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Editorial

Artificial Intelligence (Al) is driving revolutionary advancements and is transforming
the landscape in sports, movement, and health. Rapid advancements are continuously
reshaping these domains. As we embark on this journey, we recognize that while
this book offers a snapshot of significant Al applications, the evolving nature of
technology ensures that new breakthroughs will continually emerge beyond what
we currently grasp. With this book, we aim to empower readers with knowledge and
enhance the understanding of the transformative potential of Al in sports, movement,
and health.

To begin our exploration, we delve into the broader realm of Digital Transfor-
mations: AI’s Role in Sports Science. We commence with Lenhard (Chap. 1), who
investigates the profound impact of Al on sports science. His work delves into its role
in digitization and mathematization while also pondering the philosophical implica-
tions inherent in this transformation. Furthermore, Lenhard unravels the effects Al
has on scientific practices within the field. Next, Latzel and Glauner (Chap. 2) shed
light on the future of academic writing empowered by Al. Their inquiry explores
how Al is reshaping research and writing across various disciplines, focusing on
sports science. Our discourse concludes with Menges (Chap. 3), who examines the
application of Al in endurance sports. She showcases how Al-driven technologies
are revolutionizing training and how Al assists coaches and athletes in decision-
making processes beyond training, encompassing elements such as race selection
and strategy formulation.

Al has the power to enhance medical and health-related aspects in sports contexts,
which we want to focus on in the part AI in Medical and Health Aspects of Sports.
It is important to note that the focus of this part is not on general applications in the
healthcare sector, which encompasses a myriad of other works. Instead, within the
scope of this book, the focus is on movement-related health aspects, which signifi-
cantly intersect with sports science. Kemmler (Chap. 4) starts the part by exploring
cutting-edge fall prevention strategies and how Al-based fall technology revolution-
izes fall prevention for older adults. Find out how sensor-based Al concepts enhance
safety and effectiveness in training, even in unsupervised settings. This is followed by
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Owen, Owen, and Evan’s (Chap. 5) chapter, showcasing the future of injury preven-
tion through the lens of Al technology. It is presented how Al not only enhances
prediction accuracy but also enriches our comprehension of the multifaceted factors
influencing sports-related injuries. Afterward, we want to have a look at doping in
sports, a persistent issue that involves the misuse of prohibited substances to boost
performance. In this context, the paper of Rahman and Maass (Chap. 6) explores the
use of generative modeling to create synthetic blood sample data, aiming to enhance
anti-doping analysis. A method is proposed not only for data augmentation but also
to address ethical concerns regarding athletes’ biological data.

After examining medical and health implications of Al, our attention turns to
the realm of Human-Computer Interaction (HCI). Speicher and Berndt (Chap. 7)
illuminate HCT’s crucial role, offering insights into how Al influences athletic perfor-
mance, injury management, and healthcare. They advocate for integrating human-
centered design principles to elevate user engagement and outcomes in the evolving
field. Subsequently, Gillmann (Chap. 8) describes the significance of comprehending
and visually representing uncertainty in sporting data. She provides an overview of
how uncertainty-aware visualization can contribute to enhancing the reliability and
decision-making process of Machine Learning (ML) predictions in sports.

Transitioning, the discourse shifts towards Motion Capture and Feedback
Systems. Stetter and Stein (Chap. 9) focus on the applications of ML for biome-
chanical analysis of human movements and the associated challenges. They show
how the three major ML paradigms supervised, unsupervised, and reinforcement
learning are used in biomechanics and how ML can support the understanding of
human movements. Baldinger, Lippmann, and Senner (Chap. 10) give an overview
of current technologies and applications focusing on markerless motion capture tech-
nologies. Furthermore, they complement this with findings from their studies on the
validity of the technologies and conclude the main challenges for future research.

Through Practical Examples of Machine Learning and Predictive Analytics,
the final part showcases how Al is reshaping the future of sports and unlocking new
realms of performance optimization and strategic insights. Vives, Lazaro, Guzman,
Crespo, and Martinez-Gallego (Chap. 11) explore the recent evolution of ML tech-
niques and their potential impact on tennis performance analysis, including a practical
example showcasing predictive modeling results, leveraging new technologies like
Hawk-Eye and tracking systems. The discussion then transitions to another perspec-
tive on tennis by Randrianasolo (Chap. 12), which focuses on how sports predictions
can be revolutionized with convolutional neural networks. This is exemplified by
forecasting outcomes without the need for extensive historical data, as demonstrated
with Men Euro 2020 and Women US Open 2021.

Smyth, Feely, Berndsen, Caulfield, and Lawlor (Chap. 13) explore how ML
can enhance recreational marathon running through personalized training insights
and race support by mobile devices and wearable sensors. Barbon Junior, Moura,
and da Silva Torres (Chap. 14) continue delving into the potential of data-driven
methodologies in soccer analysis, outlining a systematic pipeline for automating
data collection, transformation, and analysis, offering insights into player interac-
tions and performance optimization through Al. Finally, McAuley, Baker, Johnston,
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and Kelly (Chap. 15) offer an overview of contemporary research utilizing Al to inter-
pret large datasets in talent identification and development processes within youth
sport contexts, outlining the potential of Al to enhance recruitment strategies and
highlighting key strengths, weaknesses, opportunities, and threats in this evolving
field.

In light of the diverse contributions presented in this book, we have amassed a
rich collection of insights, practical applications, and perspectives poised to trans-
form the realms of sports, movement, and health. However, as we stand at this
juncture of exploration and innovation, it is crucial to acknowledge that our under-
standing is merely a snapshot of the immense potential Al holds for these domains.
The evolving nature of technology ensures that new breakthroughs will continually
emerge, pushing the boundaries of what we currently grasp.

As we reflect on the book’s content, it becomes evident that the research
approaches and practical implementations showcased within these pages mark just
the beginning. The real-world impact of Al on sports, movement, and health is yet
to unfold fully. The true test lies not only in the ingenuity of Al-driven solutions but
also in their integration into everyday practices and established knowledge. The gap
between theory, science, and practical application must be bridged to realize the full
potential of these technologies.

We hope to have given our readers a first insight into the large field of Al in sports,
movement, and health. Let us remain curious and attentive to how the future of Al
technology will develop in the sectors and to what extent the research approaches
described will be put into practice.

July 2024 Carlo Dindorf
Eva Bartaguiz

Freya Gassmann

Michael Frohlich
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Digital Transformations: Artificial
Intelligences Role in Sports Science



Chapter 1 ®)
Situating Sports Science G
in the Movement of Digitization

Johannes Lenhard

Abstract This chapter reflects upon how Artificial Intelligence (Al) in sports science
is situated in the broader movement of digitization, which in turn takes a special
place in mathematization. It addresses the question: If a field is getting into Al, what
impact will this potentially have from a philosophical point of view? It argues that
epistemic opacity is part-and-parcel of digitization and, all the more, of Al This
makes prediction an even more important criterion for scientific success, whereas
the capability for explanation is seriously diminished. Finally, the chapter explores
how the use of software leads to a new social organization of science.

Keywords Sport Science + Simulation Modeling + Epistemology *
Mathematization + Digitization

1.1 Introduction

Today, digitization is predominantly discussed in terms of Artificial Intelligence
(AI). This chapter will take a step back and reflect upon how Al in sports science is
situated in the broader movement of digitization, which in turn takes a special place
in mathematization. This chapter does not aim at providing an overview of current
or future applications of Al in sports science. Other contributions to this book do this
in a competent manner. Nor will it act as a philosophical naysayer—asking whether
Al is “new dawn or false hope” is topical in the literature (for sports science, see
Bartlett, 2006). Rather, the text that follows explores the question: If a field—sports
science or any other—is getting into Al, what impact will this potentially have?
The label Al is older than recent Machine Learning (ML) methods. When the
label was coined in 1956 at a meeting in Dartmouth, it should mainly avoid any
association with the then popular term of cybernetics, as John McCarthy, one of the
meeting organizers, reminded later (1988). In the 1950s, poponents of Al believed
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that following explicit rules is the key to intelligence. And since the digital computer
is a machine that can process such rules with ease and speed, Al was expected
to overtake human intelligence in foreseeable time. It was a hard-won lesson that
Al did not meet these expectations. Even chess computers, although the game is
completely defined by formal rules, had somewhat limited success. When Deep
Blue finally won against Kasparov, the long-term world champion, this was based
not on a deeper analysis of moves, but on the large database of existing games fed
into the machine. Attempts to master language, like generating a translation, proved
to be a nut too hard to crack, mainly because language use persistently escaped a
fully formalized grammar. To make a long story short, the optimism reversed and
led to the “Al winter” of the 1980s. Actually, one can discern a first (late 1970s)
and a second Al winter (late 1980s to early 1990s); for highly accessible accounts
see Crevier (1993) or the entry “History of artificial intelligence” in Wikipedia. The
field of Al re-oriented itself. A leading strand in the 1990s took acting in the world
as the leading criterion that characterized intelligent behavior—fetching a cup of
coffee without spilling it, rather than playing chess. This robotic turn produced new
accounts of what characterizes intelligence, in connection with new visions of what
Al is—or ought to become, see Pfeifer and Scheier (2001), or Brooks (2002), among
others.

However, while the robotic turn amounts to a modest niche for Al, the recent hype
is more expansive and has been called the second wave of Al, rising for more than
a decade now. The first wave of symbolic Al was oriented at symbolic rules—the
philosopher Haugeland (1985) labeled this approach as “good old-fashioned AI”
—GOFAL Based on this term, Smith (2019) makes a thoughtful distinction between
first wave (GOFAI) and second wave (connectionist, neural network) Al. Alien to
the logical-symbolic standpoint, and almost contradictory to it, the current second
wave is fueled by statistical approaches, with Deep Neural Networks as the paradigm
example. Now, knowledge about rules does not count as essential. On the contrary,
gaps in such knowledge, even gaping craters, are compensated for by statistical
analyses of extensive datasets. In short, one can connect the second wave of Al to a
data turn.

A series of popular and astonishing success stories supports the second wave. Very
likely, every reader knows how ML jumped from chess to Go with ease (showing the
power of neural networks). Image classification made a big splash and most recently,
Large Language Models (LLMs) exhibit proficiency in translating texts that was not
anticipated by Al nor linguistic experts. Moreover, LLMs like ChatGPT (by the US
company OpenAl), or other generative networks even increase the frenzy because
many people find uses for a machine that generates text and, additionally, interfaces
to these machines are readily available to all internet users (which does not mean
that they come free of cost).

All these examples have in common that the rules (for classification, for language)
are not explicitly modeled, but implicitly defined. What makes a bird look like a
blackbird is what the images labeled with blackbird have in common—in contrast
to what the images labeled differently (the non-blackbirds) have “in common”. The
same applies to language. The rules of grammar are by and large skipped. Instead, the
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machine produces sentences that are similar to sentences in the database (of course,
the notion of similarity is far from trivial). A human translator would proceed very
differently, or more precisely, would describe what he or she does very differently:
translate words, know the grammar, consider phrasing etc. The ML method just
assumes that existing translations somehow entail all this knowledge.

In short, ML makes statistical evaluation of large datasets feasible and, if one has
enough data, ML arrives at surprisingly good results. Recent experience with LLMs
like ChatGPT makes the case. The universal key then is data from the domain of
interest, not knowledge in the sense of having a good model of what happens in this
domain.

But wait a moment. The universality of Al (working with Deep Neural Networks)
arises from the flexibility of these networks. Mathematically speaking, learning for
these networks means to adjust a function that matches input—output behavior. With
expensive computing equipment, such as employed by LLMs, literally billions of
parameters are adjusted. To do this in a meaningful way, extremely large amounts
of data are needed, like the 14 million hand-annotated images on ImageNet, or the
vast libraries of text compiled by OpenAl (in a completely non-open way). Thus, the
data turn in Al is not only a revelation of how rich implicit knowledge contained in
data might be, at the same time, data present a new bottleneck.

Auvailability and quality of data replace knowledge about rules as the bottleneck.
The question is, which fields have adequate data available? There is no formal rule of
how many one needs. Optimism reigns and speaking about “exciting possibilities” has
become topical for many publications (see, for instance, Torgler, 2020). However, it is
not straightforward to distinguish enthusiastic promises from scientific achievements.
For instance, Perl noted that in actual practice sufficiently many data are almost never
available (Perl 2009, 33).

To the extent that data are the key (other than complicated theories), and that tools
for analysis are accessible through software packages, the Al movement is attractive
for science and commerce alike. Sports science is a case in point. For instance,
Dindorf et al. (2023) warn that scientific research should hurry up to not lag behind
commercial application. It is a widespread belief that Al in sports science is driven by
commercial application at least as much as by (scientific) modeling. Overviews like
that of Chmait and Westerbeek (2021) take Moneyball (Lewis, 2003) as the starting
point for Al in sports science because it provides a striking and impactful example
of how to create data and (commercially) use them.

The following text has three parts. Section 1.2 locates Al in the context of digi-
tization and in the broader history of mathematization. It starts with the famous
book-of-nature verdict by Galileo and suggests that ML indicates a profound turn
in mathematization. Section 1.3 concentrates on epistemology and argues that epis-
temic opacity is part-and-parcel of digitization and, all the more, of Al. This makes
prediction an even more important criterion for scientific success, whereas the capa-
bility for explanation is seriously diminished. The final Sect. 1.4 explores how the
use of software leads to a new social organization of science.
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1.2 Mathematization—Digitization—Artificial Intelligence

Firsta paragraph about terminology. The terminology is complicated by the overlap of
different traditions. Al is dealing with tasks that would count as based on intelligence
if achieved by a human, like playing chess, finding the route back home, recognizing
a face, or writing an essay. As was mentioned in the introduction, Al started with
manipulating logical rules. The recent successes of Al by and large came from Deep
Learning, i.e., from the use of multilayered Artificial Neural Networks (ANNs). At
the same time, ML is a label that normally comprises not only these methods, but also
Random Forests, among others. Thus, both Al and ML sometimes claim ownership
for Deep Neural Networks. In the following, we ignore these complications and
assume that Al refers to a set of methods that typically involve the use of multi-layer
ANNE.

These can exhibit extremely versatile input—output behavior, depending on the
setting of their parameters. Mathematically, such networks approximate an unknown
function—think of image classification that is a map from the set of images into a
set of labels—with the help of very many adjustable parameters. Current LLMs,
for instance, work with billions of such parameters. They are true Behemoths of
approximation that are said to “learn” because the parameter adjustment is a process
that is guided by a set of training data. The machinery of approximation iteratively
finds parameter settings that match these data better and better and in this sense the
model learns from the data.

A most important observation is that Al does not simply help to solve problems,
but rather influences how problems are formulated. Simply deploying computers to
solve existing problems would fail, because the problems are usually not in the right
form to be tackled by a computer. Thus, the intention of using Al influences how
researchers perceive and formulate problems. Researchers aim at posing problems
in a way that makes them amenable to Al

This point is not particular to Al, rather applies to using computer methods in
general. In fact, it generalizes beyond the computer to all sorts of instrumentation. It
has been part of scientific activity all the time, or better—and even more general—
part of how humans act. They use instruments and these instruments shape the way
they see the world and identify solvable problems. A saying of unknown origin
captures the point: “If the only tool you have is a hammer, it is tempting to treat
everything as if it were a nail.” (The entry “Law of the instrument” on Wikipedia
presents a brief selection of possible origins of this saying.) The computer and, most
recently, Deep Learning, is scientific instrumentation that exerts such influence in a
particularly strong way.

If one discerns the objects that populate the world from the instruments that one
uses to investigate these objects, then the case of Al comprises (at least) two layers.
Computers are instruments to find out something about how mathematical or formal
structures behave. But at the same time, one can see mathematical structures as
instruments to find out something about how objects in the world behave. Thus,
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there are two layers, or two embeddings—Al as part of digitization and digitization
as part of mathematization.

A most famous starting point for reasoning about mathematization is Galileo’s
verdict that the book of nature is written in mathematical symbols. From the
seventeenth century on, there was a forceful movement in modern science towards
mathematization, i.e. conceiving of nature in mathematical ways (Mahoney, 1998).
Galileo’s viewpoint rests on the metaphysical assumption that the world is as it is,
and that one can find out some of the facts with the help of mathematical methods
(and maybe in no other way). Importantly, the world is like a book, everything about
nature is written there. That means, scientists are deciphering the book, not writing it.
And since mathematical knowledge is the most certain knowledge, the great promise
of mathematization is that certainty and truth go hand in hand.

This promise was daring from the start, because it is more grounded in philosoph-
ical belief than in actual power. Mathematical methods require a formal framework,
usually involving highly idealizing modeling assumptions, whereas in practical appli-
cations many factors contribute and interact. Admittedly, there are prime examples of
idealizations that work, first of all astronomy and the movement of planets. Newton’s
achievements maybe created the greatest success story in science, when he showed
how laws of mechanics and gravitation plus a new mathematical method (calculus)
could derive the elliptical orbits of the planets in full match with observational data.
From then on, mathematization was deeply entrenched in the development of science.
Still today, mathematical methods count as a pivotal indicator of something being
scientific. Much has changed since the seventeenth century. A most obvious point is
that computers redefined the arsenal of mathematical instruments.

Let us concentrate on simulation as a major area of computer instrumentation.
Basically, we follow the main thesis in Lenhard (2019) that “computer and simulation
modelingreally do form a new type of mathematical modeling.” (2) Four features
of simulation modeling together make it a novel type, namely an explorative and
iterative type of modeling.

Experimenting. Simulation experiments build a particular class of experiments.
Usually, experiments are described as seeking an answer from nature. Although the
question an experiment poses may require extensive theoretical design, like a gigantic
tunnel full of high-tech equipment under the lake Geneva (CERN), there remains an
important sense in which experiments are not determined by theory, even if they are
theory-laden. In the example: does the CERN particle collider register traces of the
Higgs particle or not? Simulation experiments are different because they evaluate the
model behavior that results from the assumptions (and the implementation) already
made. In a way, they question the model-plus-computation part, not nature. Although
they differ from ordinary experiments, these computer-experiments still deserve to
be counted as experiments because they seek an answer to a question by observing a
designed process of open ending. For instance, running a weather model ten times and
counting how often it rains in Kaiserslautern, in this way determining the so-called
probability of rain.

The exploratory variant of experimentation is particularly relevant for simulation
modeling. Here, the focus is on the process of building a model. Often, the model is
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not only motivated by some theoretical consideration, but by how it behaves. Deep
Learning is an excellent example. The ANN is controlled by parameter adjustments,
but the values of these parameters usually do not have a meaning. Their value cannot
be determined out of theoretical considerations. They are adjusted over the course
of repeated experiments that explore the model behavior. “Model assumptions with
effects that are hard or even impossible to survey can be tested, varied, and modified
by applying iterative experimental procedures. Modeling and experimenting agree to
engage in an exploratory cooperation. Such cooperation regularly employs artificial
elements” (Lenhard, 2019, 133).

Artificial elements. The parameterizations in Deep Learning are a prime example,
but artificial elements are significant for almost all computational methods. Let me
replace a full argumentation with an example. If a model is expressed in the language
of continuous mathematics, it must be discretized before a computer can evaluate
it. There are various approaches to discretization, all need to be designed so that
the dynamics of the discrete model closely matches the dynamics of the original
continuous model. “When controlling the performance of discrete models (i.e., for
instrumentalist—though unavoidable—reasons), artificial components are included.
Experiments are necessary to adapt the dynamics of a simulation model, because
one cannot judge whether these artificial elements are adequate without such exper-
imental loops. This grants simulation modeling an instrumental aspect that blurs the
representation relation and hence weakens the explanatory power” (ibid., 133).

Plasticity. “This denotes the high level of adaptability in a simulation model’s
dynamics. The structural core of such a model is often no more than a schema
that requires—and allows—further specification before simulating particular patterns
and phenomena” (ibid., 134). Again, Deep Learning is a prime example. The neural
network usually is almost completely generic. Whether it can be used for image clas-
sification or language generation essentially depends on the data and the parameter
assignments over the course of learning, i.e., iterated exploratory experimentation.
Both structure and specification are necessary to determine the dynamic properties
of a model.

Epistemic opacity. “This arises because models are becoming more complex in
several respects. The course of dynamic events encompasses an enormous number
of steps, so that the overall result cannot be derived from the structure. Instead,
it emerges from model assumptions and the parameter assignments chosen during
runtime. Additionally, important properties of the dynamics result from the specifica-
tions and adaptations made while developing the model. This reveals a fundamental
difference compared to the traditional concept of mathematical modeling and its
concern with epistemic transparency” (ibid., 134). The expectation was that formal
modeling makes graspable what happens in the model and, because the model is
about the world, what happens in the world. In essence, this is the promise of reading
the book of nature. With simulation modeling, and more generally computer-based
modeling, the essential feature of the model is its flexibility. The new promise is that,
with suitable adaptation machinery, the model can be made to match observed data
and phenomena. And exactly the adaptation machinery creates opacity.
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These characteristics are not independent of each other, but support and rein-
force each other. Therefore, they are not just a group of features, but form a distinct
type. Simulation modeling is carried out in an explorative and iterative manner, in a
process that partly uses and partly compensates for the above-mentioned components
(opacity).

Computing instrumentation and the concept of modeling affect each other. One
direction seems obvious. Mathematical models support the design and development
of computers in various ways. But the other direction is at least as important: by using
computers as an instrument, mathematical modelling is channeled. First and fore-
most, this channeling represents an epistemological shift. Traditionally, mathematical
modeling has been performed by human subjects actively modeling to gain insight,
control, or whatever. The channelling effect comes about because an additional tech-
nological level is added: the modelling must find a balance, namely to compensate for
those (extra) transformations that are caused by the use of the computer - that is, as
arule, to neutralize them to a certain extent through further, additional constructions
within the model.

The ANNSs used in Deep Learning have served as examples throughout the anal-
ysis. Lenhard (2019) discusses more and different examples in the same framework.
What are typical features of ANNs? They are a special type of model because they are
constructed almost independently from the sort of phenomenon they are supposed
to capture. They have a very generic model structure. A simple observation is that
these networks are often displayed, but all pictures look essentially the same. In fact,
the structure does not represent the target phenomena. Therefore, one can call ANNs
structurally underdetermined. At the same time, they contain an extremely large
number of parameters whose adjustment makes the overall behavior so versatile that
it can approximate an almost arbitrary function. In other words, the model behavior
depends completely on the specification (of parameters). This is in strong contrast to
the traditional idea of model construction where the structure is supposed to capture
the phenomena and parameters are for fine-tuning.

