarCraft) games. For instance, AI 
developed computer programmes have evolved to the point that they almost always 
defeat human world champions, with some updated algorithms (e.g., AlphaZero) 
believed to be unbeatable by humans (Chmait and Westerbeek, 2021). In aspects 
more central to everyday life, however, AI-powered technology has now been made 
more accessible and usable by the general population through virtual assistants (e.g., 
Amazon Alexa, Siri, Cortana) and many aspects of autonomous driving, as well as 
the unprecedented proliferation of large language models such as ChatGPT (Cossich 
et al., 2023). 

There are also many cases of AI being integrated into the present sporting land-
scape. In Formula 1, for instance, AI algorithms can enhance the efficiency of 
tactical decisions during races, such as automating an optimal tyre strategy by 
modelling the frequency and timing of pit-stops as a sequential decision-making 
problem (Piccinotti, 2021). In tennis, an AI algorithm has been used to develop 
a recommended-racket procedure, whereby an individual’s movements and swing 
patterns as well as their general playing style are analysed to advise on an ideal 
racket type (Krause, 2019). In gymnastics, a judging system has been created to 
score a routine by having AI analyse 3D laser sensors that capture the joint angles 
of a gymnast (Atikovic et al., 2020). More common processes in sport are also influ-
enced by aspects of AI, such as Hawk-eye and goal-line technologies to model the 
precise positioning of the ball at a specific time-point in tennis and soccer, respectively 
(Hammes et al., 2022). 

Perhaps one of the more well-known examples of AI in sports, however, was 
its use by the Oakland Athletics Major League Baseball (MLB) team in the early 
2000s. Using a novel ML approach to analyse in-game playing statistics to inform
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their recruitment and selection decisions, Oakland Athletics assembled a team that 
made the playoffs in 2002 despite possessing a relatively small budget. Commonly 
referred to as “Moneyball” (Lewis, 2004), this approach to analysis identified and 
exploited an information gap that has led to its implementation throughout MLB 
and across other sports (Chmait and Westerbeek, 2021). The use of AI for athlete 
recruitment and performance at senior levels as well as its general application across 
sports has since been well reviewed (e.g., Beal et al., 2019; Claudino et al., 2019; 
Rico-González et al., 2022). However, the feasibility and value of AI research with 
young athletes and within TIDS have not been well synthesised. Given the benefits 
of AI in professional sport and their potential relevance across TIDS, this will be an 
important area to consider moving forward. 

15.3 Overview of Artificial Intelligence Research on TIDS 
Processes: Talent Identification 

Talent identification and development are inherently complex and multifactorial 
(Kelly, 2023). Based on the complexities of TIDS coupled with the large, multi-
dimensional datasets that are often collected within these settings, AI has the poten-
tial to offer effective and efficient approaches to help researchers and practitioners 
interpret such information. From an analysis perspective, since traditional regres-
sion approaches lack the capability to estimate model coefficients when the number 
of independent variables is similar to the number of observations, the emerging 
family of feature selection algorithms from AI offer alternative techniques (Tibshi-
rani, 1996). Indeed, as explorative studies within the field of TIDS must employ statis-
tical approaches that can handle multiple competing, possibly correlated, features, AI 
techniques may be more suited (Oquendo et al., 2012). Whilst identifying talented 
athletes at a young age is an interesting, but difficult, problem to be successfully 
solved by AI, more accurate identification using such techniques may enable better 
career development and performance (Jauhiainen et al., 2019). Despite the surge in 
AI research due to recent technological advancements in sport, such studies in TIDS 
remain limited—although we predict this will significantly increase over the forth-
coming years. Amongst the research that exists, ML seems to be the most common 
statistical analyses method used. 