From a formal and abstract standpoint, iteration is the typical action connected
with ANNSs. Their construction is often meaningless, in the sense that elements in
the construction do not have an interpretation in terms of the target domain—no
champion of Go was necessary to build the network that—when trained over and
over by playing games against itself—Ilater beat the world champion reliably. All
the more does parameter adjustment matter. And this happens iteratively, i.e. in each
learning step each parameter is adjusted—and learning steps are themselves iterated.
From a hardware point of view, such procedure requires to execute large masses of
simple iterations.

Finally, ANNSs stand for a turn in mathematization. Now, mathematization is not
about the book of nature. It is not a tool for representing the world. Instead, mathe-
matics is used as a tool to construct and control the gigantic approximation machines
that ANNSs are. Jost (2017) argues that mathematization now is concerned with the
mathematization of tools. How can such inward-looking turn result in something
that is successful in real-world tasks like image classification or language generation?
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Basically, these successes are grounded in a fundamentally instrumentalist approach,
namely a statistical treatment of patterns—irrespective of what these patterns mean.

1.3 Epistemology: Opacity and Understanding

Black box modeling deals solely with input—output behavior, whereas its counter-
part, white box modeling, is concerned also with the inner workings of the model.
Obviously, a black box model cannot explain why the modeled system behaves as
it behaves. For this reason, it is a widely shared goal to replace opaque models that
have a black box character by white box, transparent models. A good example is Perl
(1997) who diagnoses that modeling is targeting systems of increasing complexity
and that this complexity prohibits the sort of analysis possible with white box models.
Perl expresses the hope that approaches like neural networks might open up a new
way for understanding complex systems (Perl, 1997, 302).

About 25 years ago, the opinion was widely shared that new computational
methods might bring new ways of understanding complex systems. However, the
quick evolution of ANN s brought predictive successes that come together with utterly
opaque models. One can still insist on the goal of making these models transparent
to an extent that allows one to explain their prediction. Not very astonishingly, and
in response to the successes of ANNS, there is a recent call to develop “Explainable
AI” (XAI). However, opacity is part-and-parcel of simulation in general (Humphreys,
2004; Lenhard, 2019) and of Deep Learning in particular—as has been argued above.
Up to now, XAl remains an open field for research whose success (or failure) can
only be judged in the future.

If one is accepting that opacity is an unwanted, but unavoidable condition for
using Al how does the promise of Al (and digitization in more general) look like?
From a historical and philosophical perspective, prediction challenges the search for
an explanation. This tension has been a constant companion to the entire discussion
about explanation since the beginning of modernity—or actually even longer: ever
since mathematics played any role whatsoever in considerations of epistemology and
practice. A basic viewpoint is that the ability to predict shows something important.
In some way, whatever is able to give good predictions has got something right about
the world, or about that fraction of the world under investigation. And this something
is the fundament and the true source of the predictive capability.

Remarkably, the new methods seem to turn this upside down: Prediction happens
on the basis of a method, or a generic model, whose representational properties are
in question or even inaccessible. Is understanding still possible? Understanding is a
central but somewhat vague and multifaceted notion in epistemology. A couple of
decades ago, understanding sometimes was taken to be antonymous to explanation.
There is a vast literature in philosophy of science dealing with explanation, whereas
understanding is covered considerably less. Books like the one by de Regt et al.
(2009) indicate a change—understanding now is on the agenda in philosophy of
science.
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In a way, simulation models can provide understanding at a certain standard.
Scientists might conduct iterated simulation experiments and create visualizations
and in this way sound out how how the input—output dynamics looks like. In doing
so they can orient themselves in the model—even if parts of the dynamics are not
transparent to them. Of course, this kind of familiarity with the model does not
meet the high epistemic demands that are normally placed on mathematical models
(cf. Russell’s (1905) concept of knowledge by acquaintance). However, this lower
standard is still sufficient if the aim is a controlled intervention. In other words,
simulation models might remain epistemically opaque, but still provide means to
control the dynamics.

A typical example is the possible breakdown of the meridional overturning circu-
lation MOC, i.e. the Gulf Stream. Researchers investigate how the MOC behaves
under varying conditions (in the simulation model), like temperature increase. Their
goal is to understand how robust it is. But understanding here means the opposite of
Feynman’s case. Whereas he wanted to know behavior without calculation, getting
a picture of the MOC is based on large amounts of calculations. Similarly, structural
engineering has changed its face with computational modeling. Daring constructions
can be admired that could not have been planned without calculating their structural
stability via computer models. Engineers understand how such constructions behave,
but in a very pragmatic sense that does not presuppose epistemic transparency.

Of course, one could question whether the pragmatic notion should be called
understanding at all. We hence face two options: First, does simulation eliminate
understanding in the practices of sciences and engineering, or second, do simulation
practices replace a strong notion of understanding by a weaker, pragmatic notion?
If one accepts that the complexity of simulation models makes epistemic opacity
unavoidable, whereas at the same time, these models still are good for interventions
and predictions, then the question is: Will this co-existence lead to a new conception
or re-definition of scientific understanding? Devising an answer to this question still
is a task for philosophy of science.

Thus, the argumentation leads to a twofold claim. First, that simulations can facil-
itate acquaintance with, and orientation in, model behavior even when the model
dynamics itself remain (partially) opaque. And secondly, simulations change math-
ematical modeling in an important way: Theory-based understanding and epistemic
transparency recede into the background, while a kind of pragmatic understanding
comes to the fore that is oriented towards intervention and prediction rather than
theoretical explanation.

1.4 Software and How Expertise is Organized

If researchers want to use simulations or other computational methods, especially
ML, they have to have available appropriate infrastructure. Everybody immediately
thinks of a computer terminal, rightly so. However, in this context infrastructure
is far more comprehensive. As a concept, infrastructure is so interesting because it
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captures, or allows to capture, how modern societies, technology, and regulation are
interconnected, see Edwards (2002). Having it available is demanding, in terms of
costly technology, and actually using it also demanding, in terms of what sort of
questions should be asked in which ways.

One of these infrastructure elements is data. The strength of ANNs unfolds when
they statistically identify correlations. The prominent successes have a twofold root.
Firstly, ANNs can work through amounts of data that were considered unfeasible not
long ago. This data-digestive ability rests on a combined achievement of hardware,
such as the use of graphical processing units, and software. Secondly, the sensitivity of
ANN:Ss to delicate traces of correlations is of use only when there are really many data
available. Else all the parameters and optimization procedures remain idle, or worse,
lead to spurious signals. This makes ANNs data-hungry. Therefore, researchers
are strongly motivated to formulate questions about areas where massive data are
available or can be produced. In an apt analysis, Perl (2009) had pointed out that
ANN methods in sport science suffer from the fact that they need more data than
are available. For a statement that computer methods will lead to data-centered 4th
paradigm science, see Hey et al. (2009). It is surely not coincidental that this book
comes out of Microsoft, a major company involved in data business.

A second element is the networked character of the entire research workflow. Data
such as comprehensive image inventories from the internet are usually not stored
locally. One can argue that Google or other companies build gigantic computing
centers that duplicate and store the entire internet. But this only strengthens the case,
because ordinary researchers must connect to these data storages. Moreover, parts
of the actual computation are often outsourced, too. When learning and adjusting
the parameters, researchers typically work with a software suite such as Tensor-
Flow (Abadi et al., 2015) that runs on a platform maintained by Google. Thus,
the exploratory—iterative mode of modeling—specifying the parameters in iterated
learning steps—has been adopted by a new networked and centralized infrastructure.
Although it is centralized, it is readily available (or those parts of it are that some
company thinks in its interest to make available). Moreover, the exploratory part
is automated; it consists in adjusting the parameters almost entirely independently
from the modelers, thus contributing to opacity.

Software should be distinguished from computing as a third element of the infras-
tructure. Classically, creating software that adequately operationalizes research ques-
tions is a key component of scientific expertise. In the 1980s and 1990s, the motto
was that computing expertise should become part of particular fields, like sports
science, because a division between software developer and user would no longer
work (Lames et al., 1997, p. 30) In one sense, this motto has been fulfilled. Today,
everyone is working with computers. However, in an important sense, something very
different happened. Software packages became available that made it easy, or at least
doable, for many users to do computational science without being experts in actually
developing the software. This division of labor amounts to a fundamental shift in
how expertise is socially organized. For example, Johnson and Lenhard describe in
Chap. 4 of (2024) how quantum chemical simulations are employed by researchers
who are specialists in such software, but not in quantum chemical theory. Software
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and the way in which its uses are organized are a new research topic shared by history,
sociology and philosophy of science, see for instance Haigh (2013), Hocquet and
Wieber (2021), Johnson and Lenhard (2024).

In Al a highly visible feature of social organization is that there is a host of
competitions set up to achieve a given predictive task to the best degree or with
the lowest failure rate (as on the platform Kaggle). Such competitions attract atten-
tion from various groups and have established an arena independent of academia
(notwithstanding the fact that typical participants have had contact with universities).
When data and software are provided on the internet, participants can act indepen-
dently from resources provided by a university or other academic institution. These
competitions function as a market from which big companies recruit scientists and
programmers.

Importantly, the methodology together with the infrastructure create a new situ-
ation when it comes to policy and regulation. The quality of predictions depends
on the quality of the (training) data. Because the quality of data is (still) ill defined,
main actors take the quantity of data as a proxy. Today, data such as those that
Tesla collects while developing its automated car count as a commercial treasure
(not to mention Facebook and other actors in the field). Whereas the collected data
are proprietary, government interventions such as regulating when a car has to apply
its brakes depend on access to these data. And therefore, practice is heading for a
conflict as far as regulatory measures—or better, their justifiability—is concerned.

Finally, a short wrap-up concerning the point raised at the beginning of this
chapter: If a field is getting into Al, what effects will that potentially have? Overall,
digitization brings about new research instruments. The wide distribution and uptake
is depending on a comprehensive infrastructure that makes the use of software
possible also for non-experts and also directs new research toward fields and questions
that lend themselves to these new instruments. Concretely, since data are a potential
bottleneck, creativity is required from the researchers to address questions for which
they have available or can produce sufficient amounts of data. Philosophically, simu-
lation and Al methods come with epistemic opacity. They yield predictions, but tend
to be unpromising regarding explanations.
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Chapter 2 ®)
Artificial Intelligence in Sport Scientific e
Creation and Writing Process

Richard Latzel and Patrick Glauner

Abstract This chapter examines the transformative role of Artificial Intelligence
(AI) tools in enhancing academic research and writing, with a focus on their appli-
cation within sports science. It highlights the integration of technologies such
as ChatGPT, Grammarly, and other generative Al tools into the academic land-
scape, demonstrating their impact on improving learning environments, promoting
academic integrity, and streamlining administrative tasks. Through a detailed explo-
ration of AI’s contributions to literature research, data management, analysis, visual-
ization, and writing support, the chapter delves into the efficiencies and depths these
tools bring to academic work. It also addresses the limitations and challenges of Al
integration, emphasizing the crucial balance between technological advancements
and the indispensable value of human expertise in scholarly research. This discussion
underscores AI’s potential to facilitate innovation in academic writing and research,
marking a significant shift towards more efficient, insightful, and comprehensive
scholarly work if applied properly.

Keywords ChatGPT - Al - Scholarly Work

Declaration of the Use of Artificial Intelligence Tools in This Book Chapter

In the development of this book chapter, we selectively utilized Artificial Intelligence
(AI) tools, primarily to support and enhance the writing process. This declaration
outlines the extent and manner of Al tool integration within our work, emphasizing
our approach to leveraging technology while ensuring the integrity and originality
of our scholarly contribution.

1. Literature Research: We incorporated Al tools, specifically ResearchRabbit and
Elicit, to assist in the initial stages of literature research. These platforms facil-
itated the identification of relevant studies and provided insights that informed
our understanding of the topic. It is important to note that while these tools
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were helpful, they complemented a broader manual research effort, ensuring a
comprehensive and nuanced review of existing literature.

2. Writing Assistance: The primary application of Al in the creation of this chapter
was in the realm of writing support. Tools like ScholarAl and ChatGPT were
used to enhance the clarity, grammar, and coherence of our text. These Al-
driven aids offered suggestions for language improvement, helping us refine
our argumentation and presentation. However, the critical evaluation of these
suggestions and the final writing decisions were made by us, the authors, to
maintain the academic integrity and intellectual rigor of our work.

3. Originality and Integrity: Despite the availability of Al-based plagiarism detec-
tion tools, we chose to ensure the originality of our content through manual veri-
fication and adherence to best practices in scholarly writing. This approach was
guided by our commitment to academic ethics and the production of work that
is both authentic and contributes meaningfully to the field.

By detailing the use of Al tools in the composition of this chapter, we aim to trans-
parently acknowledge the role of technology in facilitating our academic writing
process. The integration of Al was done with careful consideration, ensuring that it
served to augment our capabilities as researchers and writers, rather than diminish
the scholarly value of our contribution. The insights, interpretations, and conclusions
presented in this chapter are the result of our professional judgment and expertise,
underscored by a judicious application of Al for specific, supportive tasks in the
writing process.

2.1 Introduction

The integration of Artificial Intelligence (AI) tools like ChatGPT, Grammarly, and
other generative Al models into academic writing and educational platforms has
been the subject of various studies, highlighting both their advantages and poten-
tial drawbacks. These tools have been shown to potentially enhance the learning
environment by providing personalized tutoring, automating essay grading, facili-
tating translation, and creating interactive learning environments. Al tools have also
been acknowledged for their role in promoting academic integrity through plagia-
rism detectors and assisting in administrative tasks like grading and feedback provi-
sion. This technological advancement has notably reduced the paperwork and work-
load for instructors, allowing them more time to dedicate to instruction and content
dissemination (Duymaz & Tekin, 2023; Escalante et al., 2023).

This chapter explores the benefits and limitations of Al tools for academic research
and writing, providing insights into their practical application in sports science and
other academic fields. It includes a brief overview of Al tools’ basic functionality
before delving into their potential benefits in academic literature research, data
analysis and management, and academic writing.
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2.2 Overview of Artificial Intelligence

Al aims to automate human decision-making. Al has become one of the most transfor-
mative technologies of our time, reshaping industries, augmenting human capabil-
ities, and pushing the boundaries of what machines can do. Typical tasks include
learning, reasoning, problem-solving, perception, and language understanding
(Russell & Norvig, 2021).

Historical sketch

The journey of Al began in the mid-twentieth century, with the term “artificial
intelligence” being coined in 1955 by John McCarthy and others in a proposal for
the Dartmouth Conference for the following year (McCarthy et al., 1955). This
period marked the optimistic beginnings of Al, with researchers setting ambitious
goals for machines to mimic human intelligence. Early Al research largely focused
on symbolic approaches, attempting to encode human knowledge into machines.
However, the complexity of human cognition proved to be a formidable chal-
lenge, leading to the realization that achieving true Al would require more than
just programming explicit rules.

Machine Learning

The rise of Machine Learning (ML) in the latter part of the twentieth century marked
a significant shift in the Al landscape. ML is a subset of Al that focuses on developing
algorithms that enable computers to learn from and make predictions or decisions
based on data. This approach diverged from the rule-based methods, offering a new
pathway to achieving Al through data-driven learning (Bishop, 2006). The field of
ML can broadly be divided into three so-called “pillars”:

e Supervised learning: learn to predict alabel y, i.e. a class (classification) or quantity
(regression), from input data X.

e Unsupervised learning: find hidden relationships, such as clusters or lower
dimensional representations, in the input data X.

e Reinforcement learning: learn which action to take in which state to achieve the
best outcome.

Deep Learning

Deep Learning involves (Artificial) Neural Networks with many layers (hence
“deep”) that learn representations of data with multiple levels of abstraction. This
approach has enabled significant advances in computer vision, natural language
processing, and other areas requiring complex feature extraction in recent years
(Bishop & Bishop, 2024).

Natural Language Processing

Natural Language Processing (NLP) is a domain of Al focused on the interaction
between computers and humans using natural language. The goal of NLP is to enable
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computers to understand, interpret, and generate human languages. Techniques in
NLP have evolved from rule-based systems to ML and sophisticated Deep Learning
models, significantly improving the ability of machines to process and understand
human language.

Large Language Models and prompt engineering

Large Language Models (LLMs), such as ChatGPT, represent the cutting edge of
NLP. These models are trained on vast text datasets, learning to predict the next token
in a sequence given the preceding tokens. This training enables them to generate
coherent and contextually relevant text, translate languages, answer questions, and
even write code. Prompt engineering has emerged as a crucial skill in leveraging
LLMs, involving designing inputs (prompts) that guide these models to produce
the desired output. It requires an understanding of the model’s capabilities and
limitations, creativity, and strategic thinking.

2.3 Role of Artificial Intelligence-Supported Tools
in Literature Research

In the evolving landscape of academic research, Artificial Intelligence (AI) tools have
emerged as pivotal instruments, reshaping the way research and analysis of data is
conducted and findings are compiled. Some of the key advantages Al tools can offer
in academic research are (Chubb et al., 2022; Pinzolits, 2023):

1. Efficiency and Time Management: Al tools, when used in the right way,
can markedly reduce the time researchers spend on literature reviews and data
analysis. They can quickly sift through extensive databases to identify relevant
research papers, abstracts, and even specific sections within papers that address
particular research questions. This capability allows researchers to focus more
on analysis and less on the time-consuming process of finding information.

2. Comprehensive Literature Analysis: With access to vast databases of peer-
reviewed articles, Al tools enable researchers to conduct thorough literature
reviews. Some tools offer literature mapping features that help identify related
research, references, and recommended readings, ensuring that researchers have
a comprehensive understanding of their topic.

3. Detailed Research Insights: Beyond just identifying relevant papers, Al tools
can analyze the full text of research documents. This deep dive into the content
provides detailed insights into methodologies, results, and discussions, which are
crucial for understanding the nuances of each study. Some tools can extract and
summarize information from multiple research papers at once and might even
aid in the development of a well-informed hypothesis and research design.
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4. Accessibility to Information: Al tools make it easier for researchers and students
to access and digest complex academic material (von Garrel & Mayer, 2023). Al
tools can answer specific questions about a paper or summarize it in less elaborate
language, hence simplifying the process of extracting valuable information.

However, there are some general limitations of Al tools in academic research that
need to be considered:

1. Quality and Relevance of Sources: While these tools can retrieve a vast amount
of literature, the relevance and quality of sources may vary. Researchers and
students must still apply critical thinking to assess the validity and applicability
of the information to their specific research questions.

2. Contextual Understanding: Al tools may not fully grasp the context or nuances
of certain research areas, especially those involving complex human behaviors
or subjective interpretations. This means that while they can provide data, the
researcher must contextualize and interpret these findings within the broader
scope of their study.

3. Dependency and Skill Development: There is a risk that heavy reliance on Al
tools could impact the development of traditional research skills. Researchers,
teachers and students must balance the use of Al with the cultivation of crit-
ical thinking, analytical skills, and hands-on research experiences (BaHammam,
2023).

In the following, a few Al tools available today shall be briefly presented and their
potential applicability as well as limitations for literature research outlined.

At the time of compiling this chapter, none of the Al tools presented required
any sort of financial transaction for use. However, it cannot be guaranteed that these
tools will remain free of charge. Some already charge users for improved or updated
functionalities, such as OpenAl, which offers its GPT-3.5 model free of charge but
charges for the use of GPT-4.

Comprehensive user guides and tutorials for the Al tools are provided on their
official websites, and are accessible to users. Additionally, video tutorials on how to
utilize these tools are available on online video platforms such as YouTube.

2.3.1 ResearchRabbit

Functionalities and Benefits:

ResearchRabbit acts as a personal research assistant, helping researchers find relevant
papers and stay updated with the latest research. It uses Al to learn from the user’s
interactions and preferences and natural language processing (NLP) which allows
users to create collections of papers and receive personalized recommendations,
similar to the curated playlists of music streaming services. The tool also provides
personalized digests of the latest papers related to users’ collections and offers inter-
active visualizations to explore networks of papers and co-authorships, providing
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new insights and opportunities for exploration. These networks can be displayed
as spider webs (Fig. 2.1) or as a list in chronological order (Fig. 2.2), which could
be particularly useful in situations where researchers want to limit their search to
a certain point in time (e.g. conducting a Meta-Analysis on a certain topic of only
the most recent literature). Typically, the more papers are included in a project, the
more dense the connections between these papers and the network itself. However,
the network of relevant papers typically expands with every paper added to a project,
hence the researcher is advised to carefully select and deselect papers in a project.

Practical Applications:

In sports science, ResearchRabbit could be invaluable for discovering emerging
trends and methodologies by creating collections focused on specific areas of
interest. It is particularly useful for researchers looking to establish a comprehensive
background for their study or seeking to identify gaps in the current literature.

Limitations:

While ResearchRabbit simplifies finding relevant literature, it may have a learning
curve regarding its interface and maximizing its features. Additionally, it is more
focused on discovery and recommendation rather than in-depth analysis of papers,
which means researchers still need to critically evaluate the suggested literature for
quality and relevance. Lastly, while the graphical representation of the findings does
provide a concise visualization of the literature currently used and potentially of
interest, one can quickly get lost in playing around with the networks. Rather than
streamlining the search for relevant academic papers, this could lead to actually
spending even more time searching.

2.3.2 Elicit

Functionalities and Benefits:

Elicit is known for its robust literature review capabilities, facilitating the exploration
of research questions by automatically summarizing research papers and extracting
relevant data points. It aids in hypothesis generation and testing by analyzing vast
amounts of literature to identify trends, gaps, and consensus within specific research
fields. Elicit leverages language models to efficiently locate relevant academic papers,
eliminating the need for precise keyword matching. This user-friendly interface
allows users to engage with the tool through simple queries, making it particularly
beneficial for early-stage researchers and students who are just beginning to navigate
the complexities of scientific writing. This intuitive approach not only simplifies the
research process but also enhances learning opportunities for those new to academic
environments.
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Fig. 2.1 Once a paper is added to a project in ResearchRabbit (a), a network of similar studies is
created (b), with more papers being added to the project, the network changes and evolves (c)
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Fig. 2.2 The network in ResearchRabbit can be displayed as a timeline as well

Practical Applications:

For academic researchers, Elicit can streamline the initial stages of a research project
by quickly identifying key studies, methodologies, and findings relevant to their
research question. This can significantly reduce the time spent on literature reviews.

Limitations:

Elicit’s effectiveness depends on the clarity of the research question and the tool’s
current database access. Researchers must critically assess the summaries and data
points provided, ensuring they align with their research needs (Fig. 2.3).

2.3.3 Google Scholar

Functionalities and Benefits:

Google Scholar is widely used for its simple interface and comprehensive access
to scholarly articles, thesis, books, and conference papers. It offers citation tracking
and related-article searching functionalities, making it easier for researchers to find
seminal works and follow citation trails. Google Scholar employs Al technologies
similar to those used in the broader Google Search Engine. It utilizes neural mapping,
Natural Language Processing (NLP), ML, and the Multitask Unified Model (MUM)
to enhance its search capabilities. These technologies collectively work to refine
search results, contextualize information, and offer concise summaries.
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A range of Al tools have been explored in sports science research. Expert Systems have been
proposed for evaluating faults in sports movements (Ratiu, 2010; Bartlett, 2006). Artificial
Neural Networks, particularly Kohonen Maps, have been used for technique analysis in sports
biomechanics (Ratiu, 2010; Bartlett, 2006). Evolutionary Computation has been applied in
movement optimization, predicting optimal techniques (Ratiu, 2010; Bartlett, 2006). The
potential of Al in enhancing sports analytics, decision-making, and forecasting has been
highlighted, with a focus on machine learning (Chmait, 2021). These tools have the potential to
revolutionize sports science research, but further exploration and application are needed.

Fig. 2.3 Elicit answers a research question by summarizing relevant papers

Practical Applications:

Its broad access makes it a fundamental tool for conducting preliminary literature
searches and citation analysis in nearly any academic field, including sports science.
Google Scholar is particularly useful for identifying highly cited works that define a
research area.

Limitations:

Google Scholar may include non-peer-reviewed sources in its search results,
requiring researchers to verify the credibility of their sources. Furthermore, its algo-
rithm prioritizes highly cited papers, which could overshadow newer, less-cited
research that might be equally relevant.

2.3.4 ScholarAl

Functionalities and Benefits:

ScholarAl specializes in providing comprehensive access to a wide array of academic
papers, leveraging advanced search algorithms to find relevant literature based on
specific inquiry keywords. It offers detailed analysis capabilities, including abstract
searches, full-text analysis for in-depth research insights, and question-answering
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features for specific papers, making it an invaluable resource for conducting precise
academic research. To read, summarize and map literature, ScholarAl uses neural
network technology.

Practical Applications:

ScholarAl can be particularly useful for sports scientists and researchers in fields
where staying updated with the latest studies and methodologies is crucial. Its ability
to quickly provide relevant research papers and detailed insights into study method-
ologies, results, and discussions can potentially enhance the quality and efficiency
of literature reviews and research design.

Limitations:

While ScholarAl offers deep dives into specific topics and the ability to answer
targeted questions, it requires clear, precise queries to maximize its effectiveness.
Additionally, like other Al tools, it necessitates a critical evaluation of the provided
literature to ensure relevance and quality, underscoring the importance of integrating
human expertise with Al capabilities.

2.3.5 Summary of Artificial Intelligence Tools in Literature
Research

The landscape of Al tools for academic research is diverse, with each tool offering
distinct advantages to researchers. From ResearchRabbit’s personalized recommen-
dations and interactive visualizations, Elicit’s robust literature review and hypothesis
testing capabilities, Google Scholar’s broad access to scholarly materials and citation
tracking, to ScholarAI’s detailed research insights and targeted question-answering
features, these tools collectively represent a powerful suite of resources that can
potentially enhance academic research efficiency and depth. One suggested strategy
for using Al tools in the scientific writing process begins with engaging Elicit to
either discover a research question or refine an existing idea. After identifying perti-
nent papers (skipping the initial use of Elicit if relevant papers are already known),
tools such as Google Scholar, Scholar Al, and ResearchRabbit can be utilized for a
comprehensive search. Subsequently, it’s advisable to verify the scientific validity
of these findings by consulting specialized databases like PubMed. Throughout this
process, ResearchRabbit’s graphical representation of the literature and its integration
with citation management programs like Zotero can be instrumental in organizing
the literature and ensuring accurate citation in the thesis or paper draft. This approach
streamlines the research process, leveraging the strengths of each Al tool to enhance
the efficiency and depth of literature exploration and review.

However, the practical application of these tools underscores the need for a
balanced approach, combining their advanced technological capabilities with the
researcher’s critical thinking and expertise. While Al tools offer unparalleled ease in
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sourcing relevant papers, automating literature reviews, and ensuring up-to-date cita-
tions, they are not without limitations. The potential for recommending non-relevant
literature, the need for manual verification, and the importance of critical assessment
remain paramount.

Inessence, the integration of Al tools into academic research workflows opens new
horizons for efficiency, knowledge discovery, and innovation. However, their limi-
tations highlight the indispensable value of human judgment, ensuring that research
outcomes not only benefit from the breadth and speed of Al but also reflect the depth
and discernment that come with scholarly expertise.

2.4 Data Management, Analysis, and Visualization

Data management, analysis, and visualization form the backbone of Al and ML
projects, enabling data scientists and researchers to derive insights, make informed
decisions, and effectively communicate findings. The enormous growth in data
volume and complexity has underscored the importance of efficient data handling
and interpretation methods, making these disciplines critical in the context of Al
and ML. Those data sets are substantially larger than those used in other empirical
research projects.

Data management

In AT and ML projects, data management is crucial for the actual training of models,
as the quality and quantity of data directly impact model performance. Data manage-
ment in Al and ML encompasses the practices, architectural techniques, and tools
for achieving consistent access to data in a way that is both efficient and secure. It
involves data collection, storage, organization, and governance. The goal is to ensure
data quality and accessibility for analysis and processing. Effective data manage-
ment supports the iterative process of model development, enabling the refinement
of datasets and the integration of new data sources to improve model accuracy and
relevance.

Data analysis

Data analysis in Al and ML involves processing and examining datasets to discover
patterns, test hypotheses, or make inferences. It is a critical step that directly influ-
ences model development and outcomes. Techniques range from statistical analysis to
complex ML algorithms. In the context of Al, data analysis helps in feature selection,
where relevant variables are identified for model training. It also plays a role in eval-
uating model performance through metrics. Through data analysis, researchers can
identify trends, outliers, and correlations that inform the development and refinement
of Al models.
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Data visualization

Data visualization is the graphical representation of information and data. By using
visual elements like charts, graphs, and maps, data visualization tools provide an
accessible way to see and understand trends, outliers, and patterns in data. In Al and
ML, visualization is not just a tool for presenting results but also a critical component
of exploratory data analysis (EDA). Visualizations can reveal insights into the data
that might not be apparent from raw data alone, making it easier for stakeholders to
understand complex models or predictions. It also aids in diagnosing issues in model
performance by highlighting data imbalances, errors in classification, or areas where
the model is underfitting or overfitting.

Exploratory data analysis

In the context of Al and ML, exploratory data analysis (EDA) is a preliminary step
before model building, where data scientists explore the data through visualizations
and statistics to understand and interpret its characteristics, quality, and structure.
EDA is crucial for identifying the most relevant features, understanding the distri-
bution of data, and making informed decisions about data preprocessing and model
selection.

EDA uses a variety of techniques (mostly graphical) to (Tukey, 1977):

Maximize insight into a data set;
Uncover underlying structure;
Extract important variables;

Detect outliers and anomalies;

Test underlying assumptions;
Develop parsimonious models; and
Determine optimal factor settings.

Together, data management, analysis, visualization, and exploratory data analysis
constitute essential processes in Al and ML projects. They enable the efficient
handling of data, uncover insights that guide model development, and ensure that
findings are communicated effectively. As Al and ML continue to evolve, the role of
these disciplines will only grow in importance, driving advancements and innovation
in the field. Furthermore, Al tools can be used to support those steps, e.g. DALL-E
for visualization of data, but there are also other approaches to partially automate
EDA (Patel et al., 2023).

2.5 Writing Support Through Artificial Intelligence

In the realm of academic writing, Al-powered tools such as Grammarly, ProWritin-
gAid, DeepL, and ChatGPT play pivotal roles in enhancing writing quality, refining
grammar, spelling, and style. These tools are designed not just to correct errors
but also to improve the overall coherence and eloquence of academic texts, making
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them beneficial for researchers, students, and academics alike. Like the other Al tools
previously discussed, the following tools also offer free versions with basic function-
alities. However, for access to more powerful features or higher usage limits, users
are usually required to opt for paid versions. All of the tools presented primarily use
NLP for grammar checking, style editing and writing suggestions.

User-friendly interfaces are provided by these tools, and their intuitive usage often
makes specific tutorials unnecessary for basic writing support. Effective outcomes
can be significantly enhanced by crafting appropriate prompts for ChatGPT. Addi-
tionally, the “Grammarly Handbook,” which outlines grammatical rules and provides
examples of correct and incorrect usage, is made available on Grammarly’s own
website, aiding users in refining their writing skills.

Grammarly

Grammarly stands out for its comprehensive feedback on grammar, spelling, punctu-
ation, sentence structure, style, and vocabulary enhancement. Its technology assists
both learners and teachers by providing immediate modifications and reducing the
workload of checking and evaluating writing. Studies have shown that Grammarly
can significantly improve students’ writing skills by offering precise corrections
and suggestions across various error categories. However, it is crucial to note that
while Grammarly excels in correcting language use, it may provide misleading feed-
back, struggle with checking bibliographies, and fail to evaluate context and content
accurately. Thus, integrating Grammarly’s feedback with careful review and crit-
ical feedback from educators is essential for achieving the best results in academic
writing (Zinkevich & Ledeneva, 2021).

ProWritingAid

ProWritingAid, similar to Grammarly, offers detailed analysis of writing style,
grammar, and errors. It provides suggestions for improvement, focusing on read-
ability, sentence length variation, and overused words, which are crucial for academic
writing. The tool is particularly helpful in making academic writing more concise
and impactful. However, like all Al tools, it requires the user to critically assess the
suggestions to ensure they align with the intended message and academic standards.

DeepL

DeepL is renowned for its translation accuracy, which could be beneficial for
academic writers working with sources in multiple languages or needing to translate
their work. Beyond translation, DeepL. offers suggestions for enhancing sentence
construction, making it a valuable tool for non-native English speakers aiming to
polish their academic writing. To achieve high-quality translations, DeepL employs
Machine Translation (MT) based on Deep Learning and neural networks. This
advanced approach allows DeepL to consider the entire context of a sentence, rather
than translating word by word. This method ensures that translations are not only
accurate but also contextually appropriate, capturing the nuances of the source text
more effectively. However, the limitation lies in its primary function as a trans-
lator; while it ensures grammatical accuracy and fluency, the depth of stylistic or
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content-specific advice may not be as comprehensive as other dedicated writing
aids.

ChatGPT

ChatGPT, powered by advanced language models, assists in generating coherent
and contextually relevant text, making it a helpful tool for drafting and revising
academic writing. It can provide outlines, summaries, and even detailed sections
of academic papers. Nonetheless, users must remain vigilant about the accuracy of
the information provided and ensure it meets the rigorous standards of academic
integrity and originality (Homolak, 2023).

Practical Applications and Limitations

These Al writing tools are invaluable for enhancing the clarity, coherence, and
correctness of academic texts. They serve as initial screening layers for grammatical
and stylistic errors, allowing writers to focus on the content’s depth and originality.
However, the integration of Al tools in academic writing represents a balance between
leveraging technology for enhanced language precision and maintaining the crit-
ical, analytical approach characteristic of scholarly work. As these tools continue to
evolve, their potential to support the academic community will undoubtedly expand.
However, these tools should complement rather than replace the meticulous review
processes typical of scholarly work.

2.6 Conclusion

The integration of Al tools into the academic research and writing process heralds
a new era of efficiency and innovation in sports science and beyond. These tools
offer unparalleled support in literature research, data analysis, writing assistance,
and more, enhancing the overall quality and depth of academic work. However,
the essence of successful Al integration lies in the symbiotic relationship between
technology and human expertise. While Al tools can provide a foundation of effi-
ciency and accessibility, the nuanced understanding and critical analysis inherent
to human researchers remain irreplaceable. Furthermore, efficiency and quality of
academic writing are not always enhanced with the use of Al tools, especially in less
experienced scholars and researchers (Basi¢ et al., 2023).

As we continue to explore and expand the boundaries of knowledge, the judicious
application of Al in academic research will undoubtedly serve as a catalyst for
discovery and innovation. The future of sports science, enriched by Al, promises
advancements that are not only technologically driven but also deeply rooted in the
critical, analytical approach characteristic of scholarly work. However, the rise of
(generative) Al tools in scientific writing calls for transparent declaration upon usage
(Tang et al., 2023).
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Chapter 3 ®)
Advancing Endurance Sports G
with Artificial Intelligence:

Application-Focused Perspectives

Tessa Menges

Abstract As one of the key technologies in today’s society, Artificial Intelligence
(AD) is increasingly influencing every facet of people’s daily routines, including
sports training. This chapter explores the use of Al in endurance sports and how it
enhances various aspects of the sporting world. Al can provide targeted assistance in
athletes’ training through methods such as data analysis and simulation of training
scenarios. In the context of cycling, an Al system can analyze a cyclist’s performance
data, including factors like cadence, power output and heart rate, to identify specific
areas for improvement. The Al can show the coach or the athlete training types
that explicitly help the cyclist to improve his recognized weaknesses. This focused
approach empowers cyclists to fine-tune their training regimens based on individual
needs, ultimately contributing to heightened performance and skill refinement. In a
professional context, where personalized training has long been the norm, the value
lies in AI’s capacity to identify weaknesses, providing insights that may surpass
traditional coaching methods. This new type of intelligent data analysis can support
the coach and the athlete in the decision-making process. This applies not only to
training but also to the selection of races or the definition of a strategy. Specific
practical examples will also be highlighted to illustrate how Al is being used in
sports today. The aim is to concretize the approaches of Al in sports and explain how
these tools work. In conclusion, this chapter not only serves as a compass guiding
readers through the exciting intersection of Al and sports but also invites reflection
on the vast potential and transformative power of technology in shaping the future
of athletic pursuits.
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3.1 Introduction

In recent years, the surge of Al has permeated various facets of human life, bringing
about a substantial shift in our perspectives and utilization of this advanced tech-
nology (Littman et al., 2021. p. 12). The rapid growth of Al has significantly altered
the way we approach and integrate it into our daily activities. There’s a major shift
happening, with a greater focus on practical and useful applications of AI. This
means Al is not just getting better; it’s becoming more about real-world use cases in
different areas, moving away from just theoretical or experimental ideas. Figure 3.1
captures the total number of Al patent filings from 2010 to 2021.

The changing landscape has not only affected our understanding of sports but has
also transformed the methods we use to improve athletic performance and refine our
practice routines. This shift includes advancements in sports science, technology,
and innovative training approaches, which are reshaping how we engage with and
compete in sports (Chmait & Westerbeek, 2021).

For example, in the past, talent scouts were faced with a labor-intensive and
time-consuming process of manually analyzing countless videos to identify the right
player for a team. This required a deep understanding of player nuances and team
dynamics. However, with the advent of Al, the scouting landscape has changed. Al
algorithms can now quickly scan large amounts of video footage to quickly analyze
the performance of basketball players. For example, SportVU 2.0 (Stats Perform,
Germany, Diisseldorf), which uses advanced optical tracking and computer vision,
extracts player and ball coordinates to generate rich performance statistics. This data,
harnessed by the latest Al analysis software, offers valuable insights into player
strengths, weaknesses, and overall suitability for a team. Talent scouts can now use
Al as a powerful tool to streamline the scouting process, focusing on nuanced aspects
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Fig. 3.1 Number of Al patent filings in the world, 2010-2021 (Clark & Perrault, 2022, Artificial
Intelligence index report 2022, p. 36)
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that Al might not capture, ultimately enhancing the precision and efficiency of player
evaluation for college and professional organizations.

Moreover, this transformative use of Al in sports scouting draws parallels with
the revolutionary concept of Moneyball. This concept introduced a groundbreaking
approach to baseball team management by relying on statistical analysis to iden-
tify undervalued players around the year 2000. The common thread lies in lever-
aging data-driven insights to make strategic decisions, challenging conventional
methods. At this time, Billy Beane, General Manager of the Oakland Athletics,
brought about a groundbreaking change by incorporating statistical analysis into
athlete selection. By leveraging data analytics, Beane and his team identified under-
valued players based on their statistical performance rather than traditional scouting
methods. This strategic shift not only enabled the “Oakland-Athletics” to compete
effectively against wealthier teams but also exposed inefficiencies in the way players
were traditionally valued in the sports industry (Lewis, 2004). They developed them-
self a guiding compass to facilitate optimal team decision-making and benefit from
1t.

In the pursuit of gaining a competitive edge, teams in soccer and basketball,
inspired by the data-driven revolution exemplified by Moneyball, have implemented
sophisticated analytics to inform decision-making. This extends beyond player
recruitment to various aspects of team strategy, performance optimization and tactical
planning. For instance, teams may use data analytics to analyze player movements,
assess playing patterns, and identify effective strategies in specific game situations.
In soccer, Rossi et al. (2018) and in basketball, Horvat et al. (2019) highlight how
teams leverage data-driven insights for better player management, injury preven-
tion, and strategic planning during matches. While player recruitment is part of
the equation, the broader application of data-driven decision-making encompasses
a holistic approach to enhancing team performance and gaining a strategic advan-
tage in dynamic, fast-paced team sports. The emergence of Deep Learning (DL),
a subgroup of Machine Learning (ML), in sports builds upon this foundation by
introducing more advanced and nuanced methods for data analysis (Bartlett, 2006).
It can process complex patterns and relationships in large data sets to continuously
improve the performance of teams and individual athletes.

DL algorithms gained popularity among computer scientists between 2006 and
2010. This trend can be attributed not only to advances in computer hardware capabil-
ities but also to a paradigm shift within the Al community towards open collaboration
and data sharing. The publication of extensive datasets like ImageNet by Stanford
University and the creation of open-source ML competitions stimulated innovation
and exploration in the area, resulting in swift progressions in Al technologies that
are fundamental to the current sports analytics environment (Chmait & Westerbeek,
2021). ImageNet is an image database organized according to the WordNet hierarchy,
in which each node of the hierarchy is represented by hundreds and thousands of
images. The project has been instrumental in advancing research in computer vision
and DL.

The continuous evolution of sensors and wearables is crucial for providing a
robust data foundation that enables comprehensive tracking of athletes. This data
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serves as the basis for conducting Al analysis and provides valuable insights into
various aspects of an athlete’s performance. The significance lies in the ability to
gather real-time, precise, and extensive information about an athlete’s physiolog-
ical responses, movements, and overall health. By leveraging advanced sensors and
wearables, coaches, sports scientists, and medical professionals can access a wealth
of data, allowing for nuanced monitoring of factors such as heart rate, sleep patterns,
and recovery metrics. The Sensor support has increased every year, equipped with
various sensors, algorithms, and accompanying mobile apps. In the period from 2011
to 2017, the photoplethysmograph was the second most commonly used sensor, after
the accelerometer, for estimating heart rate (Henriksen et al., 2018). Recent advances
in mobile sensor technologies have made it possible to use privately collected data on
physical activity to complement existing health data collection methods in research.
Devices such as Garmin, Whoop, Oura, and Polar can now provide data on sleep and
other health metrics, including heart rate variability. The Australian Institute of Sport
(Dean et al., 2022) has tested the best providers against the gold standard of sleep
measurement (Polysomnography, PSG) and heart rate (Electrocardiogram, ECG), as
well as heart rate variability. The data obtained was highly accurate, enabling precise
statements to be made about the athlete’s recovery status at an affordable cost.

Furthermore, the landscape of Al accessibility and efficiency has experienced
notable changes. Since 2018, the cost of training an image classification system
has decreased by 63.6%, and training times have improved by 94.4% (Zhang et al.,
2021). The research by Cao et al. (2017) introduces a key point detector for the body
and foot, reducing inference time while maintaining accuracy. This advancement
in human pose estimation, offering real-time capabilities, holds implications for
diverse domains, including sports analytics and virtual environment design. As these
developments unfold, collaborative efforts, sophisticated sensors, and increased Al
accessibility converge to redefine the landscape of sports analytics in a dynamic and
data-driven era.

This chapter demonstrates specific use cases, including Al-driven performance
analytics, injury prevention strategies, and personalized training regimens. Much
like a compass that adapts to changing magnetic fields, Al adapts to the evolving
dynamics of each athlete, offering tailor-made solutions for optimal performance
and health.

3.2 Artificial Intelligence-Based Approaches in Sport

In the contemporary landscape of sports science and performance optimization, the
integration of Al stands as a seminal paradigm shift. RajSp and Fister (2020) provide
a holistic overview about the use of data analysis in different kinds of sports. The
literature includes studies between 2006 and 2020 to figure out 97 studies that fulfills
the requirements. Between 2006 and 2012, there was a gradual increase in research
studies, with one to four being published each year. However, in 2013, there was a
significant increase, with no fewer than four studies being published annually. It is
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Fig. 3.2 Identified sports where intelligent data analysis methods have been used by Rajsp and
Fister (2020)

worth noting that in 2018 and 2019, there was a substantial increase in the number of
research studies published, with 23 and 22, studies, respectively. This trend highlights
the increasing importance and focus on intelligent sports training in academic and
research circles (Raj$p and Fister, 2020). Figure 3.2 displays the sports that have
been most frequently researched in studies on the use of Al

The distribution may be due to the popularity of these sports and their ability
to invest in new technology. The review indicates that the majority of the studies
analyzed were conducted in individual sports (54%), followed by team sports (28%)
and mixed sports (17%).

e Individual Sports: These are activities where participants compete against other
individuals rather than as part of a team. The listed examples include for example
climbing, fitness, triathlon, running, and swimming.

e Mixed Sports: These are sports where individuals may compete both individually
against others and, in certain competitions, as part of a duo or a team. Examples
provided are badminton, cycling, and rowing.

e Team Sports: This category encompasses sports where individuals are consistently
part of a larger team, competing against other teams. The identified team sports
include basketball, cricket, football, handball, hockey, soccer, and volleyball.