Corresponding with conventional talent research in sport (see Baker et al., 2020), 
soccer appears to be a popular choice for the use of AI techniques. For example, 
Jauhiainen et al. (2019) trained a nonlinear One Class Support Vector Machine on 
a dataset from 14-year-old Finland male youth soccer players (n = 951) to detect 
possible future ‘elite’ players (i.e., those who subsequently signed for an academy 
at 16-years-old). Findings revealed the most accurate model was obtained when 
physical tests measuring technical skills, speed, and agility were used. In a two-
fold study, our research group (Kelly et al., 2022a, b) used a cross-validated Lasso 
regression using the glmnet package in R to examine factors that contributed to: (a)
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player review ratings in U9–U16 England male academy soccer players (n = 98), 
and (b) the characteristics of selected (i.e., offered a professional contract) and dese-
lected (i.e., not offered a professional contract) U18 England male academy soccer 
players. First, improvement in subjective performance was found in 15 out of the 53 
analysed features, with key findings showing advanced maturation, greater lob pass 
score via skill testing, higher average dribble completion percentage during compet-
itive match-play, more competitive match-play hours, and being relatively older (i.e., 
born earlier in the selection year) were the most important features that contributed 
towards player review ratings. Second, greater ‘perceived ability to cope with perfor-
mance and developmental pressures’ as well as perceived ‘ability to organise and 
engage in quality practice’ were important contributing factors towards gaining a 
professional contract. Most recently, Duncan et al. (2023) determined the contrib-
utors towards technical skills in English male grassroots soccer players (n = 162) 
aged 8–14 years. They used a stepwise recursive feature elimination with a fivefold 
cross-validation method followed by five models (Linear Regression, Ridge Regres-
sion, Lasso Regression, Random Forest, and Boosted Trees) in a heuristic approach 
with a small subset of suitable algorithms. Their results indicated that the total func-
tional movement screening (FMS) score was the most important feature in predicting 
technical soccer skills, followed by coach rating of player skills for their age, years 
of playing experience, and age at peak height velocity. 

Research on TIDS in cricket has also been at the fore of ML techniques. Jones 
et al. (2019), for instance, used non-linear pattern recognition to analyse 93 features 
from senior international (n = 15) and professional (i.e., first-class county; n = 13) 
male cricket spin bowlers in England. They revealed that a subset of twelve devel-
opmental features discriminated between the international and professional groups, 
reflecting the international players’ earlier engagement in cricket, greater quantity 
of domain-specific practice and competition, and superior adaptability to new levels 
of competition. Thereafter, Jones et al. (2020a, b) used a similar approach to analyse 
658 features from ‘super-elite’ (i.e., predetermined high-profile senior international; 
n = 10) and ‘elite’ (i.e., predetermined high-profile domestic senior professional; n 
= 10) England male cricket batters. They showed how a subset of 18 features differ-
entiated the two groups, whereby ‘super-elite’ batters undertook a larger volume of 
skills-based practice that was both more random and varied in nature at age 16 years. 
Currently under peer review, our research group (Brown et al., in press) performed 
a Bayesian Binomial Regression using rSTAN following a clustering approach to 
observe what differentiated selected (n = 33) and non-selected (n = 49) England 
male academy players aged 14–17 years based on 104 features. Results highlighted 
that superior athleticism, greater wellbeing and cohesion, higher number of older 
brothers, and being born in birth quarters two and three were positively correlated 
with player selection. 

Researchers have also used ML techniques to investigate a handful of other team 
sports in TIDS, including handball (Oytun et al., 2020), rowing (Liu et al., 2023), 
rugby league (Till et al., 2016), rugby union (Owen et al., 2022), and volleyball (Musa 
et al., 2023). As an example, Owen et al. (2022) assessed Welsh U16–U18 age-grade 
club rugby union players (n = 104) for physiological and psychosocial features during
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regional talent selection days. They developed predictive models to compare selected 
and non-selected players using a Bayesian ML approach. The generated physiolog-
ical models correctly classified 67.6% of all players, with greater hand-grip strength, 
faster 10 and 40 m sprint, and power as common features for selection. Moreover, 
the generated psychosocial models correctly classified 62.3% of all players, with 
reduced burnout, reduced emotional exhaustion, and lower reduced sense of accom-
plishment as common features for selection. Like more traditional ‘team’ sports, 
a small number of primary investigations of more traditional ‘individual’ sports in 
TIDS have utilised ML approaches, including archery (Musa et al., 2019), skate-
boarding (Ab Rasid et al., 2024), and tennis (Siener et al., 2021). As an example, 
Musa et al. (2019) used a variation of k-NN algorithms and Logistic Regression in 
Malaysian ‘talented’ archers aged 13–20 years (n = 50; male n = 37, female n = 13) 
to predict high and low ‘potential’ (i.e., based on their archery shooting scores). The 
weighted k-NN outperformed all the tested models with reasonably good accuracy 
(83%) for the prediction of ‘high potential’ (i.e., top of group) and ‘low-potential’ 
(i.e., bottom of group), whilst showing how physical fitness features (i.e., vertical 
jump and the core muscle strength) influenced the determination of the archers’ 
performance quality. 