9% < 39 <

Itis also notable that the individual endurance sports “running”, “cycling”, “swim-
ming” and also “triathlon” represent 21% of the research fields. This is why this
review uses examples of cycling and running in particular. This review embarks on
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an exploration into “Al-Based Approaches in Endurance Sports,” where three empir-
ical examples serve as conduits for explaining the role Al plays in augmenting the
competitive advantages of athletes and coaches. Analogous to a navigational instru-
ment guiding precision in uncharted territories, Al operates as a methodological
compass, directing endeavours towards enhanced athletic prowess.

This chapter examines the practical manifestations of AI’s efficacy in sports
through empirical case studies. It analyzes how Al algorithms, informed by data
analytics and ML, contribute to performance optimization, strategic decision-
making, and injury prevention in a complex way.

3.2.1 Difference Between Artificial Intelligence,
Machine Learning and Deep Learning

To perceive the reasons behind the broad utilization of AI, ML, and DL, it is essential
to examine the disparity between modern Al learning methods and conventional
analytics approaches. Figure 3.3 outlines the connections between Al, ML, and DL.

Al is defined as the capacity of a system to accurately interpret and learn from
external data and apply the acquired knowledge to achieve specific goals and solve
problems through flexible adaptation. In this context, Al is primarily used as a
decision-making tool for large amounts of data (Kaplan & Haenlein, 2019).

ML is a subfield of Al that employs statistical techniques to improve machine
performance via experience. The method comprises multiple data iterations to unveil
correlations and extract meaning from unstructured data.

Fig. 3.3 Relationships
between Artificial
Intelligence, Machine
Learning and Deep Learning
(based on Dindorf et al.
2022,p.9)

Machine
Learning

Deep
Learning
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In ML, the types of algorithms used can be broadly classified into Supervised
Learning, Unsupervised Learning, and Reinforcement Learning (Bonaccorso, 2017).

1. Supervised Learning: This type of ML algorithm involves learning a function
that maps an input to an output based on example input—output pairs. It infers a
function from labeled training data consisting of a set of training examples. In
sports, Supervised Learning could be used for predicting the outcome of games
based on historical data where the results of past matches are known.

2. Unsupervised Learning: Unlike Supervised Learning, Unsupervised Learning
deals with input data without labeled responses. The system tries to learn patterns
and structure from the data without reference to known or labeled outcomes. In
sports, Unsupervised Learning could be utilized for player segmentation or team
profiling based on playing styles or statistics without any predefined categories.

3. Reinforcement Learning: This type of learning is about taking suitable action to
maximize reward in a particular situation. It is employed by various software and
machines to find the best possible behavior or path it should take in a specific
situation. Through experimentation and interaction with its surroundings, an
agent formulates a strategy that recommends the optimal course of action to
achieve the highest long-term rewards from any given situation. This approach
effectively becomes a decision-making strategy that adjusts and advances as the
agent gains knowledge from new encounters.

DL represents an advanced form of ML, delving into more intricate levels of data
processing. The primary objective of DL is to employ algorithms in constructing
Neural Networks are capable of solving complex problems. Neural Networks are
models inspired by the structure and functioning of the human brain. They consist of
layers of artificial neurons connected to each other. These connections have weights
that are adjusted during training to improve the network. This approach is especially
valuable for addressing issues that would otherwise demand intricate rules when
approached through traditional methods. Notably, DL finds application in tasks such
as speech, image, and text recognition and processing. Its ability to discern intri-
cate patterns and features within vast datasets makes it a powerful tool for tackling
challenges that extend beyond the scope of conventional approaches.

The following section provides examples of Al applications and explains how Al,
ML, or DL are used in the field of cycling and running.

3.2.2 Data-Driven Team Strategy in Road Cycling

For the past 150 years, road cycle racing has stood as an organized and competitive
team sport (Mignot, 2016). In this athletic endeavour, teams of cyclists engage in
a series of races throughout the year. During these races, teammates collaborate,
with the overall team performance determined by the first member to cross the finish
line. The team is collectively dedicated to propelling one of its cyclists to victory as
swiftly as possible.
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Typically consisting of around thirty cyclists, each team is limited to a smaller
group of participants in individual races, usually ranging from 8 to 10 cyclists. The
composition of the top ten cyclists can vary drastically depending on the course
profile. Whether the competition course is flat or hilly can make a significant impact.
Each competition is characterized by a distinct blend of factors, including length,
gradients, and surfaces (e.g., asphalt with or without pebbles, and cobblestones).
Another distinctive feature in cycling is the interplay between teams and individual
competitors. While teamwork is crucial, only one individual can emerge victorious
(except in events like team time trials), creating a dynamic among team members.
The team’s coach, relying on recent workout performances and considering race-
specific conditions, selects the participants for each race (U.C. Internationale, 2022).
The coach generally devises a scheduling plan for the upcoming season’s races,
followed by creating a tailored workout schedule for each cyclist. Nonetheless, this
plan frequently undergoes alterations prior to each race, and the coach might opt to
field a different cyclist than initially planned, contingent upon the recent workout
performances of the athletes. For instance, relevant information may include the
athlete’s recent distance covered, history of illness or injury, and average caloric
expenditure.

Contemporary cyclists utilize an array of gadgets and wearable devices to track
extensive data, including comprehensive details such as overall elevation gain,
distance covered, heart rate measurements, cadence, power, estimated energy expen-
diture, total workout duration, and additional metrics. The raw data is transmitted to
health and fitness software applications, which often employ ML or Al to analyze
the data.

The coach can monitor and assess the overall health and performance data of each
of the 30 athletes through access to the data. Al is used to navigate through the mass
of data and support the coach in making decisions about the allocation of cyclists to
races.

Sagi et al. (2022) introduces a method called RaceFit, a recommendation system
for assigning cyclists to race stages. The goal is to determine, based on historical
coaching decisions, which cyclists from a team are best suited for a particular race
stage. The methodology utilizes a form of Supervised Learning approach known as
Binary Classifier. The algorithm is trained with a dataset containing examples of the
two classes it is meant to distinguish, such as ‘positive’ and ‘negative’. The aim is
to teach the algorithm to recognise patterns in the training data so that it can then
predict which of the two classes it belongs to for new, untrained data. In RaceFit,
the Binary Classifier is used to predict a cyclist’s participation in a race stage. The
classifier is trained using examples that match a cyclist with a stage, and the label
indicates whether or not the cyclist participated (Fig. 3.4).

For the classification properties of the race stage (distance, elevation gain, etc.),
cyclists characteristics (weight, height, age, and statistics from the Pro Cycling Stats
website), and summarized workout data from the cyclist in five weeks leading up to
the race stage were included. This is because they assumed that coaches make their
final decisions before that week, allowing cyclists time to prepare and travel to the
race location.
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Fig. 3.4 Most correlated features used by the algorithm RaceFIT (Sagi et al., 2022, p. 9)

The most important features used by the algorithm to predict the athletes in the

next race are the following listed in the order of their importance:

Total Distance in last five weeks: This is the most crucial factor, indicating how
much distance cyclists covered in their recent workouts. It reflects their training
intensity and helps identify those who train hard. It can also highlight cyclists
dealing with injuries not directly reported.

Race’s Total Distance: The distance of the upcoming race plays a significant role.
Longer distances might require higher endurance, affecting the decision on which
cyclists to choose.

Workouts Total Energy: Reflects the overall energy expended in recent work-
outs, offering insights into the rider’s fitness levels. It indicates how hard the last
workouts were for the cyclists.

Cyclist Workouts Energy: Integrates the power produced by the cyclist in watts
with the average duration of recent workouts. High values indicate a cyclist’s
suitability for the upcoming race, considering both energy production and long
distances.

Difference in Cyclists Distance Relative to Annual Mean: Measures changes in
a cyclist’s recent distance compared to their average annual distance. It helps
identify both improvements and potential performance reductions, possibly due
to recent injuries.

Elevation Gain and Elevation Loss: Describe changes in elevation during work-
outs. As some races are in mountainous areas while others are on plains. These
features influence the decision-making, considering the race’s terrain.

Calories Burned During Workouts: Implies workout intensity, similar to, energy
produced. It helps gauge the effort cyclists put into recent training sessions.
Stage Distance: Identifies races with very long distances, requiring higher
endurance and more energy expenditure than others.

Geographic Constraint (Distance to Current Race Location from Last Race Loca-
tion): Reflects the distance from the cyclist’s last race location to the current race
location. Coaches tend to assign cyclists to nearby races to minimize travel.
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The RaceFit methodology utilizes these features to provide coaches with valuable
insights for making informed decisions about which cyclists to select for upcoming
races. These parameters are the most significant factors in determining whether an
athlete will participate in the race or not.

The classification system has a 60% accuracy rate for identifying the first recom-
mended cyclist in a race out of the thirty cyclists on the team. If an additional five
riders are required, the classifier identifies 80% of the cyclists. However, the classi-
fiers find it challenging to correctly identify the final 20% of the cyclists. This shows
that they do not fully capture the coaches’ decisions. This suggests that RaceFit has
the potential to identify a significant portion of coach decisions but struggles with
the last 20%.

For these reasons, it is important to rely on the coach’s decision in addition to the
RaceFiT tool, especially when selecting the last 20% of the team. The tool can assist
the coach in selecting athletes from a group of five people. It is an objective and
precise method that can aid in the decision-making process. It is important to keep
the selection of features as small as possible. Using too many parameters requires
more data to achieve valid results.

3.2.3 Prediction of Real-Time Track Cycling Performance

Having gained insight into the classic discipline of road cycling, characterized by
long distances and varied terrains, let’s now shift the focus to a specialized branch
of the sport—track cycling. While road cycling often revolves around endurance
and tactical skills, Track Cycling stands out with its short, intense races on specially
designed velodromes. Track cycling consists of several disciplines, such as Sprint,
Keirin, Omnium, Pursuit, and Team Sprint. Each discipline has its own unique rules
and challenges. In Sprint, two riders compete directly against each other, while Keirin
involves riders following a pacing vehicle before sprinting. Omnium is a multi-event
discipline that includes races like Scratch Race and Elimination Race. The pursuit
sees two riders starting on opposite sides of the velodrome, attempting to catch
each other. Team Sprint is a team event with three riders per team. Analyzing and
predicting Track Cycling events involve distinct individual physiological factors and
strategies that differ from those in road cycling.

For the coach, it becomes even more crucial to understand the current state of
an individual athlete, especially when the athlete can’t rely on other team members.
This personalized insight, coupled with real-time performance estimations during a
Track Cycling event, empowers the coach to make informed decisions, strategically
adjust race tactics, and optimize training plans based on the unique requirements of
each athlete. The ability to monitor and analyze real-time data enhances the coach’s
capacity to provide timely feedback, prevent potential overexertion, and motivate
athletes effectively. Overall, having access to estimated real-time performance data
amplifies the coach’s capabilities, enabling a more tailored and effective approach to
individualized athlete development in the dynamic context of Track Cycling events.
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Sudin et al. (2018) utilizes the Fuzzy Inference System (FIS) and Adaptive Neuro-
Fuzzy Inference System (ANFIS) for performance classification, and a prediction is
proposed.

An FIS is based on fuzzy logic and rules derived from human experts or empir-
ical values (Blej & Azizi, 2016). The fuzzy features are represented by linguistic
variables, such as “fast”, “slow”, “high”, and “low”. These fuzzy features are used
in sets of rules to draw conclusions. An FIS possesses a static structure (IF-THEN
rules), and the parameters need to be configured manually. The FIS provides the
advantage of decreased computational workload and time. Therefore, this model is
well-suited for integration into optimization processes and other adaptive techniques
like Genetic Algorithm (GA) and Adaptive Neural Network (ANN) (Sudin et al.,
2018). Section 2.4 provides a detailed explanation of genetic algorithms (Fig. 3.5).

The ANFIS is, in contrast an extension that offers an adaptive learning capability
through the integration of ANN. ANFIS can automatically adapt the structure and
parameters of the fuzzy model to better fit the data (Dewan et al., 2016). It combines
the fuzzy logic of a FIS with the learning ability of a Neural Network. The adapta-
tion takes place through training with existing data, whereby the system learns the
optimum parameters itself (Zounemat-Kermani & Teshnehlab, 2008).
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Fig. 3.5 Overall diagram for FIS and ANFIS-based systems (based on Sudin et al., 2018, p. 10)



42 T. Menges

For example, suppose we use an ANFIS (Adaptive Neuro-Fuzzy Inference
System) and a FIS (Fuzzy Inference System) to predict a cyclist performance in
arace. Here are two fuzzy features that could be considered in both systems:

1. Fitness level of the athlete (fuzzy feature):

LLINY3

FIS: Linguistic variables could represent fitness level, e.g. “very fit”, “fit”, “average”.
The fuzzy rules would define how these linguistic variables influence performance.

ANFIS: Here, the ANFIS adaptively learns how different fitness levels influence
performance by learning the relationships between the linguistic variables and
performance from existing training data.

2. Fatigue of the athlete (fuzzy characteristic):

FIS: Linguistic variables could represent different degrees of fatigue, such as
“rested”, “slightly fatigued”, and “fatigued”. The fuzzy rules would define how these
levels of fatigue affect performance.

ANFIS: Here, ANFIS adaptively learns how different degrees of fatigue affect
performance by learning the link between the linguistic variables for fatigue and
performance from existing data.

In their study, Sudin et al. (2018) employed the Fuzzy Inference System to classify
the current cycling performance state of cyclists based on their prior performance
in an indoor cycling test. The FIS utilized body temperature, heart rate variability,
and speed as input parameters to categorize the athletes’ performance into six levels:
Critical, Poor, Fair, Good, Excellent, Outstanding.

Additionally, the Adaptive Neuro-Fuzzy Inference System was employed to
predict the future output and performance classification. Through the Adap-
tive Neuro-Fuzzy Inference System approach, the anticipated average speed for
upcoming laps can be predicted and subsequently compared with the actual speed.
This is used to calculate the remaining time to cross the finishing line. The predictor
demonstrates improved performance when comparing the predicted data for the last
lap based on input data from the previous four laps (1 out of 5) with a regression
value of 0.87, as opposed to the last two laps based on input data from the previous
three laps (2 out of 5) with a regression value of 0.76.

Intrack cycling, the Fuzzy Inference System (FIS) simplifies performance analysis
through manually configured rules, which are suitable for optimization processes.
On the other hand, the Adaptive Neuro-Fuzzy Inference System (ANFIS), which
leverages Neural Networks, excels in real-time performance prediction. This allows
coaches to estimate future laps, optimize strategies, and enhance athlete training
plans for more effective development.
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3.2.4 Wearables and Adaptable Training Plans

Athlete tracking and monitoring is an area in which Al excels. Wearable devices
fitted with Al algorithms are capable of monitoring biometric data, including heart
rate, sleep patterns, and muscle fatigue, to offer valuable insights for coaches and
athletes to optimize performance and recovery.

Injury prevention is one of the vital applications of Al in sports. In the context
of predicting sports injuries using supervised Machine Learning, wearable devices
can be used to collect data on athletes’ movements during training and competition.
Furthermore, by analyzing movement patterns and biomechanical data, AI models
can identify areas that could lead to overtraining and injuries. The trackers collect
various data like distance covered, pace, maximal speed, number of sprints, sprint
distances, intensity, time in red zone, accelerations, and total stress load. This data
alongside the historical medical data that is collected by physiotherapists and club
doctors, is then tagged with instances where injuries have occurred. A Supervised
Learning algorithm, such as a Decision Tree or Neural Network, can be trained
on this dataset to identify patterns that often precede injuries. Zadeh et al. (2021),
examine the applications of wearable technology in sports. Once trained, the model
can predict the likelihood of injury given the athlete’s current data. For example, if
a particular movement pattern or load is known to correlate with a high risk of a
knee injury, the model can alert coaches and medical staff to a high-risk situation,
allowing preventative measures to be taken, such as modifying training intensity or
providing targeted interventions.

The study by Bowen et al. (2016) investigates the correlation between physical
workload and injury risk in elite youth football players. The study reveals that higher
workloads are associated with an increased risk of injury. This suggests that work-
loads can serve as a metric in an Al model for injury prediction. Hullin et al. (2016)
conducted another study that assesses the Acute Chronic Workload Ratio (ACWR)
in Rugby League players. The ACWR is a metric used in sports science and athletic
training to assess the balance between short-term (acute) and long-term (chronic)
workloads. It compares the recent training load (acute workload) with the average
training load over a longer period (chronic workload). The study found that a higher
ACWR raises the risk of injury. This, along with other related variables, has potential
importance in using ML for injury prediction.

With the rise of accessibility and accurate wearable measurements, fitness apps
are now using Al to generate personalized training recommendations and adaptive
plans in individual sports. These plans are based on data such as heart rate, training
metrics, sleep patterns, and exertion levels. Through data analytics, Al can recognize
patterns and identify trends to create a customized training plan according to the
athletes’ goal (Fister & Fister, 2019). For example, an athlete trains too intensively
in one session, the Al will automatically adjust the next day’s training.

For instance, enduco is a company that utilizes an athletes’ training data like
acute stress and recovery data to recommend through an Al-based algorithm the best
course of action for improving their performance or achieving a specific goal.
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Enduco analyzed user data to make assumptions about an athlete’s training needs
and performance development. Using optimized heuristics, the basic principles of an
effective training plan are defined based on expert knowledge and current research.
Heuristics address the challenges posed by time constraints, information availability,
and processing capacity. The essence of heuristics, as described by Kahneman (2011),
lies in their role as adaptive mechanisms that enable rapid and resource-efficient
decision making. For example, the heuristic in enduco analyses the most appropriate
plan for an individual athlete based on many features like intensity distribution,
workload, and current fatigue.

An effective training plan for a marathon should consider different intensities and
allow for sufficient recovery periods between training sessions. For instance, it may
be important to avoid intensive training for more than two consecutive days to prevent
overtraining and injury. The heuristic may suggest including various intensities to
improve maximal oxygen uptake or achieve an economical metabolic rate before the
aerobic-anaerobic threshold. It can be supplemented by numerous rules in addition
to these examples.

The application of a heuristic can lead to quick, acceptable solutions but is not
necessarily aimed at guaranteeing the best possible result. Heuristics are often subop-
timal, quick approaches based on experience. At enduco, an optimization algorithm,
such as a Genetic Algorithm (GA), is then used. A GA is a method inspired by
biological evolution. This approach goes through several iterations or generations,
selecting the best training plans to influence the next generation (Ariyaratne & Silva,
2022) (Fig. 3.6).

Based on Ariyaratne and Silva (2022), the GA starts in with a randomly generated
population of possible solutions to a given problem. Each solution is treated as an
individual and is represented by a set of parameters. To evaluate the quality of the
solutions, a fitness function is used that indicates how well each individual solves the
problem. If the initial results are not satisfactory, selection is based on fitness, where
those with higher fitness have a greater chance of being selected. These selected
individuals are then crossed to produce a new generation. Through this process,
the new generations inherit traits from their parents. Occasionally, random changes
(mutations) may also occur to maintain some genetic diversity in the population.

The new generation of offspring forms the next population and replaces some of
the previous parents.

This cycle of selection, crossover, and mutation is repeated over many generations.
Over time, the population improves as evolutionary mechanisms tend to favor better
solutions (Langdon & Harman, 2014).
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Enduco the training plan is evaluated using a fitness function that considers
compliance with the heuristic and, for example the approximation of target times
for the marathon. The algorithm converges to a training plan that effectively fulfills
the heuristic and maximizes the target times for the marathon. The ability to optimize
is an important feature of Al

The continuous improvement of wearables and other devices is democratizing
access to the use of Al in sports. Advanced data collection is making Al applications
in endurance sports accessible to amateur athletes. This is leading to an increased
willingness to use Al, as the precise data collected by improved wearables enables
individual performance optimization and a better understanding of physical activity.
Overall, Al in sports is becoming an integrative tool that is widely used and enhances
athletic performance and well-being (Li & Xu, 2021).

3.3 Advantages and Disadvantages of Artificial Intelligence
Applications in Sports for Key Stakeholders

The incorporation of Al in sports offers substantial advantages and poses notable
challenges for athletes and coaches alike (Avici & Bayrakdar, 2023). Athletes expe-
rience benefits, with technological advancements contributing to significant perfor-
mance improvements, reduced injury instances, and accelerated recovery times
through innovations in sports medicine and technology. Moreover, coaches can
provide more objective and targeted feedback, fostering skill development among
athletes.

However, the increasing reliance on technology introduces potential drawbacks.
The utilization of Al may compromise the confidentiality of sensitive information,
raising concerns about data security and privacy. In addition, there is a risk that
the line between personal and professional life will become blurred for athletes as
they navigate the technological landscape. For instance, the coach can monitor the
athlete’s rest days and advise them against engaging in any further leisure activities.
It is important to clarify the extent to which the coach is permitted to intervene in
the athlete’s life beyond training.

The use of Al in sports also supports coaching strategies, as mentioned in the
first two examples above. They have access to advanced analytics tools that enable
them to accurately analyze athletes’ performance, identify patterns, and formulate
more effective strategies. Informed decision-making based on comprehensive data
analysis and real-time monitoring of athletes during training and competitions further
enhances coaches’ capabilities.

Despite these benefits, coaches also face challenges. To avoid misinterpreta-
tion of data, it is important for individuals to become familiar with the technology
(Diiking et al., 2020). Technical malfunctions and failures of Al systems can disrupt
training sessions or competitions, which can negatively impact performance. Finan-
cial constraints can also be a hurdle, as access to cutting-edge technology can be a
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major burden for some teams or coaches, resulting in differences in technological
support at different levels of competition. In addition, the collection and analysis of
player data requires ethical guidelines to address privacy concerns and protect athlete
confidentiality.

3.4 Conclusion

The use of Al in endurance sports has become more prevalent, especially in high-
performance sports. The topic of Alin sports needs to be considered in a differentiated
way. Al is used differently depending on whether the sport is competitive or amateur.

In high-performance sports, the proficiency of Al lies in its precise analysis of
data, provision of personalized recommendations, and the simulation of realistic
training scenarios. This unique skill set enables athletes and coaches to optimize
their training routines, thereby enhancing overall performance.

While AI offers invaluable insights, it is essential to emphasize that it should not
entirely replace human judgment. Athletes and coaches must uphold their critical
thinking abilities and retain responsibility for decision-making, utilizing Al as a
supportive tool. For example, the RaceFit tool (Sect. 2.2) can only provide a good
estimate if the team size is more than five people. There is 80% agreement with the
trainer’s strategy.

The effective integration of Al into sports science may necessitate expertise,
substantial financial investment, specialized infrastructure, and individuals capable
of accurately interpreting results, as pointed out by Hammes et al. (2022). This
could potentially create a significant advantage for athletes and teams with greater
resources. In the realm of amateur sports, there is an anticipation that AI will operate
autonomously, assuming the role of the coach itself.

In addition, the incorporation of Al into sports training methods introduces new
and innovative approaches, as highlighted by Wei et al. (2021). For example, Al
fitness applications use wearable data to evaluate an athlete’s current physical state.
By combining this information with the athlete’s objectives, Al carefully analyses
individual performance data to create tailored training programs. This personalized
approach is valuable in helping athletes improve specific aspects of their performance.
As Zagoetal. (2021, p. 3) aptly put it: “To date, artificial intelligence does not simply
provide new tools to study human motion. Rather the way we study human motion
is evolving thanks to artificial intelligence.” Al in sports enables coaches to make
better strategic decisions based on data from many different athletes. Athletes are
also provided with solutions through the continuous improvement of data collection,
enabling individuals to improve their performance in relation to a goal.
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Chapter 4

Sensors, Internet of Things and Artificial o
Intelligence for the Diagnosis

and Prevention of Falls and Fall-Related
Injuries in Older

People—An Exercise-Related Perspective

Wolfgang Kemmler

Abstract Falls are the leading cause of injury, hospitalization, and accidental death
in older people. Many studies provide considerable evidence that the majority of
health-related aspects of fall risk can be positively affected by physical activity
or, even better, dedicated exercise interventions. Artificial Intelligence (Al)-based
fall technology is the most advanced fall prevention technology currently available.
Sensor-based Al concepts with direct feedback options significantly increase the
safety and effectiveness of conventional training concepts or e-exercise programs
even in non- or only partially supervised training settings. Smart technologies also
provide closer monitoring of performance development, an aspect important for the
subsequent alignment of the exercise intervention. However, while the predictive
ability of present technology to determine the individual risk of fall is satisfactory,
current Al-based approaches do not address the identification of dedicated fall risk
factors in a way that would allow a precise response through specific exercise inter-
vention. Future research should focus on interpretable Al-based concepts that provide
adeeper insight into the individual risk factor profile in order to generate comprehen-
sive training interventions that address several risk factors in a parallel but prioritized
manner.
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4.1 Relevance of Falls and Fall-Related Injuries in Older
People

The most important risk factor for fractures in the elderly is falls (Jarvinen et al.,
2008). More than 95% of hip fractures are caused by falls (Parkkari et al., 1999).
Falls are a common event in older people and have a significant public health impact.
Numerous international cohort studies with prospective data collection showed that
about one in three independently living people aged 65 years and older fall at least
once a year (Lord et al., 2021). With increasing age and in other settings (emer-
gency rooms, hospitals, care facilities) and/or with specific diseases/syndromes (e.g.
dementia, Parkinson’s, stroke), significantly higher fall rates are reported (Ruben-
stein, 2006). In Germany, around five to six million fall accidents occur every year
in people over the age of 65 years (Rapp et al., 2014).

In parallel, falls are the leading cause of injury in older people and are associated
with increased mortality (Gribbin et al., 2009; Sylliaas et al., 2009). Approximately
22-60% of those affected suffer physical injuries from falls, ranging from bruises,
cuts, sprains, and abrasions to severe fractures or cranial injuries (Lord et al., 2021).
Falls in people aged 65 years and older are, therefore, the most common cause
of injury-related hospitalizations (Lord et al., 2021) and traumatic brain injuries
(Harvey & Close, 2012).

The number of falls resulting in fractures is approx. 2-6% (Rubenstein &
Josephson, 1992; Stubbs et al., 2014; Tinetti et al., 1988), about 1-2% of falls result
in a fracture of the proximal femur (Stubbs et al., 2020) with its known severe
consequences for morbidity and mortality. Of importance, with increasing age the
number of fractures increases disproportionately to the frequency of falls (Evans,
1992; Kannus, 1999). According to Evans (1992), the incidence of fall-related hip
fractures increases from 200:1 to 10:1 in people between the ages of 65 and 85 years.
This tremendous increase in the incidence rate can only be partially attributed to
decreases in bone strength. Much more biomechanically unfavorable falls with a high
impact on bone must be taken into account (Komisar & Robinovitch, 2021; Sturnieks,
2021).

Falls with and without injury are determinants of loss of function in basic and
instrumental activities of daily living (Kiel et al., 1991; Tinetti & Williams, 1997).
Falls and repeated falls are important predictors of moving to residential care facilities
(Donald & Bulpitt, 1999; Kiel et al., 1991; Tinetti & Williams, 1997).

In addition to physical injuries, the psychological consequences of falls or the
anticipation of them are limiting for the individual. Up to 92% of people who have
fallen (and more than 50% of older people who have not fallen!) develop a Fear
of Falling (FoF) (Aoyagi, 1998; Scheffer et al., 2008). Of note, FoF is associated
with poorer physical, mobility, and cognitive performance (Donoghue et al., 2013;
Vellas et al., 1997). As a major consequence, activities are restricted, resulting in
a downward spiral of inactivity, deconditioning, loss of confidence: all leading to
a further increased risk of falls (Wijlhuizen et al., 2007). Physical, psychological,
and social consequences of falls can significantly reduce the quality of life of older
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people (Schoene et al., 2019). Apart from the far-reaching individual consequences,
the 4.3 million fragility fractures incur costs for the European health care systems of
Euro 56 billion a year (Kanis et al., 2021).

4.2 Exercise Effects on Falls and Fall Related Fractures

Recent reviews of exercise interventions and falls in older adults (e.g. Sherrington
et al., 2019; Wang et al., 2020; Zhao et al., 2019) have reported significant reduc-
tions of falls and fall-related injuries. The Cochrane Review by Sherrington et al.
(2019) listed a relative fall risk reduction of 23% (95%-CI: 17-29%). Fall-related
fractures were reduced by 27% (95%-CI: 5-44%) and fall-related medical treatment
by 39% (95%-CI: 21-53%). Perhaps due to the limited statistical power, exercise
effects on falls and fall-related injuries were less prominent in people with specific
limitations and/or diseases. While structured exercise significantly reduces the rate
of falls by 30 and 53% in people with cognitive impairments and Morbus Parkinson,
respectively, no reduction of fall rate (RR: 1.01; 95%-CI: 0.90-1.14) was reported
for stroke patients or after recent hospitalization however (RaR 1.16; 95%-CI: 0.88—
1.52, 3 studies) (Li et al., 2021; Sherrington et al., 2017). Even more important for a
more individualized exercise approach, the effectiveness of exercise on fall reduction
differs with respect to the setting in which it is applied (i.e. specialized fall clinic
vs. non-supervised home application). Without a doubt, adherence to the exercise
program plays a crucial role in its effectiveness. Thus, the successful implementation
of exercise programs for different settings should carefully consider how to achieve
and maintain adequate adherence rates.

4.3 Determinants of Exercise Training in the Area of Falls
and Fall-Related injuries—risk Factors for Falls

The occurrence of falls is multifactorial and the combined result of different factors.
About 400 different factors have been identified as contributing to a fall in the elderly
(Skelton & Dinan, 1999). These can be categorized into factors related to (a) behavior,
(b) health, and (c) environment. There is considerable evidence that a large number
of health-related aspects of fall risk could be positively affected by physical activity
or exercise. Table 4.1 displays potentially modifiable risk factors categorized into
risk factor domains (DVO, 2024).

As can be seen from Table 4.1, the large number and the complexity of fall risk
factors indicate the need for comprehensive assessments, scarcely manageable with
the present conventional tools comprising observations, simple tests, questionnaires,
interviews and their manual acquisition and interpretation. Connected smart devices,
apps, monitoring technologies, and wireless communication ideally supported by
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Table 4.1 Risk factors for falls and fall-related injuries potentially modifiable by exercise programs
(DVO, 2024; Lord et al., 2021)

Risk-factor domain Risk-Factors

Postural stability and gait characteristics | * Reduced simple and choice reaction time
Inadequate reactive stepping performance
Impaired stability while standing

Impaired stability while leaning or reaching
Impaired sit-to-stand transfer

Reduced gait velocity

Changes in gait pattern (e.g. reduced step length,
cadence)

Increased gait variability (cadence/step length)
Impaired voluntary/choice stepping performance
Arrhythmic head, trunk and pelvis acceleration
during gait

Reduced hip extension, increased knee/hip flexion
during gait

Center of mass shifts (ventral) Hyperkyphosis
Vertebral fractures

Assistive device

Sensoric function Impaired vision and eye disease (e.g. glaucoma,
macular degeneration)

Impaired vestibular function (e.g. vestibulospinal
reflexes)

Impaired peripheral sensation

Impaired proprioception

Neuromotor function Reduced maximum strength
Reduced maximum power
Reduced strength endurance
Reduced aerobic endurance
Reduced simple reaction time

Reduced choice reaction time

Cognitive function Enhanced executive dysfunction

Reduced information processing speed (IPS)

Psychologic aspects Increased concern about falls (e.g. fear of falling)

Depressive symptoms

Cardiovascular/cardiometabolic function | * Syncope, dizziness, heart rate, blood pressure
fluctuations

Reduced fatigue resistance, rapid fatigability
Fall-relevant medication/polypharmacy (e.g.
antihypertensiva)

Artificial Intelligence (AI) methods might be a reliable solution not only for the
detection of falls but also for the identification of individual risk factors that can be
addressed by individualized smart technology and Al-assisted exercise programs in
different settings. However, before looking at these issues of individual risk factor
assessment, the area of fall detection by new technologies will be briefly addressed
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as a blueprint for the growing relevance and increased evidence for the use of smart
technology, Internet of Things (IoT), and Al in the area of falls in older people.

4.4 Detecting Falls by Smart Technology and Artificial
Intelligence

Fall Detection Systems (FDS) might be the currently most addressed and advanced
technologies in the area of fall research related to wireless technology, smart tech-
nology, and Al techniques (Gharghan & Hashim, 2024). The high relevance of FDS
is based on the finding that 50-80% of fallers are unable to get up independently after
a fall (Fleming & Brayne, 2008; Tinetti et al., 1993). Where no external help is to
hand, longer prone times are associated with serious consequences, e.g. dehydration,
injuries, admission to hospital, subsequent moves into long term care, or even death
(Fleming & Brayne, 2008; Tinetti et al., 1993). Of importance, about 80% of fallers
cannot or do not activate personal response alarms to summon help (Fleming &
Brayne, 2008). FDS components include sensor modules, methods of data acquisi-
tion, data procession and feature extraction (i.e., reduction of information to a few
core information/outcomes), falls detection per se, and alarm systems to get help from
family members, caregivers, or emergency services. Nevertheless, there is no stan-
dard solution for fall detection yet (Vasoya et al., 2023), but a large variety of wearable
single or multiple sensors (e.g., accelerometer, gyroscope, pressure, contact, heart
rate, GPS/location, camera) or ambient sensors (e.g., kinetic/depth camera, pres-
sure, microphones, ultrasonic, infrared, radar) (Gharghan & Hashim, 2024). The
implementation of Al-based Machine (ML) or Deep Learning (DL) techniques is
particularly important in the step of data procession and feature extraction. In the
past few years, several studies have confirmed the high performance of different ML
and particularly DL techniques (review in (Gharghan & Hashim, 2024)) for detecting
falls in older people. In detail, Al-powered FDS have demonstrated sensitivity of up
to 98% and a specificity of up to 99%, indicating their accuracy in identifying falls
(Alharbi et al., 2023). While the high accuracy, specificity, sensitivity, and precision
of Al technology metrics for the detection of a fall is undisputed, few systems have
been tested under real-world conditions. Nevertheless, and although FDS focuses on
a dichotomous outcome (i.e., “fall or not”), many features of sensor technology, IoT,
and Al might be transferable to the more challenging identification of individual risk
factors that can be addressed by exercise programs.



56 W. Kemmler

4.5 Identification and Consideration of Risk Factors
for Falls and Fall-Related Injuries Potentially
Modifiable by Exercise Programs

4.5.1 Sensor Technology

A large variety of simple and low-tech tools and tests are available for assessing fall
risk factors related to health and physical fitness (Scott et al., 2007). Unfortunately,
these tests are frequently not applied in clinical practice or during ongoing exercise
interventions due to a lack of time, limited personnel resources, or lack of accuracy
under (field-) test conditions. A good example of the latter aspect might be the
habitual gait speed test in older people with a high variation of voluntary gait velocity.
Using smart technologies not only offers the advantage of saving time and human
resources and thus providing much denser monitoring of fall risk factors but also
allows much more discrete data sampling, in some cases largely independent of
participant voluntary compliance. Wearables enable the capturing of data during the
user’s daily activities, such as gait characteristics, without being exposed to sampling
problems.

Reviewing the literature, several novel sensing technologies have been used to
assess fall risk in older adults (Sun & Sosnoff, 2018). The sensor techniques used for
fall detection can be classified into wearable and ambient or environmental sensors.
Environmental sensor technologies are based predominately on video/depth cameras,
pressure sensors, and motion sensors. More flexible and less elaborate wearable
sensor-based technologies for fall risk assessment in older adults, which include
inertial sensors, smartphone, video/sensitive depth camera, pressure sensors, can effi-
ciently capture and analyze movement data and provide an easy-to-implement objec-
tive fall risk assessment (Sun & Sosnoff, 2018). Briefly introducing the tools, inertial
sensors as the predominately used sensor type in fall risk assessment so far (Sun &
Sosnoff, 2018), rely on accelerometers and gyroscopes and focus predominately on
gait characteristics. Pressure-sensing platforms (e.g. Wii board) enable the sampling
of postural stability and step/gait characteristics. Video/depth cameras provide fast
and marker-less 3D motion tracking. Motion-ambient sensing, using infrared/passive
infrared, ultrasound, laser, or radar, for example, usually tracks movement charac-
teristics of different body segments to quantify the movement pattern. Mobile/smart
phones with inertial sensors and sensitive depth cameras predominately focus on
gait and postural stability characteristics at the moment, although other biometrical
parameters (Table 4.1) can also be addressed to determine power, endurance, fatigue
resistance using technologies already integrated into conventional smart phones.
Wearable and ambient/environmental sensors connected in IoT systems are applied
in the smart home approach that focuses on comprehensive behavior-based analysis
of daily living activities and human activity recognition in frail older people.
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4.5.2 Sensors Used in Functional Tests of Falls Risk

Sensors are increasingly being used to improve the validity and reliability of estab-
lished functional tests and to derive new parameters for the discrimination of fall risk
factors. As an example, a recent study (Abdollahi et al., 2024) of fall risk assessment
in stroke survivors determined the prediction accuracy of four common functional
tests with and without dual tasking supported by a machine learning model that
used motion data from inertial sensors. In detail, the 30s balance test with eyes
open/closed, Timed Up and Go (TUG), 10 m habitual gait speed, and the Sit-To-
Stand test (STS) were applied with and without cognitive load (count-down from
200), while eight motion sensors with integrated 3D accelerometers, 3D gyroscopes
and 3D magnetometers extracted a total of 92 spatiotemporal parameters. Data was
transmitted wirelessly to customized MATLAB software for data processing and
feature extraction. Applying three machine learning techniques (i.e. Support Vector
Machine, Logistic Regression, Random Forest (RF)) known to demonstrate high
performance during motion testing (Halilaj et al., 2018), the study revealed the
highest prediction accuracy (91%) for fall discrimination when applying the RF
model for data sampled during dual task balance and TUG. Further, a single motion
sensor placed on the thorax shows similar high precision during the TUG and STS
compared with the multiple sensor approach. Lin et al. (Lin & Wai, 2021) used
the TUG test and handgrip strength i.e. current sarcopenia criteria according to the
Asian Working Group of Sarcopenia (AWGS) (Chen et al., 2014), to determine fall
risk in community-dwelling older adults. Gesture detection of gait and balance was
conducted via Al using wearable sensors, doppler technology, 2D/3D cameras, and
floor sensors. Adaptive modification of the interventional program over 3 months
resulted in significant increases in gait speed (31%).

4.6 Artificial Intelligence-Based Approaches
to Determining Fall Risk

Several Al-based approaches to fall prevention and prediction of fall risk in older
people have been conducted during the last few years (Mohan et al., 2024). Although
Al and ML techniques were also applied to determine the risk of falling, e.g. based on
emotional risk factors, i.e. depression, coping strategies, anxiety, and FoF (Mohan
et al., 2024), most fall prevention/prediction approaches focus on posture or gait
characteristics. Indeed, due to their complexity, human posture and gait research, in
particular, is subjected to Al or, more precisely, machine or deep learning techniques
(Mohan et al., 2024). Liang et al. (2024), who aimed to classify fall risk in older
people using an ML and Explainable AI (XAI) approach, relied on tracker-based
posturographic/body sway parameters under different stance conditions. However,
while the model shows high agreement with the TUG test, the discriminating ability
to separate people with vs. without a previous fall history was unsatisfying. Based on
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this result that implies that the stance condition reflects mobility balance better than
the much more complex falls with their numerous intrinsic and extrinsic risk factors,
the authors (Liang et al., 2024) concluded that more comprehensive information
on individual fall risk should be added to increase the accuracy of the Al-based
fall risk assessment. In this context, the LINDERA mobility analysis applied an
Al-based algorithm (Stamm & Heimann-Steinert, 2020) based on video analysis of
individuals’ gait but also a standardized questionnaire to determine fall risk on a score
from 0 to 100 points. Using data from 242 senior citizens, on average 85 years old,
Rabe et al. (2020) reported a high discriminative ability to distinguish fallers from
non-fallers, irrespective of the learning model (e.g., Gaussian Naive Bayes Mode,
Support Vector Classification or RF Model) used. Another study (Strutz et al., 2022),
which compared the LINDERA concept with reference standard tests (i.e. TUG, Berg
Balanced Scale, Tinetti Test) in older people, reported moderate-high correlations r
= 0.46-0.59 with narrow limits of agreement. In contrast to other fall risk apps (e.g.
FallSA (Singh et al., 2021), Apple iOS 15), LINDERA is deemed a medical device,
thus facilitating its application in healthcare settings.

In summary, Al-based fall technology is the most advanced fall prevention tech-
nology currently available. But although the predictive ability of present technology
to determine the individual risk of fall is satisfactory, it currently fails to identify dedi-
cated risk factors related to postural stability listed in Table 4.1. This is important,
however, for defining specific training aims realized by dedicated exercise programs.
Nonetheless, the application of time-effective, inexpensive, and resource saving Al-
based technology enables a dense monitoring of changes in fall risk and thus allows
verification of the effects of exercise programs on individual fall risk by healthcare
or exercise professionals or users themselves.

4.7 Effectiveness of e-interventions on Falls and Fall-Risk
Factors

Many e-interventions for fall prevention include IoT technology with ambient
sensors, mobile phones, tablets, or computers. These e-interventions can be roughly
classified into six categories: telehealth, exergames (i.e., gamified exercise), cogni-
tive training, (non-conventional) balance training, smart home systems, and social-
ized exercise. Highly relevant for the present topic, exergames typically use motion
sensing technology and simultaneously address physical and cognitive aspects of
balance. Due to the complex interaction of executive, attentional, and motor aspects
of balance along with increased adherence thanks to its entertainment and engaging
character, exergaming is regarded as offering a high fall-reducing potential (van het
Reve & de Bruin, 2014). Exergames combined with telehealth are a frequent constel-
lation in fall prevention settings. A recent systematic review and meta-analysis (Leal
et al., 2023) reported significant effects on fall risk in older people (community
dwelling or nursing home residents) compared with controls without intervention or
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even with conventional exercise training. Cognitive training, predominately applied
under physically inactive conditions, focuses on executive function (Smith-Ray et al.,
2014) and is frequently combined with conventional exercise. There is some evidence
for a fall-reducing effect of cognitive training (Blackwood et al., 2016). Moreover it
can be provided safely and with minimal supervision at home. However, while cogni-
tive training alone did not affect falls or fall-related functional parameters (Smith-
Ray et al., 2015), combined exercise and cognitive training does improve specific
factors associated with falls, such as gait speed, cognitive function, and balance—at
least in people with mild cognitive impairments (Lipardo et al., 2017). Socialized
training includes exercise programs applied in virtual gyms specifically tailored to
the needs and abilities of the participants, such as tablet-based balance, strength, or
power training with motivational aspects and feedback systems. Participants exer-
cised online in groups or were able to link to other people presently exercising.
Amongst others, Harrison et al. (2024) provided evidence for the favorable effect
of virtual classes (ballet or wellness) on fall-related risk factors (e.g. gait, balance,
quality of life) in older women. Zhao et al. (2023), who addressed the effects of a
12-month Virtual Reality (VR) training 3 x 50 min/week on fall prevention and Bone
Mineral Density (BMD) in hospitalized older people, reported significant effects on
balance, TUG performance, functional gait assessment and, of note, BMD at the
lumbar spine and femoral neck compared with a control group which conducted a 3
x 50 min/week low-intensity resistance type exercise. A recent scoping review on
VR in effect concluded that VR, be it immersive and non-immersive, “is a valuable
tool for promoting physical exercise in older adults, helping to prevent recurrent
accidental falls” (Ortiz-Mallasén et al., 2024). Finally, non-conventional balance
training using inertial sensors focuses on balance control by providing feedback
to correct posture. However, the effects of non-conventional balance training were
rarely addressed by randomized controlled trials (Chan et al., 2021). Hagedorn and
Holm (2010), who compared the effects of a 12-week multi-purpose exercise-training
with traditional balance training versus computer feedback balance training, failed
to determine significantly superior effects of the computer feedback setting on fall-
related outcomes in frail elderly people. Although the effects ranged at a similarly
positive level, computer feedback balance training does offer new perspectives for a
non-supervised home training program that can be carried out widely independently.