Due to the rarity of high-performing athletes, datasets are inherently imbalanced, 
making classical statistical inference difficult. Therefore, research in TIDS could be 
considered as an anomaly detection problem (Jauhiainen et al., 2019). The ML studies 
in TIDS showcase the modelling and comprehension of such approaches to help better 
understand both between group differences and possible research methodologies 
(Auletta et al., 2023). What is apparent within existing TIDS research is that ML 
approaches do not aim to answer the questions of what leads to optimal performance, 
but instead seek to outline a method to leverage some of the quantities of available 
data to generate new hypotheses and insights (Kelly et al., 2022a, b). Therefore, 
the methodological techniques used in these studies might best serve as an impetus 
for researchers to adopt a ML approach to TIDS, whilst they could be useful to 
support decision-makers in the process of TIDS when identifying and developing 
future athletes. More research in TIDS using AI approaches is required to better 
understand its reliability and validity in the long-term, whilst there should also be an 
emphasis on utilising these techniques in female TIDS due to the imbalance in the 
current samples. 

15.4 Overview of Artificial Intelligence Research on TIDS 
Processes: Talent Development 

In the context of athlete development, AI/MI has been used to better understand devel-
opmental participation patterns. For example, in the work by Barth et al. (2019), 
a methodical approach combining Decision Trees and Gradient Boosting to data
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from a previously published study was used to identify differences between interna-
tional and national-level athletes across various sports, in the volume of the athlete’s 
main-sport and other-sports practiced. The authors argued that this was superior 
to more traditional statistical approaches, and offers value to researchers looking 
to re-investigate previously published studies. Building on this work, Barth et al. 
(2020), applied a supervised machine learning approach to investigate the effects 
of supervised and coach-guided practice in athletes’ main sport (and other sports), 
on a sample of athletes with podium performances (i.e., international medals). This 
approach helped to identify that ‘coach-led other-sports practice’ until age 14 years 
was the most important feature relating to podium performance. Through both these 
research investigations, the research teams promote the approach of combining tradi-
tional statistics with advanced supervised ML as a way to improve both testing and 
discovering patterns among variables. 

Similarly, Güllich et al. (2019) used AI/ML to examine the developmental biogra-
phies of 16 Great British Olympic and World Champions, and 16 international 
athletes (who had not won major medals). The data were analysed using pattern 
recognition analysis—a ML approach developed in bioinformatics to solve the 
problem of classifying objects by the features that they possess (for more details 
please see Duda et al., 2001). By using this approach, the authors were able to 
identify multiple intriguing differences between the two groups. More specifically, 
compared to athletes who had not won a major medal, those who did had charac-
teristics such as: (a) having experienced an early negative life experience at a time 
point that was neighbouring a significant positive sport-related event, (b) having a 
higher relative importance of ‘sport over other aspects of life’, stronger obsessiveness/ 
perfectionism, and sport-related ruthlessness/selfishness, and (c) having coaches who 
better met their physical and psychosocial needs (amongst other key findings, see full 
paper for details). The authors acknowledge that one of the strengths of the study is 
the advanced data analysis using pattern recognition procedures, which illuminates 
fruitful areas of future exploration for AI and developmental modelling. 

AI/ML has also been used to provide a set of ‘rules’ for determining group 
membership between high performers and lower performing athletes. For instance, 
the work by Anderson et al. (2022) employed a multi-level methodology using param-
eter optimization, calculation of odds ratios, feature selection, and feature classifi-
cation to help understand the development of ‘talent’ in Olympic Weightlifting. The 
variables under consideration included: (a) demographics and family sport partic-
ipation, (b) anthropometrics and physiological factors, (c) psychosocial character-
istics, (d) sport participation history, and (e) weightlifting specific practice activi-
ties (Anderson et al., 2022). ML helped to analyse a wide number of features (i.e., 
648 variables in their study), over a relatively long period of time (athlete tracked 
for nearly two years), and suggests this could be a valuable tool for such research 
questions. 

Another recent ML investigation explored the extent to which different generic 
characteristics vary between sports to generate unique profiles by classifying 
coaches’ perceptions of the individual, task, and environmental requirements 
(Teunissen et al., 2023). The researchers asked 1247 coaches from 34 sports to
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rank the importance (i.e., 0 = not important − 10 = very important) of 18 character-
istics in their sports using a validated survey. To distinguish between each response 
per sport, a Discriminant Analysis (DA) and Uniform Manifold Approximation and 
Projection (UMAP) with CatBoost classifier was performed, as well as the generation 
of a confusion-matrix. The cross-validated DA revealed 70.2% of the coaches were 
correctly classified to their sport and the UMAP/CatBoost technique showed 75.1% 
accuracy, with correctly predicted responses per sport ranging from 18.2 (sailing) to 
98.2% (soccer). Such approaches provide an insight into the distinctions and paral-
lels between sports that may facilitate greater detection, development, and transfer 
affinity by optimising the alignment of athlete and sport profiles. 