In summary, there is considerable evidence for the favorable effects of e-
interventions on falls and fall-related abilities roughly in the range of conven-
tional supervised exercise. But, unlike the latter intervention, e-interventions can
be easily performed as home-training. Considering the aspect that many older
people are unable or unwilling to (permanently) participate in supervised facility-
based programs (Cohen-Mansfield et al., 2003; Franco et al., 2015), home-based e-
interventions, supervised or not, might be a feasible training option for these people.
Additionally, the zero charges or at least lower expenses for instructors, personnel,
and locations, as well as potential lockdowns and/or isolation of particularly older
people under epidemic conditions, underscore the increasing relevance of home-
based exercise programs not only but particularly in a fall prevention concept for
older people.
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4.8 Advanced Application of Artificial Intelligence
in Exercise Training for Fall Prevention

4.8.1 Prediction of Fall Risk and Categorization of Training
Aims

Anaccurate assessment of an individual’s fall risk is crucial for risk categorization and
subsequent allocation to dedicated training courses. As an example, the present S3
guideline on “exercise and fracture prevention” suggests a risk factor categorization
that includes bone strength and fall risk as the starting point for the individualized
assignment of primary and secondary training objectives (Mohebbi et al., 2023).
The focus of training intervention is now shifting from a “bone (strength)-oriented
exercise strategy to fall prevention in people with a higher tendency to fall. Never-
theless, the present guideline remains unclear as to when a dedicated fall prevention
program should be implemented in the intervention (Mohebbi et al., 2023). Consid-
ering the predictive ability of current technology to determine the individual risk
of falls, more individualized exercise training—at least with respect to the priori-
tized training aim—should be possible. The aforementioned LINDERA “app”, for
example, which ranks the fall risk on a score from 0 to 100 points, might be helpful
in the allocation of people to dedicated core training aims. Since the LINDERA
app is a medical device increasingly used by health professionals, including general
and specialized practitioners, the allocation of patients with increased fall risk to
dedicated exercise programs will be supported by the German healthcare system
(i.e. “Rehabilitionssport” or “Funktionstraining” according to §64 SGB IX) (Beck &
Sahar, 2020).

4.8.2 Identification of Fall Risk Factors and Specific
Accentuation of the Training Contents

Adding non-exercise specific modifiable risk factors (e.g. home environment,
footwear) to the number of modifiable fall risk factors that can be addressed by
physical exercise training (Table 4.1) will result in an almost unmanageable number
of fall risk factors. In this context, sensors, IoT, and Al applied in a closely moni-
tored, e.g. smart home, setting can be helpful for identifying and reducing general
fall-risk factors (Mohan et al., 2024). However, the currently available sensor-based
Al solutions for fall prevention do not provide the information that allows the dedi-
cated risk factors listed in Table 4.1 to be specifically addressed by suitable exercise
interventions. In fact, most Al-based approaches focus on a single or a few categories
or risk factor domains, predominately posture or gait characteristics, to determine
or categorize the fall risk as such. However, no information on the relevance of the
inherent specific risk factor (e.g. reduced choice reaction time, reduced gait velocity)
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has been provided yet. Given that the training-specific targeting of these risk factors
varies widely, a more detailed, interpretable result would be helpful for designing a
more tailored exercise training package. In parallel, as already mentioned, most Al-
based approaches focus on posture and gait characteristics and include information on
general risk factors at best. In this context, a more comprehensive inclusion of other
risk factor domains significantly modifiable by exercise programs will be helpful for
the stratification of the training contents. Apart from the highly modifiable and validly
quantifiable neuromotor risk factor domain, other domains involving sensoric, cogni-
tive, psychologic, and cardiovascular/cardiometabolic risk factors should be included
inthe analysis in order to generate acomprehensive training schedule covering several
risk factors in parallel, albeit in a prioritized manner. Particularly, the cardiovascular/
cardiometabolic risk factor categorization is easily accessible by wearable sensors
and/or smartphone solutions and is frequently addressed by Al solutions (Maurya
et al., 2021). On the other hand, data showing the relative relevance of anxiety or
FoF, for example, will be helpful for specifying the setting and type of the exer-
cise program (Schoene et al., 2023). Thus, an Al-based risk factor stratification that
provides an interpretable hierarchy of the most relevant individual fall-risk factors
will be beneficial for determining training contents and methods more stringently
and time efficiently.

4.8.3 Implementation in the Training Process

A key decision in training programs is the setting of the exercise program, i.e., in
general, “facility-based” or “home-based”. In the past, several studies have under-
scored the superiority of the usually supervised facility-based programs versus non-
supervised home exercise programs (Fisher et al., 2021; Hoffmann et al., 2022).
Applying the Otago Exercise Program, Kyrdalen et al. (2014) reported significantly
higher effects on fall-related outcomes after supervised group training compared
to the usual home training setting of Otago. Several aspects might contribute to
this result however, the most striking limitation of non-supervised exercise in an
at-home program might be the frequent lack of progression, particularly with respect
to exercise intensity (Fisher et al., 2021). But now, the large and increasing variety
of e-(exercise) programs with feedback systems or simple remote and online settings
ensure adequate supervision of home exercise training. Moreover, feedback systems
that enable accurate monitoring of the user’s performance development and hence
guide implementation intensity progression will also increase the effectiveness and
safety of home exercise programs. This enhanced safety of home training programs, at
least with respect to fall risk, proper movement, and cardiovascular/cardiometabolic
side effects offered by connected wearable sensors, might serve to boost acceptance
of the resource-saving and popular home training setting in the community. In terms
of exercise intensity, wearable sensors provide guidance on adequate intensity in the
area of cardiovascular fitness. In parallel, the “repetition in reserve” concept (Zourdos
etal., 2016) combined with advanced movement sensors can be applied to prescribe
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and monitor exercise intensity in the area of strength and power-training, e.g. via
velocity based resistance exercise (Lopez et al., 2023). Another issue closely related
to the effectiveness of the training protocol is low adherence to the pre-specified
exercise frequency. Alarm systems included in sensors that record physical activity
and exercise are feasible responses to this problem.

Looking ahead and considering the rapid progress in this field, future sensor
based Al-technology on fall prevention might soon be able to (1) identify and
stratify the most relevant risk factors for falls, (2) generate optimized training
strategies and detailed exercise programs for individual users, (3) apply dedicated
e-programs with monitoring of individual training sessions for effectiveness and
safety, (4) provide a progression of intensity once predefined thresholds are reached
so as to ensure consistent overload, (5) properly apply advanced training princi-
ples (e.g. reversibility, variation, periodization) during the intervention (Donath &
Faude, 2020), (6) deliver detailed information on exercise-induced changes of fall
risk and lastly (7) adapt training programs to respond to lacking efficiency on relevant
risk factors. Nevertheless, progress in the effectiveness and safety of home training
programs will not necessarily replace supervised facility-based programs. Thanks
to the training equipment they offer, facility-based training programs can address
many training aims much more reliably, safely, and effectively compared with the
tools available at home. This goes not only for resistance devices with their safe posi-
tioning, quantifiable intensity or load selection, and easy to handle intensity progres-
sion but in particular also for the scarcely available and highly effective (Devasa-
hayam et al., 2023) perturbation-based balance devices (e.g. perturbating treadmills)
“which apply repeated, externally applied mechanical perturbations to trigger rapid
reactions to regain postural stability in a safe and controlled environment” (McCrum
et al., 2022). On the other hand, sensor-based direct feedback systems, along with
the Al-based algorithms installed in new generation training devices, will enable the
addressing of prespecified training aims with enhanced safety and effectiveness and,
at the same time, reduce the personnel demands of the intervention.

4.9 Conclusion

By way of conclusion, Al-based technology for fall prevention might play an increas-
ingly crucial role in healthcare concepts for the elderly, which, due to the increasingly
scarce personal resources, could specifically include exercise interventions.
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Chapter 5 ®)
Artificial Intelligence for Sport Injury e
Prediction

Robin Owen, Julian A. Owen, and Seren L. Evans

Abstract Preventing injury is a core facilitator of success in sport. Thus, vast sums
of money are invested into achieving this. However, sport injury is still seen as equal
parts “art” and science. Despite the best efforts of individuals, teams, and national
bodies to apply scientifically-derived injury prevention strategies, millions of athletes
still get injured in sport every year. Evidently, sport injury prediction is a field, which
has scope for improvement. One potential way of advancing the field is the use
of Artificial Intelligence (AI). It offers an opportunity to: (1) treat sporting injury
as the complex phenomenon it appears to be; (2) consider the non-linear context
surrounding athlete injuries; and (3) provide a supplement to practitioner reasoning,
to facilitate quicker decisions. The present book chapter evaluates previous research
studies’ use of Al for injury prediction, assesses the unique advantages offered by
Al-based analyses, and discusses challenges when attempting to utilise Al for injury
prediction. Overall, the use of AI for sport injury prediction offers a fascinating
opportunity. It may one day create a revolution in the field, improving not only
prediction itself but also our understanding of the complex interactive factors, which
govern injury in sport.

Keywords Machine Learning + Pattern Recognition + Sport Injury « Injury
Prevention

5.1 Sport Injury—The Context

It is well established that participation in sports offers numerous physical and mental
health benefits alongside providing opportunities for social interaction and the devel-
opment of positive psychosocial health (Eime et al., 2013). However, the benefits
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of sport participation are accompanied by a significant sport-related injury burden
in both elite and recreational athletes (Emery et al., 2007; Jacobsson et al., 2012).
Despite this, there is a relative paucity of research evaluating the efficacy of injury
prevention strategies (Conn et al., 2003).

The exact number of sports injuries worldwide each year is challenging to deter-
mine precisely due to variations in reporting systems, definitions of sports injuries,
and the vast range of sports and activities involved. Estimates suggest that sport-
related injuries are common, with millions of people suffering from injuries each
year, ranging from minor sprains and strains to more severe fractures, concussions,
and other traumatic injuries. In context, an estimated seven million Americans and
almost six million Europeans receive medical attention annually for sport-related
injuries (Conn et al., 2003; Kisser & Bauer, 2012). Roughly one in five school chil-
dren miss at least one day of school, while one in three working adults loses at least
one workday yearly due to sport-related injuries (Conn et al., 2003; Emery et al.,
2006).

Advancements in comprehending the financial strain and allocating resources
toward preventing sports injuries have been constrained, partly due to difficul-
ties in clearly defining the extent, breadth, and financial implications of the sports
injury issue. An Australian research study approximated the burden of sports-related
injuries over a span of seven years to amount to $265 million Australian dollars
(Finch et al., 2015). In Europe, the economic assessment of health expenditures,
considering both the savings generated through sports participation and the losses
incurred due to injuries, suggests that 40-50% of the economic advantage is eroded
by sports-related injuries (BASBO, 2001; Weil3, 2000). Many of these estimates of
the direct costs represent medical related treatment costs and ignore the indirect
costs, which include the immediate and future loss of income costs due to injury.
Therefore, the financial cost of sport-injury is likely underestimated as indirect costs
can account for approximately 46—71% of the total costs associated with injuries
(Lacny et al., 2014).

The repercussions of sports injuries extend beyond mere physical and financial
implications. It is widely acknowledged that there exists a significant emotional and
psychological toll on athletes’ mental health and well-being. This toll often manifests
in the form of depression, stress, anger, and diminished self-esteem, especially among
competitive athletes or those severely injured (Smith, 1996). Therefore, as sport and
physical activity continues to be promoted as part of a healthy lifestyle, sport-related
injuries are becoming an important public health concern.

In competitive sports, the adverse effects of injuries are typically more
pronounced. It is recognised that the burden of injuries escalates with the level of
competition, primarily due to greater exposure to rigorous training and competitions,
leading to increased physical and psychological strain. Professional and national
sports organisations are obligated to ensure the well-being of their athletes; hence,
prioritising athlete welfare is crucial. Lowering the burden of injuries also becomes
a notable advantage for team success, which influences commercial revenues.
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Injury prediction should be a key component for injury prevention, since the
successful identification of injury predictors forms the basis for effective preven-
tive measures. Traditionally, research focusing on the prevention of sports injury is
based on the “sequence of prevention”, which includes injury audit (surveillance) to
establish the extent and nature of the problem, identification of risk factors, and imple-
mentation of relevant prevention strategies based on these findings (van Mechelen
etal., 1992). This epidemiological approach is useful as it allows researchers to iden-
tify the risk of injury (injury incidence or rate and injury burden), prevalence, and
risk factors associated with injury within different sports and populations and helps
to identify patterns and trends, contributing to injury occurrence. This approach has
often attested that single risk factors account for the occurrence of an injury. Although
this approach has uncovered numerous potential predictors of injuries using conven-
tional statistical methods like logistic regression. Unsurprisingly, these methods have
not consistently identified risk factors (Bekker & Clark, 2016). These inconsistencies
underscore the complexity inherent in most human health conditions.

Fundamentally, sports injury is a multifaceted phenomenon influenced by various
modifiable and non-modifiable risk factors, including biomechanical, physiological,
psychological, environmental, and sociocultural aspects. To understand injury risk,
we must analyse the forces, loads, and motions involved in sports activities to under-
stand how they contribute to tissue stress, strain, and injury. We must consider the
psychological factors that can modulate the physiological responses to stress and
influence injury vulnerability. We must also include context and consider the influ-
ence of societal values, gender roles, coach-athlete relationships, peer interactions,
and institutional practices on athlete behaviour, risk-taking, and injury reporting.

Since the “sequence of prevention” was first suggested, several models have been
developed to conceptualise the complexities surrounding sports injury occurrence
and that the injury has a non-linear behaviour (Bekker & Clark, 2016; Bittencourt
et al., 2016; Meeuwisse, 1994; Meeuwisse et al., 2007). These models suggest that
the multifaceted and intricate nature of sports injuries does not stem solely from the
linear combination of isolated predictive factors but rather from the interplay often
referred to as “the web of determinants” (Philippe & Mansi, 1998). These determi-
nants may be interconnected in a nonlinear fashion, meaning that slight changes in
a few determinants can result in significant and occasionally unforeseen outcomes.
To comprehensively understand the complex origins of sports injuries, a complex
systems approach is essential.

5.2 The Current State of Artificial Intelligence for Injury
Prediction

As outlined, it is well established that sports injuries are multifactorial in nature, and
very rarely are attributed to a singular variable in the line of causation; rather, sports
injuries arise from multiple interactions between both modifiable (i.e. training load,
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strength) and non-modifiable determinants (i.e. age, previous injury history) and their
non-linear fluctuations over time (Bittencourt et al., 2016; Hulme & Finch, 2015).
Therefore, to accurately determine the complexity of their origin, sports injury predic-
tion requires a complex systems approach to better understand how these intricate
interactions lead to injury.

Recent advancements of Artificial Intelligence (AI) based analysis (including
machine learning and pattern recognition) have lead to its introduction into the realm
of sports medicine research (Ruddy et al., 2018; Van Eetvelde et al., 2021), allowing
for a more robust analysis of large quantities of data to formulate prediction models
of injury (Sigurdson & Chan, 2021). AI can be designed to process imbalanced
datasets, which is commonplace in sports injury research as, typically there will be
more athletes not sustaining an injury when compared to those sustaining an injury
(Lopez-Valenciano et al., 2018; Van Eetvelde et al., 2021). Furthermore, utilising
Al for sports injury research allows for the inclusion of both modifiable and non-
modifiable risk factors as input features and can be used to evaluate their effectiveness
in predicting injury as a binary classification outcome (injury versus no injury).

Caution is needed that we are not reverting back to over-simplistic, reductionist
views of injuries, such as injuries occuring due to singular inciting events. Models
which have previously been generated for targeted injury diagnoses (e.g., lower
extremity injuries, lateral ankle sprains) may be of greater sensitivity within multi-
variate modelling when compared to grouping all injuries together, producing more
interpretable and unambiguous findings for injury incidence (Henriquez et al., 2020).

Various predictive variables of sports injury have, therefore, emerged across a
range of sports as a result of Al-based analyses. Within Australian Football, risk
factors such as age, stature, body mass, playing position, and previous lower limb
injury history were identified as predictors of hamstring strain injury, with an associ-
ated accuracy of 85% across algorithms (Ruddy et al., 2018); namely, Naive Bayes,
Logistic Regression, Random Forest, Support Vector Machine, and Neural Network,
which have qualities of probabilistic classification and the ability to model complex,
non-linear interactions within multiple predictor variables (John & Langley, 1995;
Keerthi et al., 2006; Quinlan, 1993). Utilising a similar approach with random forest
algorithms in identifying lower limb musculoskeletal injuries amongst National
Collegiate Athletic Association (NCAA) athletes, Rommers et al. (2020) identi-
fied hip-based strength metrics, demographic and balance variables as indicators for
future injury. Furthermore, adopting a subgroup discovery approach which allows
for the analysis of subsets of individuals who share common attributes for injury
risk from input features (Herrera et al., 2011), de Leeuw et al. (2022) discovered
that predictors of injury within elite male volleyball were fatigue, overuse, sleep,
muscle soreness, and training exertion. Physical attributes such as height and weight,
alongside strength, flexibility, speed, agility, and endurance features, achieved 85%
precision using XGBoost in assessing injury predictors within elite youth football
(Rommers et al., 2020). Pattern recognition analyses, therefore, show initial potential
to provide a feasible statistical method of forecasting injuries in sport whilst being
able to account for (1) modifiable and non-modifiable risk factors, (2) the time-series
nature of athlete training data, (3) whilst also considering their nonlinear interactions.
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5.3 Advantages of Using Artificial Intelligence for Injury
Prediction

Natural sciences, such as injury prediction in sport, traditionally adhere to explana-
tory positivist views where understanding and generalisation of phenomena require
the testing of clearly defined hypotheses (i.e., predictions) using tightly controlled
methods (Kuhn, 2012). This approach inherently encourages a “reductionist”
approach to research, wherein testing theoretically-based and limited-in-number
predictors of phenomena is considered superior. Indeed, injury prediction research
has predominantly adhered to these principles (Bekker & Clark, 2016; Bittencourt
etal., 2016). However, such approaches induce a case of “survivor bias”; factors are
prioritised for consideration if their relationship with injury is either known or can
be clearly predicted (Lockwood, 2021). Consequently, this may prohibit the iden-
tification of new, as-of-yet unknown, factors which may affect injury in sport (Tee
et al., 2020). Similarly, once a certain number of predictors is reached, it can make
it difficult for researchers to fully grasp their interaction.

Concerted efforts to broaden understanding of sports injury are of particular
importance given recent calls to consider sports injury as a complex phenomenon,
affected by many variables and interactions (Fonseca et al., 2020; Tee et al., 2020).
Explanatory positivist approaches to-date have laid the foundations for identifying
modifiable and non-modifiable risk factors of injury in sport (Bahr, 2016; Rossi
et al., 2021), but limitations arise from the typical utilisation of mono-dimensional
approaches. Variables are often treated as static, absolute at one point in time, and
subsequently ignore the complex underlying pattern of sports injuries and time-
series nature of athlete status (Rossi et al., 2021). This “static” attitude to predictors,
combined with assumptions of linear relationships between singular variables and
injury, means that current approaches with high explanatory power do not always
translate to high predictive power in relation to injury risk (Jauhianen et al., 2021;
Shmueli, 2010).

Therefore, a possible means to deepening understanding of injury predictors
are Al-assisted analyses. Al is particularly suited to complex problems, given its
ability to: process large volumes of data; comprise partial automation to reduce time
cost; provide non-linear assessment of multiple interactions; and discover useful
hidden patterns in data (Pham et al., 2020; Zhuang et al., 2017). Accordingly, sports
injury researchers are beginning to utilise artificial neural networks, support vector
machines, gradient boosting machines, and decision tree methods (Bullock et al.,
2022). Although pursuing complex analytical procedures such as these goes against
fundamental scientific principles (e.g., Occam’s Razor, wherein the simplest expla-
nations are regarded as the most plausible, and should thus be pursued; Blumer et al.,
1987), injury risk appears to be highly complex by nature (Fonseca et al., 2020; Tee
et al., 2020) and may thus benefit from Al-assisted analyses. Specifically, Al-based
approaches could demonstrate a better capacity for interpreting the highly complex
and non-linear contexts surrounding each case despite their seeming contradiction
with established explanatory conventions (Tee et al., 2020).



74 R. Owen et al.

5.4 Training and Testing an Artificial Intelligence
for Injury Prediction

Just like the athletes themselves, Al models require rigorous training and testing
(Kanal & Chandrasekaran, 1971). “Training” entails calibrating the underlying
parameters which Al models use to produce outputs from inputs. “Testing” entails
evaluating the effectiveness of these models, often using a different dataset to
that used in training. There are many testing/training methods, such as supervised
learning, unsupervised learning, and reinforcement learning; however, a common-
ality among them all is a requirement for large volumes of representative data to
create models which provide accurate outputs (L’ heureux et al., 2017). Although the
quantity and quality of training/testing data is only one of many factors which can
cause undesirable bias in models, it is one of the key determinants (see Prediction
model Risk of Bias Assessment Tool; Wolff et al., 2019). If an Al model is subject
to insufficient volumes of relevant data during training, it is likely that these models
will contain bias, which can lead to inaccurate outputs.

A recent systematic review found that 98% of Al-based analyses used to predict
sporting injuries were at high or unclear risk of bias (Bullock et al., 2022). In part,
this is a product of the additional challenges the field has when it comes to testing and
training models; contexts surrounding injury are dynamic and not interchangeable
(Tee et al., 2020). Injury can be affected by more than just match play and training
load. Itis highly dependent on the context surrounding an athlete. Historical, political,
social, economic, scientific, cultural, and organisational factors can all affect injury
likelihood and the effectiveness of preventative methods. For example, playing on
hard ground out of geographical/economic necessity can increase injury likelihood
(Chalmers et al., 2012). Relatedly, the contexts surrounding injury are dynamic rather
than static. For example, Between 1998 and 2010, rugby union forwards have become
22% heavier, 8% taller, and 18% stronger (Lombard et al., 2015). Likewise, changes
in coaching and backroom staff can produce profound changes to an athlete’s recovery
protocols from one year to the next (Galdino et al., 2023). A result of the complex
and dynamic factors surrounding sports injury is that it makes it challenging for a
single research team to collect sufficient predictors as well as sufficient volumes of
data to optimally train and test Al models.

Given the challenges faced when attempting to apply Al methods to sports injury,
it is not surprising that previous studies have been criticised for their generalisability
and application to applied contexts (see Bullock et al., 2022). Specifically, it has
been suggested that even in Al-based studies featuring low risk of bias, modest
predictive performance of models means that there may be no injury prediction
models which can be confidently recommended for applied practice. Going forward,
it may be necessary for researchers to embrace the open science to collaborate and
compile sufficiently detailed datasets. Such Open Science approaches entail inten-
tional sharing of data (and failing that, making data freely accessible) to better build
on previous studies (Vicente-Saez & Martinez-Fuentes, 2018). Precedent for the rapid
advancement of Al given sufficient access to detailed datasets for testing/training can
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be seen in text-to-text applications such as ChatGPT, where access to a large corpus
of written work throughout history has allowed impressively accurate predictions
of desired text, based on user inputs (Wu et al., 2023). Researchers investigating
sports injury should aim to work together to further elucidate underlying complex
interactions of predictors.

5.5 Practical Implications: Pitfalls and Solutions

Although AT has the potential to become a powerful tool in injury prediction (Bullock
et al., 2022), its underlying mechanisms may be too complex for applied practi-
tioners to find useful/comprehensible themselves. Therefore, Al-based approaches
may further increase the researcher-practitioner gap. This researcher-practitioner gap
occurs when scientifically derived knowledge is not applied by practitioners in the
field (Lenfant, 2003). The present wealth of different Al-based approaches, complex
statistical metrics, and frequent requirement to modify computer code, means that
a majority of applied practitioners may struggle to use Al models in any capacity
other than standardised “plug and play” packages (Bullock et al., 2022). However,
even if “plug and play” packages are made available to applied practitioners, current
sports injury models’ high likelihood of bias (Bullock et al., 2022) run a high risk of
incorrect application. In such high risk situations, it has been shown that individuals
tend to rely on their own judgement and avoid applying these high risk methods,
further widening the researcher-practitioner gap (Jgsang & Presti, 2004; Papenmeier
et al., 2022). Therefore, in addition to producing accurate injury prediction models,
another key barrier may be to overcome the researcher-practitioner gap.

The utilisation of Al-based analyses in injury prediction studies is often hindered
by limited data inclusion, restricting analysis to a narrow scope of variables. For
instance, some studies only incorporate physical performance metrics (Rommers
et al., 2020), perhaps constraining predictive accuracy. However, the potential for
heightened precision remains, suggesting an opportunity for enhancement through
integrating more extensive datasets (Verhagen & Bolling, 2015). By refining the
focus of injury prediction using advanced AI methodologies, such as targeting
specific injury types prevalent within distinct athletic cohorts—such as hamstring
strains in elite football or anterior cruciate ligament injuries in female athletes—
the applicability of these models to real-world practice can be improved (Rommers
et al., 2020; Van Eetvelde et al., 2021). This may provide practitioners with more
robust datasets, enabling the implementation of more effective and targeted injury
prevention strategies.

That said, to create more accurate prediction models, reduce bias, promote prac-
titioner uptake, and reduce the researcher-practitioner gap, theoretically driven vari-
ables of injury risk factors still require prioritisation when deciding on input features
during preprocessing stages of Al analyses. To illustrate, a strong relationship exists
between the amount of ice cream sold and shark attack incidences, and it may even be
possible to predict the number of shark attacks that will occur based on the number
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of ice creams sold. However, in reality, no amount of regulating ice cream sales will
have an effect on the number of shark attacks; ice cream sales are epiphenomenal to
shark attacks and is likely a byproduct of another process, such as warmer weather
resulting in more demand for ice cream and people visiting the beach. Regulating the
waters with more coastal surveillance and warnings for surfers is likely to be more
effective in reducing the number of shark attacks. The point is, utilising variables
that are theoretically linked to sports injury will reduce the likelihood of erroneous
discoveries, which would affect the interpretability and reliability of the models.

5.6 Conclusion

Al-based approaches to sports injury prediction provide many opportunities to
advance the field. Firstly, it has the capacity to treat sporting injury as the complex
phenomenon it appears to be. Secondly, it allows for consideration of the non-
linear context surrounding athlete injuries, which previous reductionist statistical
approaches were forced to omit. Lastly, it can provide a supplement to practitioner
reasoning, to facilitate quicker decisions. However, one should not overlook the chal-
lenges of using Al Training effective Al requires large and representative datasets,
which has been a key barrier faced in sports injury research. Additionally, until accu-
rate models become available as “plug and play” solutions, they may be prohibitively
complex/novel for applied practitioners to use; thus potentially widening researcher-
practitioner gaps. If these challenges are overcome though, Al may one day revo-
lutionise not only sports injury prediction accuracy, but also our understanding of
underlying factors and their interaction.

Prediction models may, therefore prompt early intervention and manipulation
of variables which are known to have an effect on injury risk however unless the
relationship is causal, manipulating certain metrics does not mean that injury risk
will be altered (Hernan et al., 2019); therefore, assuming that manipulating certain
variables reduces the risk of injury is the equivalent of banning ice cream sales to
prevent shark attacks (Impellizzeri et al., 2020). When handling data regarding injury
prediction and prevention, identifying the optimal set of risk factors for athletes at
greater risk of injury would prove invaluable for coaches, medical practitioners, and
for the overall well-being of athletes. Achieving this necessitates a tailored approach
to athlete monitoring practices and addressing key performance indicators tailored
to the demands of each individual sport. Within the realm of sports, the cost of
injury—weighing the costs of medical procedures, rehabilitation, player time loss
due to injury, and its impact of team success against the benefits of injury reduction—
is pivotal in the decision making process (Gabbett et al., 2016). When utilising Al,
more efforts need to be made in relation to understand the relative weight of individual
risk factors and injury risk, portraying a picture of the probability of injury rather than
classifying an athlete into a high or low risk group (Rossi et al., 2018; Van Eetvelde
et al., 2021), which would be of more benefit for sporting practitioners when it
comes to making adjustments to training regimes and team selection. Employing an
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Al approach to injury management should, therefore, not only be able to identify
risk factors but also provide practitioners with actionable thresholds for heightened
injury probability, allowing for the implementation of timely prevention strategies
with the hope of minimising the cost of injury for both athlete and team.
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Chapter 6 ®)
Generative Artificial Intelligence e
in Anti-doping Analysis in Sports

Maxx Richard Rahman and Wolfgang Maass

Abstract Doping in sports involves the abuse of prohibited substances to enhance
performance in the sporting event. Blood doping, a prevalent method, allows the
increase in red blood cell count to improve aerobic capacity, often through blood
transfusions or synthetic Erythropoietin (thEPO). Current indirect detection methods
require a large amount of data for performing analysis. In this paper, we study the use
of generative modelling for generating synthetic blood sample data to improve anti-
doping analysis in sports. We performed experiment on the blood samples collected
during the clinical trial. The dataset comprised haematological parameters from real
blood samples, which were analyzed to understand the baseline characteristics. The
Generative Adversarial Network (GAN) is used to understand the complexity and
variability of real blood sample data. Results demonstrated that the model could
successfully generate synthetic samples that closely resembled real samples, indi-
cating its potential for augmenting datasets used in doping detection. This approach
not only enhances the robustness of indirect methods of doping detection by providing
a larger dataset for analysis but also addresses ethical concerns related to privacy and
consent in using athletes’ biological data.

Keywords Blood Doping * thEPO + GANSs - Sports

6.1 Introduction

Doping in sports means the use of banned/prohibited substances or methods by
athletes to improve their performance (Vlad et al., 2018). This unethical practice
subverts fair competition and poses significant health risks. The history of doping
is as early as 1886, when substances such as cocaine, caffeine, and strychnine were
used, although they were not illegal at the time, to enhance performance (Holt et al.,
2009). This period was the starting point of performance-enhancing practices, which
have developed into a complex set of doping techniques, including anabolic steroids,
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blood doping, human growth hormone, and others. One of the most prominent cases
in cycling is that of Lance Armstrong, who was suspended because of doping accu-
sations and later confessed to the use of the performance-enhancing drug Erythro-
poietin (EPO) (Heuberger et al., 2013). Armstrong’s case brought a lot of focus on
how widespread the problem of doping was in professional cycling and other sports.

Blood doping is one of the most common forms of doping, which means increasing
the number of red blood cells in the bloodstream, improving the athlete’s aerobic
capacity and endurance (Plumb et al., 2016). This can be done by blood transfusions,
the use of certain drugs, or other approaches aimed at increasing the number of red
blood cells (Goodnough & Panigrahi, 2017). Blood doping is especially seen among
endurance athletes, such as cyclists, whose performance can be remarkably enhanced
by the increased oxygen delivery to their muscles.

Recombinant human Erythropoietin (thEPO) is a synthesized form of a natural
hormone that is responsible for the production of red blood cells (Bunn, 2013). The
use of rhEPO in sports is also known as “EPO doping”, which has become a major
issue because it can help improve performance of the athlete. The administration of
rhEPO enables athletes to increase their red blood cell mass without the need for blood
transfusions, thus making the procedure a more covert way of doping (Robinson
etal., 2006). Nevertheless, using rhEPO may be associated with cardiovascular risks,
such as hypertension and thrombosis, which create serious health issues to athletes
(Santhanam et al., 2010). The detection of blood doping has been a challenge for
World Anti-Doping Agency (WADA) and the associated laboratories. In 2009, they
developed the Athlete Biological Passport, which involves the monitoring of selected
biological markers over time and indirectly detecting the effects of blood doping
by observing the variations in an athlete’s biological markers, which may suggest
manipulation (WADA, 2022).

Current detection techniques include both direct testing for the presence of prohib-
ited substances in blood or urine samples and indirect methods that may provide the
indication of doping, such as changes in haematological parameters. Manfredini
et al. (2011) proposed a statistical score that included several blood parameters and
emphasized variations from their normal levels. Sharpe et al. (2006) used a single
previous sample to determine the baseline values for an athlete. Parisotto et al. (2001)
looked at how different statistical models, namely the ON and OFF models, fared in
their analysis according to specific possible parameters. Hence, the use of statistics
and Machine Learning (ML) techniques to deal with doping has been the subject
of different studies. Similarly, Kelly et al. (2019) use ML algorithms to discover
doping risks among 791 UFC athletes through their performance data, with a high
sensitivity rate of 44%. Sottas et al. (2006) developed the Abnormal Blood Profile
Score (ABPS), a testing strategy that utilizes statistical classifications of indirect
biomarkers. The ABPS calculation, which used both Support Vector Machine and
Naive Bayes algorithms, reached a sensitivity of 45% and a specificity of 100%.
Rahman et al. (2022) also showed how different ML approaches could be useful to
identify the presence of the thEPO in the blood samples. Therefore, this study is the
current state-of-the-art method and could be used as a benchmark for future studies.
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Despite these advancements, one of the significant limitations is the difficulty in
gathering enough data for effective ML analysis.

Therefore, in this paper, we will discuss the potential uses of generative modelling
in doping analysis in the sport. This research work focuses on whether generative
algorithms can help eliminate the constraints of limited data and positively impact
the doping detection. Thus, we apply a Generative Adversarial Network to generate
blood samples that can be further used to train ML algorithms to detect and identify
the presence of thEPO in blood samples to improve the detection of blood doping.

6.2 Generative Modelling

6.2.1 Haematological Profile of Blood Sample

The haematological profile of the blood sample comprises a set of crucial blood
parameters that exhibit significant variations due to rhEPO intake (Krumm & Faiss,
2021). It helps in understanding the size and important characteristics of each circu-
lating blood cell. Table 6.1 shows all the important parameters with the description.

The significance of the OFF-HR parameter becomes evident through an example.
Imagine an athlete using small doses of thEPO. While this may not significantly
elevate hemoglobin levels, reticulocytes are likely to respond markedly, impacting
the OFF-HR score. Conversely, an athlete taking substantial rhEPO doses might
maintain constant hemoglobin levels through plasma expansion, evading detection.
However, infusing a blood bag would decrease reticulocytes, triggering the OFF-
HR. Thus, the OFF-HR serves as a crucial indicator of erythropoiesis acceleration
or deceleration.

6.2.2 Requirements for Synthesizing Haematological Profile

There are several requirements for the generation of haematological profiles due to
their longitudinal nature (Mosquera et al., 2023). To begin with, we outline a set
of prerequisites necessary for synthesizing longitudinal datasets. By doing so, we
aim to define specific criteria for our generative algorithm. The goal is to ensure the
generated samples’ authenticity and the generative models’ applicability to actual
data scenarios.

(1) Temporal Nature of the Data: The haematological profile consists of longitu-
dinal elements, which means that it tracks the same athlete over time. This longi-
tudinal element involves the collection of multiple samples from each athlete at
different times.
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Table 6.1 Description of all the haematological parameters in blood sample

Parameter

Description

Haemoglobin concentration (HB)

The amount of hemoglobin in the blood,
measured in grams per liter (g/L)

Haematocrit (HCT)

The proportion of blood volume occupied by
red blood cells

Reticulocytes percentage (RET%)

The percentage of immature red blood cells
(reticulocytes) in the blood

Reticulocytes count (RET#)

The absolute number of reticulocytes per
microliter of blood

Reticulocytes haemoglobin (RET-HB)

The hemoglobin content within reticulocytes

Mean corpuscular volume (MCV)

The average volume of red blood cells

Mean corpuscular haemoglobin mass (MCH)

The average mass of hemoglobin in red blood
cells

Mean corpuscular haemoglobin concentration
(MCHC)

The concentration of hemoglobin in red blood
cells

Red blood cell count (RBC)

The total number of red blood cells

Red blood cell distribution width—standard
deviation (RDW-SD)

A measure of the variation in red blood cell
size

Red blood cell distribution width—coefficient
of variation (RDW-CV)

Another indicator of red blood cell size
variability

White blood cell count (WBC)

The total number of white blood cells

Immature reticulocyte fraction (IRF)

The proportion of immature reticulocytes

Low fluorescence reticulocyte fraction (LFR)

The fraction of reticulocytes with low
fluorescence

Medium fluorescence reticulocyte fraction
(MFR)

The fraction of reticulocytes with medium
fluorescence

High fluorescence reticulocyte fraction (HFR)

The fraction of reticulocytes with high
fluorescence

OFF-HR score

The relationship between reticulocytes and
hemoglobin. Calculated using the expression:

OFF — HR = HB(g/L) — 60~/RET%

(2) Variability in Profile Sequence Length: The variation in the number of samples
per athlete is highly dependent on the athlete’s career length or experience
level. The younger or newer athletes usually have fewer samples whereas the
more experienced athletes who have been active for a long time and therefore
have collected many more samples. This difference in sequence length needs

consideration for analysis the data.

(3) Diversity of Data Types: The longitudinal dataset is heterogeneous in nature,
which means that it consists of different types of data types. Specifically, it

includes:
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a. Categorical or discrete features, which are data that can be divided
into different categories without any inherent order (e.g., gender, sample
collection).

b. Continuous features which are numeric and can take any value within a
range, representing measurements or quantities (e.g., concentration level of
different haematological parameters).

(4) Presence of Outliers and Anomalies: The dataset contains outliers that are
values which are differ from the reference ranges. They can be crucial for anal-
yses, and can allow to identify exceptional cases, errors in data collection or
unique characteristics that might be important for the analysis.

(5) Data Sparsity Due to Missing Values: It is quite usual for the dataset to
contain a lot of missing values that result in sparsity. This implies that not
all haematological parameters are available for all the samples.

6.2.3 Generative Adversarial Networks (GANSs)

Generative models learn to understand and replicate the underlying distribution of
a given dataset, allowing them to produce new samples that could plausibly come
from the same distribution as the original data. This approach is particularly powerful
in many fields, such as image and voice generation, where models like Generative
Adversarial Networks (GANSs) (Goodfellow et al., 2014) and Variational Autoen-
coders (VAEs) (Kingma & Welling, 2014) have shown remarkable ability to produce
high-quality, realistic outputs. In this study, we used GANs to generate blood samples
based on the collected clinical samples.

In this section, we discuss the concept and architecture of GANs. A basic GAN
framework includes an input vector along with two main components: a generator and
a discriminator, both of which are typically realized using deep neural networks. The
conceptrelies on a predetermined distribution, P4, (x), which is assumed to represent
the data distribution of a training sample x. Identifying this distribution accurately
is challenging. Conventional approaches often assume that P, (x) adheres to a
Gaussian mixture model. However, these approaches can falter with complex models,
leading to unsatisfactory outcomes. Consequently, neural networks are suggested to
define the distribution. The generator, parameterized by G, takes a random variable
z from a prior distribution and transforms it via the neural network into a pseudo-
sample distribution, denoted as G(z), with its data distribution labeled as P (z). The
variable z typically originates from Gaussian noise, representing a stochastic variable
in a latent space. Leveraging G, the generator can generate a straightforward input
distribution into a variety of intricate distributions. The goal is for the P¢ (x) generated
by the generator is to closely mimic the actual data distribution P4, (x). Therefore,
the generator’s objective is to optimize and find an ideal G*.

G* =arg min[Diﬁ‘(PG, Pdatu)]
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The next question is to identify the difference between the two distributions.
Despite the lack of precise knowledge about these distributions, it is possible to draw
samples from them. To address this, we have a discriminator characterized by the
parameter D. In the training phase, the discriminator is expected to output a value of
1 for real samples x, and shift to O for generated samples. Goodfellow et al. (2014)
used binary cross entropy function, which is commonly used for binary classification
problems.

Loss = —(ylogy + (1 — y)log(1 — 9))

In this context, y represents the predicted label by the model and y denotes the
actual label of the sample. Each sample under consideration could originate from
either the real distribution or the generated distribution. Accordingly, positive exam-
ples are associated with P, and negative examples correspond to Pg. The entire
objective function for the discriminator is defined as follows:

V(G, D) = Exp,,, [log D(x)] + Exp,[log(1 — D(x))]

Integrating these equations give the foundational GAN’s objective function as
outlined below:

minmax V (G, D) = min max Ex~p,,, [log D(x)]| 4 E¢~p,[log(l — D(G(2)))]

The training process of a GAN is essentially a min—max game. The generator aims
to fool the discriminator by maximizing the discriminator’s output for a synthetic
sample. Conversely, the discriminator works to accurately identify real from gener-
ated samples, striving to maximize the function V (G, D) for real samples and mini-
mize it for generated ones, creating a minimax scenario. Throughout GAN training,
the parameters for the generator and the discriminator are iteratively adjusted. While
training the generator, the discriminator’s parameters remain constant, and the gener-
ated data is fed into the discriminator. The difference between the discriminator’s
output, D(G(z)), and the actual label is calculated, and the generator’s parameters are
updated based on this error using the backpropagation algorithm. Conversely, during
the discriminator’s training phase, the generator’s parameters are kept constant. The
discriminator receives real samples (x) from the real dataset, while the generator
gives a generated sample G(z). The error is determined using the discriminator’s
output and the ground truth labels, and the discriminator’s parameters are updated
according to this error through the backpropagation algorithm as shown in Fig. 6.1.
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Fig. 6.1 Architecture of GAN for generating blood samples

6.3 Evaluation

6.3.1 Data Description

Collecting health-related data on elite athletes is a difficult task as there are issues like
data accessibility and privacy. Therefore, the dataset used in this study is from the
clinical experiment, which is well described by Rahman et al. (2022). The clinical
trial was performed under real-world conditions and included two groups: one at
“sea-level” with 34 participants and another at “altitude” with 39 participants. The
experiment was divided into three phases: at baseline (weeks 1—4), intervention
(weeks 5-8), and follow-up (weeks 9-12) period. Both groups were at sea-level
during the baseline and follow-up. However, during the 4-week intervention period,
one group stayed at the sea-level while the other group was at a moderate altitude of
2300 m. This 4-week duration corresponds to the usual regimes of athletic training,
in which the altitude training camps are rarely longer than that.

None of the participants were exposed to the performance-enhancing drug
throughout the baseline and follow-up phases. However, during the intervention
phase, the participants were given 11 injections, one after another, every two days. For
the sea-level group, 25 individuals were given rhEPO injections, and the remaining
9 were given placebos. In the case of the altitude group, 12 patients were injected
with thEPO, and 27 were given placebos. In total, 864 blood samples were collected
during the complete study. The data statistics are well described in the Table 6.2.
Figure 6.2 shows the distribution of all the haematological parameters of the hEPO
as well as the placebo samples collected at the sea-level.
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6.3.2 Performance Metrics

Sample Distribution Comparison

The most basic method for evaluating the utility of generated datasets involves
comparing the quantity and distribution of samples generated for each simulated
individual against those in the real clinical data. This consists in plotting the number
of samples per participant as histograms to observe and compare the average values.
Additionally, to assess the distribution of sample types in both real and generated
datasets, we calculate the probability distribution for each type of sample within each
dataset.

Marginal Distribution Comparison

To evaluate how closely synthetic datasets mimic real clinical samples, we can look
at the marginal distributions of individual haematological parameters. This involves
analyzing the distribution of each parameter independently to understand how well
the synthetic data captures the variability and central tendencies observed in real
blood samples. This approach ensures that our comparison of parameter distributions
is not skewed by any irrelevant or missing values.