15.5 Applications in Youth Sport Contexts 

Unsurprisingly, explorations of AI and advanced technologies have proliferated in 
youth sport contexts as well as in professional settings. In January 2024, for example, 
news reports described a new software—aiScout—being used by Premier League 
football club Chelsea. The app allows players to upload video clips of themselves 
doing specific drills and skills that clubs can assess far away from the playing field. 
Not wanting to be left behind, other clubs are following suit (see Smith, 2024). 

While many sport scientists, especially those in the fields of athlete develop-
ment, talent identification, and sport expertise were quick to criticize this and similar 
approaches, the reality is the technologies are becoming part of many TIDS around 
the world. However, are there any positives associated with their use? For instance, 
technologies like aiScout have the advantage of easy access to athlete data, a key limi-
tation for many researchers using traditional research designs. Currently, thousands 
of players can upload their data to the platform for further assessment by coaches, 
analysts, and other stakeholders. Although the technology may lack the measure-
ment precision and sensitivity of established approaches, the power of large samples 
may offset this limitation. Obviously, the reliability and long-term validity of these 
approaches remains to be seen and can only come from appropriate evaluations using 
robust scientific methods, but there may be some upside to the changing landscape 
of high-performance athlete development. 

Acknowledging that any emerging technology comes with a range of potential 
costs and benefits, it may be useful to consider an assessment of AI approaches in 
youth sport contexts. Fortunately, Sperlich et al. (2023) conducted just such an assess-
ment using a SWOT (Strengths, Weaknesses, Opportunities, Threats) framework. In 
Fig. 15.1 below, we summarize and extend the assessment conducted by Sperlich 
et al. (2023). In a related paper, Hammes et al. (2022) examined the success and 
challenges associated with AI in sports. Amongst a broad discussion of the poten-
tial of this technology for improving how sport scientists conduct their work, the 
authors highlighted five broad challenges: (a) assessing the right types and amounts 
of data for AI to be useful, (b) linking communities of stakeholders in the AI and 
sport communities to allow creation of, and access to, the data required, (c) allowing
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Fig. 15.1 SWOT Analysis of Use of AI in Sport (adapted from Sperlich et al., 2023) 

practitioners to maintain a sense of control, (d) ensuring AI outputs are explainable 
without the need for specialized knowledge, and (e) creating predictive rather than 
explanatory models, which remains a problem for much work in sport contexts. 

15.6 Conclusion 

The purpose of the present chapter was to provide an overview of contemporary 
research that has used technological approaches powered by AI to specifically inves-
tigate any of the inter-connected phases within a TIDS. Although it seems to be 
quickly and widely used in applied settings, this field of research is currently in its 
infancy. This current evidence-base, however, has been conducted on a wide range of 
individual (e.g., archery, skateboarding, tennis, weightlifting) and team sports (e.g., 
cricket, rugby league, rugby union, soccer), as well as used a variety of methodolog-
ical approaches (e.g., mono-disciplinary, multi-disciplinary, cross-sectional, longi-
tudinal, quantitative, qualitative) and AI procedures (e.g., ML, DL, ANN, Decision 
Trees, Markov Process, Support Vector Machine) that have produced varying statis-
tical associations. In the future, it is important that studies in this field continue 
to address the shortcomings of conventional analyses by performing investigations 
with research designs that advance our understanding of the dynamic, emergent, 
multi-dimensional, and non-linear process of athlete development. 

The current moment in time is characterized by a seemingly ever-increasing torrent 
of performance- and development-related data for sport researchers and analysts to 
make sense of. However, in an environment where such value is available and highly 
sought after, the challenge becomes increasing the capacity for stakeholders to be 
able to filter through these sources to find information of value. AI and ML have 
considerable potential to improve the methods used by sport researchers and prac-
titioners. They can assist with the small sample limitations that have plagued this 
area of research for decades, and they may be useful for developing models of how
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sports might evolve in the future, which may aid in performance prediction and fore-
casting—and by extension—identification, selection, and development practices as 
well. Importantly, these developments will only come if researchers and stakeholders 
can avoid getting lost in the tsunami of information currently available at the click 
of a button. 
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