Kolmogorov—Smirnov test

To assess the distribution of the generated blood samples quantitatively, we can apply
the two-sample Kolmogorov—Smirnov test (K-S test) to identify the key difference
between the real and generated data samples. The K-S test is a well-established
method for evaluating whether two datasets are likely to come from the same distri-
bution (Dimitrova et al., 2020). It calculates the maximum discrepancy between
the cumulative distribution functions of two populations (one placebo and the other
subjected to rhEPO) as follows:

Da,b = SMP|Fa(x) - Fb(x)l

The test’s null hypothesis, which assumes the two distributions originate from
the same parent distribution, is rejected at a significance level of « if D, ;, exceeds a
specific threshold determined by the following equation involving the sample sizes
of the placebo and rhEPO cohorts.

o
Da,b > —1In E

where a and b are the number of placebo and rhEPO samples respectively.
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6.4 Results

We performed the evaluation on the generated samples by using both qualitative
and quantitative measures described in the previous section. Table 6.3 shows the
mean and standard deviation of both real and generated samples. The d-value and p-
values are calculated using the 2-sample K-S test to quantify the difference between
the two distributions. Figure 6.3 shows the distribution of all the haematological
parameters for real and generated samples at sea-level. The density plots demonstrate
the quantitative analysis, showing that the generated data approximates the real data
well in terms of central tendencies and variability. Nonetheless, the nuances captured
in the plots highlight the need for further refinement of the data generation algorithms
to ensure that the tail of the distribution and the very specific characteristics of
the haematological distributions are more accurately generated. This is particularly
important for any decision-making process where the accuracy of data simulation
could have significant consequences.

Table 6.3 Comparison analysis of the generated data samples with respect to the real blood samples

Real samples Generated samples 2 sample K-S test

Mean Std Mean Std d-value p-value
HB 14.24 1.13 14.09 1.05 0.10 2.1e—03
RET% 1.04 0.39 0.93 0.25 0.15 3.3e-07
RDW-SD 41.63 2.32 41.34 222 0.14 9.2e—07
RDW-CV 12.66 0.62 12.58 0.59 0.13 1.2e—05
HCT 41.52 2.98 41.06 2.71 0.11 4.5e—04
OFF-HR 82.00 15.03 83.58 13.62 0.07 5.1e—02
LFR 92.78 3.33 93.71 2.58 0.14 1.8e—06
RET# 0.05 0.02 0.04 0.01 0.16 1.9e—08
RBC 4.67 0.38 4.64 0.37 0.09 4.3e—03
IRF 7.22 3.33 6.29 2.59 0.14 3.7e—06
MFR 6.41 2.71 5.62 2.15 0.14 1.1e—06
WBC 5.65 1.51 5.44 1.5 0.16 2.1e—08
MCH 30.50 1.26 30.42 1.19 0.09 2.9e—03
MCHC 34.28 0.01 34.27 0.83 0.05 2.4e—01
HFR 0.81 0.74 0.67 0.58 0.17 1.0e—09
RET-HB 33.44 1.7 33.92 1.63 0.10 1.0e—03
MCV 88.98 3.08 88.77 2.95 0.05 1.8e—01
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Fig. 6.3 Distribution of all the haematological parameters for real and generated samples for sea-
level cohort

6.5 Conclusion

This study aims to explore the potential of generative modelling to improve the
detection of blood doping in sports. In the recent past, the application of ML, partic-
ularly supervised learning techniques, has been a topic of interest in the context of
anti-doping efforts. Such research often relies on data obtained from clinical studies
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involving specific groups of individuals. In our analysis, we used a dataset gathered
through clinical trials and performed GAN to generate more blood samples, which
mimics the similar behaviour of the dataset.

This study provided a detailed comparative study between real and generated
haematological blood profiles. The experiment results show that the generated data
samples are close to the real samples across most parameters, proving the efficiency
of the data generation method used. Particularly, the close approximation in the
mean values of the blood parameters such as Hemoglobin (HB), Red Blood Cell
Distribution Width (RDW-SD and RDW-CV), and Mean Corpuscular Hemoglobin
(MCH), with a considerably smaller standard deviation implies that the generated
data possesses the same central tendency as the real data, which is important for any
process that involves the modelling of data or simulation based on real data.

On the other hand, it is clear from the K-S test results that there are statisti-
cally insignificant differences between real and generated sample distributions, as
proven by p-values. The d-values, which measure the maximum distance between
the empirical distribution functions of the two samples, are quite small, indicating the
differences are not big. The p-values of the K-S test for parameters such as MCHC,
OFF-HR, and MCV are >1e—02, which proves that the generated data resembles
the clinical data distribution well. In contrast, some distributions like HFR, RET#,
and WBC had a p-value < 1e—08, though similar in their mean and variability, do
not perfectly replicate the complex distribution characteristics of the real data. This
could be due to the limitations inherent in the data generation process, which may
not fully capture the biological variability and underlying physiological correlations.

In conclusion, the generated blood samples can be considered a robust proxy for
real blood sample data for studies where gathering real data is challenging due to
insufficient or privacy concerns. Future work should aim to refine the generation
process to better capture the distributions of the real data, perhaps by integrating
more complex modelling techniques or incorporating additional biological knowl-
edge into the generation algorithm. Such improvements could make the generated
data indistinguishable from the real data, opening new boundaries for research and
application in doping analysis.
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A Brief Review of Artificial Intelligence Grest o
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Abstract This chapter delineates the evolving landscape at the intersection of Arti-
ficial Intelligence (Al), sports, movement, and health, emphasizing the pivotal role
of Human—Computer Interaction (HCI). Highlighting the surge in Al integration
within sports, movement analysis, and health management, we want to underscore
its transformative impact on performance analysis, injury prevention, and person-
alized healthcare interventions. By elucidating the progression from rudimentary
applications to sophisticated data-driven analyses, HCI has an indispensable role in
crafting user-centric interfaces and experiences tailored to individuals’ needs and
preferences. Therefore, we provide a brief overview of Al’s influence on athletic
performance, injury management, and healthcare, advocating for human-centered
design (HCD) principles to optimize user engagement and outcomes in this dynamic
domain.
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7.1 Introduction

The convergence of Artificial Intelligence (AI) and the domains of sports, move-
ment, and health have led to a new era of innovation and possibilities, reshaping
the landscape of Human-Computer Interaction (HCI). This brief review navigates
the multifaceted intersection of Al and HCI, shedding light on emerging trends that
impact the way individuals engage with technology in the pursuit of fitness, sports
excellence, and overall wellbeing.
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In recent years, the integration of Al into sports, movement analysis, and health
management has surged, fueled by advancements in Machine Learning (ML) algo-
rithms, sensor technology, and data analytics (Teufl et al., 2021). From the analysis of
biomechanical data to the prediction of injury risks and the optimization of training
regimens, Al is transforming how athletes, coaches, and healthcare professionals
approach performance enhancement and injury management (Bates et al., 2023).
Moreover, the proliferation of wearable devices, smart sensors, as well as mobile
health and exercise applications has facilitated the collection of vast amounts of
data on individual movement patterns, physiological metrics, and lifestyle behav-
iors, providing valuable insights for personalized health and sports performance
monitoring, exercise prescription and intervention strategies (Oyebode et al., 2022;
Phatak et al., 2021).

The development of Al in the field of sports and health informatics is characterized
by the path from rudimentary applications to highly developed, data-driven analyses.
Central to this evolution is the crucial role of HCI, a facet that has grown essentially as
human-centered technologies and interfaces have settled in the landscape of athletic
performance and health management. HCI encompasses the design, evaluation, and
optimization of user interfaces, interactive systems, and digital experiences tailored
to the needs, preferences, and capabilities of individuals (Dix, 2003). In the context
of sports and health Al applications, effective HCI is essential for ensuring seam-
less interaction, intuitive user experiences, valid data collection, and meaningful
engagement with technology-driven solutions. By integrating principles of Human-
Centered Design (HCD), usability engineering, and User Experience (UX) research,
HCI professionals strive to create Al-powered applications that empower users to
make informed decisions, optimize recovery and athletic performance, and enhance
their overall health, fitness, and wellbeing (Blandford, 2019).

This review aims to provide a concise understanding of the growing intersection
between Al sports, movement, and health. We have explored how Al technologies are
transforming various facets of athletic performance, injury prevention, rehabilitation,
and personalized healthcare. Additionally, we want to underscore the critical role
of HCI in facilitating effective communication and collaboration between humans
and Al systems in this dynamic domain. The scope encompasses key applications,
trends, and implications of Al in sports, movement, and health while emphasizing
the need for HCD and seamless integration of technology to optimize outcomes and
experiences for stakeholders across diverse disciplines.

7.2 Artificial Intelligence Applications in Sports
Informatics

Al applications in sports informatics take center stage, with a focus on analytics,
performance analysis, exercise prescription and strategic optimization. We briefly
present the benefits of Al and highlight its role in designing not only results, but
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also improving health, performance and injury prevention. This is followed by an
overview of Al applications in sports analysis in order to be able to discuss the role
of HCI in the sports, fitness and health sector in more detail with regard to Al

7.2.1 Overview of Artificial Intelligence Applications
in Sports Analytics

Sports analytics has seen a fundamental shift with the integration of Al technologies,
revolutionizing the way in which coaches and athletes analyze and interpret data. Al
applications in sports analytics include a variety of techniques and methods that aim
to extract actionable insights from complex data sets. The quantitative analysis of
sports has grown initially through non-academic work (Kubatko et al., 2007) and
has received extensive academic interest in the past decade. This section provides
an overview of contemporary Al applications in scientific sports analytics and high-
lights their importance for improving performance, optimizing strategies, and driving
innovation in the sports industry.

7.2.1.1 Data Processing and Pattern Recognition

The core of Al-powered sports analytics is the ability to process large amounts of data
with high speed and accuracy. ML algorithms, including Deep Learning (DL) models,
excel at recognizing patterns and extracting meaningful insights from various data
sources such as training statistics, recordings, and sensor data.

Topics such as data processing and pattern recognition are particularly funda-
mental components of Al-powered sports analytics, facilitating the extraction of
actionable insights from complex data sets (Bir6 et al., 2023). When analyzing
complex data sets, the five V’s of big data should be taken into account: volume,
velocity, variety, veracity, and value (George et al., 2016). In the field of sports,
where data volumes continue to grow rapidly, and the pace of data generation
shows no signs of slowing down, the application of advanced ML algorithms is
central to uncovering meaningful patterns and trends. Moreover, the variety of data
sources, including game footage, player statistics, and sensor data, presents both
challenges and opportunities for analysis. Through the use of Al-powered systems,
sports organizations can harness the value of this diverse data landscape, leveraging
it to gain valuable insights into player performance and team strategies. Addition-
ally, the veracity of data, ensuring its accuracy and reliability, is paramount in the
development and deployment of ML models for sports analytics. Finally, velocity
is represented by the ability to process data in real-time, which allows for timely
decision-making and adaptive strategies during live games and training sessions,
further emphasizing the significance of advanced algorithms in the modern sports
landscape. By analyzing historical performance data and identifying correlations
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between variables, Al systems can uncover hidden patterns and trends that may
elude human observation, providing valuable insights into athlete behavior, training
data dynamics, and team strategies (Novatchkov & Baca, 2013).

Techniques such as DL, Convolutional Neural Networks (CNNs), and Recurrent
Neural Networks (RNNs) are characterized by the detection of complex patterns in
various data sources. CNNs, for example, have been successfully used in the analysis
of sports videos and have enabled the automatic recognition of player actions and
events in soccer matches (Jiang et al., 2016). In addition, RNNs have demonstrated
their effectiveness in modeling temporal dependencies in sequential sports data, such
as player trajectories and match sequences (Lucey et al., 2014).

7.2.1.2 Predictive Modeling and Performance Forecasting

The advent of wearable sensors and computer vision technology has revolutionized
athlete tracking and movement analysis in sports. Al algorithms can process real-
time data streams from GPS trackers, accelerometers, and video feeds to monitor
athletes’ movements, quantify performance metrics, and identify areas for improve-
ment. Through techniques such as pose estimation and motion capture, Al systems
can reconstruct player trajectories, measure biomechanical parameters, and assess
movement efficiency, providing coaches and trainers with actionable feedback for
optimizing training regimens and preventing injuries (Claudino et al., 2019).

For example, researchers demonstrated the effectiveness of ML algorithms in
predicting game outcomes and player performance in basketball based on factors such
as player statistics, team dynamics, and situational variables (Kubatko et al., 2007).
They used Support Vector Machine (SVM) considering both classifier performance
and the complexity of the dataset. The resulting model was developed based on a
tracking dataset of players and ball trajectories in 32,377 possessions from nearly 630
basketball games in the 2012/13 NBA season. Furthermore, the analysis of basketball
data to gain competitive advantages is of interest to the clubs and is linked to the
financial success of a team (Demenius & Kreivyte, 2017).

Al-powered predictive models enable organizations in sports to anticipate
outcomes, evaluate athletes’ potential, and predict performance metrics with higher
accuracy. By using historical data and statistical algorithms, predictive analytics
tools can make forecasts for various scenarios, including at sporting events, such as
results, injuries, and team dynamics (Molavian et al., 2023). These insights enable
coaches and managers to make informed decisions regarding player selection, match
tactics, and resource allocation to maximize their team’s competitive advantage and
performance results.

Similarly, a recent work has highlighted the potential of predictive modeling tech-
niques in predicting match outcomes in soccer, using complex datasets that include
player biometrics, match conditions and tactical strategies (Bunker & Susnjak,
2022). By leveraging these predictive insights, sports teams can make informed deci-
sions regarding player selection, match tactics, and resource allocation, ultimately
maximizing their competitive advantage and on-field performance outcomes.
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By analyzing game footage, scouting reports, and statistical data, Al systems can
identify recurring patterns, exploit opponent weaknesses, and recommend strategic
adjustments tailored to specific game situations (Pavitt et al., 2021). Whether through
automated play recommendation systems or interactive decision support tools, Al
empowers coaches and players to adapt their strategies dynamically, maximize their
team’s strengths, and outmaneuver their opponents on the field.

7.2.1.3 Using Wearable Technology for Fitness Training

In addition to the individualized application of current findings for training control,
the development, research, and application of new technical possibilities are also
becoming increasingly important for modern strength and fitness training. Many
individuals struggle to maintain or increase their exercise routines, leading to
suboptimal activity levels. However, research indicates that automatically tracking
exercise, especially through pedometry, can significantly boost motivation and
encourage physical activity (Pelletier et al., 2021). This underscores the importance
of leveraging technology to facilitate and sustain healthy lifestyles.

Although the implementation of emerging technologies, such as fitness wearables,
presents trainers and athletes with the challenge of integrating these tools and methods
into training management in a meaningful way, in most cases, it enables more precise
load control or more comprehensive monitoring of recovery and performance param-
eters (Pizzo et al., 2021). Such technical aids are usually based on compact sensor
systems that are either worn on the body or attached to training equipment to record,
process, and transmit relevant health or performance-related parameters to other
devices. Fitness wearables and other sensor-based aids are used in the context of
sports training not only to test the actual performance level or to check performance
development but also to record the health and regeneration status, to monitor the
training load and individual stress within a training session and to automatically
record movements (Passos et al., 2021).

A special category of these wearable sensor systems uses so-called inertial
measurement units (IMU) to record translational and rotational accelerations in multi-
dimensional space. A systematic review of the use of wearable inertial sensor units
showed that such devices are used in sport, particularly to record athletic or physical
performance, physical activity and sport motor requirements, as well as to analyze the
quality of movement in competitive and high-performance sport (Camomilla et al.,
2018). In the context of resistance training, these devices are primarily used to record
the movement trajectory and velocity of free weights, such as barbells, which enables,
among other things, the monitoring of movement technique and the velocity-based
control of load intensity and duration (Weakley et al., 2021). Most inertial sensor
systems available on the market for recording barbell speed are considered valid and
reliable (Clemente et al., 2021).

In the context of resistance training, the use of this sensor technology to measure
velocity has led to the establishment of a new approach to exercise prescription known
as “velocity-based training”. In contrast to the traditional load-based approach, in
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which the intensity is controlled by the amount of load and the duration by the number
of repetitions, the velocity-based approach uses the velocity of the moving load or
the extent of its reduction over several repetitions within a training set as the central
prescription variable (Weakley et al., 2021).

Overall, the increasing interest in wearables for sports and fitness emphases the
need for design knowledge to shape future designs in this area. To address this,
researchers presented a design space of wearables for sports and fitness practices,
drawing from a survey of previous research (Turmo Vidal et al., 2021). They identified
core design decisions related to wearability, technology design, and wearable use in
practice, considering the goals of introducing technology, the balance between pre-
designed features and user appropriation, and the social dynamics of the practice.
By characterizing prior work within this design space, the authors identified trends
and opportunities for design in wearables for sports and fitness.

7.2.2 Examples of Successful Artificial Intelligence
Implementations in Professional Sports

The following non-academic examples demonstrate the significant impact of Al
implementations in professional sports, ranging from player performance monitoring
and injury prevention to fan engagement and data-driven decision-making. As Al
technologies continue to evolve, we can expect further innovations and advancements
that will reshape the landscape of sports analytics and enhance the overall sports
experience for athletes, teams, and fans alike.

7.2.2.1 Catapult Sports in Soccer

Catapult Sports (https://www.catapult.com) is a company that specializes in wear-
able technology designed to monitor athlete performance in various sports, including
soccer. Professional soccer teams have increasingly adopted Catapult’s wearable
devices to track player movements, physical exertion, and injury risks during training
sessions and matches. By leveraging Al algorithms, Catapult’s technology processes
data collected from these wearables to provide coaches and sports scientists with
actionable insights into player performance and conditioning. For instance, Al-
powered analytics can identify patterns in player movement, assess fatigue levels, and
recommend personalized training programs to optimize performance and minimize
injury risks (Barrett, 2017). Several soccer clubs, including English Premier League
teams and international squads, have reported significant improvements in player
fitness, tactical decision-making, and injury prevention because of implementing
Catapult’s Al-driven sports analytics solutions.
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7.2.2.2 HomeCourt for Basketball Analytics

HomeCourt (https://www.homecourt.ai) is an Al-powered mobile application
designed to revolutionize basketball training and skill development. Leveraging
computer vision and ML algorithms, HomeCourt analyzes basketball players’ move-
ments and shooting techniques using the camera of a smartphone or tablet. The app
tracks key metrics such as shot accuracy, release angle, and shooting arc in real-time,
providing instant feedback and personalized coaching tips to help players improve
their skills. With its Al-driven analysis capabilities, HomeCourt enables players to
track their progress, identify areas for improvement, and compete with friends and
teammates in skill challenges and drills. The app’s intuitive interface and gamified
features make basketball training more engaging and accessible to players of all skill
levels, from amateur enthusiasts to professional athletes. HomeCourt has garnered
widespread acclaim within the basketball community and has been endorsed by top
players and coaches for its innovative approach to skill development and performance
optimization. As a result, HomeCourt represents a groundbreaking example of how
Al technology is transforming sports training and empowering athletes to reach their
full potential on the court.

7.2.2.3 Enduco for Endurance Training

Endurance training is a critical component of athletic development, particularly for
endurance athletes such as cyclists, runners, and triathletes. To optimize performance
and achieve peak fitness levels, athletes require tailored training plans, personalized
coaching, and effective performance tracking tools. Enduco (https://enduco.app), a
leading platform for endurance training, offers comprehensive solutions designed
to meet the unique needs of endurance athletes. Enduco has emerged as a valuable
asset for endurance athletes, offering a comprehensive suite of tools and resources
to optimize training, track performance, and achieve peak athletic performance. By
leveraging Enduco’s capabilities, athletes can unlock their full potential, push their
limits, and reach new heights in their endurance pursuits. The key takeaways can be
summarized as follows: (1) Personalized training plans tailored to individual needs
can optimize performance, (2) real-time performance tracking and analysis are essen-
tial for informed decision-making, (3) seamless coach collaboration fosters effective
communication and training strategies, and (4) motivation and accountability are
crucial factors in achieving endurance training goals. By embracing innovative solu-
tions like Enduco, athletes can embark on a journey of continuous improvement,
resilience, and success in their endurance endeavors.

7.2.2.4 Enode for Strength Training

Enode (https://enode.ai) has revolutionized strength training in professional sports
through its innovative Al-driven approach. By integrating advanced algorithms and
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data analytics, Enode provides personalized training programs tailored to individual
athletes’ needs, optimizing performance and minimizing the risk of injury. Utilizing
an in-house IMU, the technology records biomechanical data and visualizes it in the
app inreal-time. Their velocity-based training approach allows for precise monitoring
and adjustment of training protocols based on velocity metrics, enhancing strength,
power, and endurance. Professional sports teams worldwide rely on Enode’s platform
to maximize their athletes’ potential and maintain peak physical condition throughout
the rigorous season.

7.3 HCI in Sports and Health Artificial Intelligence

A critical facet of this survey is the examination of HCI within the context of Al
applications in sports and health. The seamless integration of Al technologies into
user experiences is essential for their effective adoption. With this survey, we want
to shed light on design considerations, challenges, and solutions in ensuring that Al
enhances rather than hinders the interaction between humans and technology in the
pursuit of fitness and well-being.

7.3.1 Evolution of HCI in Sports, Health and Fitness

The fitness sector is a sub-sector of the sports and health industry that often goes unno-
ticed. The fitness industry has undergone a remarkable transformation with the advent
of technology, particularly in the realm of HCI. Historically, fitness enthusiasts relied
on conventional methods for tracking progress and monitoring performance, such
as pen-and-paper logs and manual calculations. However, the integration of digital
technologies, wearable devices, and Al-powered applications has revolutionized how
individuals engage with fitness and health activities (Cooper et al., 2018).

In the early stages, HCI in the fitness industry primarily focused on digitizing tradi-
tional workout routines and providing basic tracking capabilities. Simple interfaces
and rudimentary feedback mechanisms laid the groundwork for more sophisticated
applications that catered to the evolving needs and expectations of users. As tech-
nology advanced, HCI principles began to play a more prominent role in the design
and development of fitness-oriented software and hardware (Chatterjee et al., 2022).

The emergence of Al-driven analytics and personalized coaching platforms
marked a significant turning point in the evolution of HCI in the fitness industry. These
platforms leverage ML algorithms to analyze user data, generate actionable insights,
and deliver tailored recommendations for optimizing performance and achieving
fitness goals. By harnessing the power of Al, HCI practitioners have been able to
create immersive and adaptive experiences that resonate with users on a deeper level
(Palumbo et al., 2020).
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As HCI continues to evolve in the fitness industry, there is a growing emphasis on
inclusivity, accessibility, and User-Centered Design (UCD). Developers are striving
to create inclusive experiences that cater to diverse demographics and accommodate
varying levels of physical ability and technological literacy. Additionally, ensuring
seamless integration with existing hardware and software ecosystems remains a key
priority, as interoperability and compatibility issues can hinder user adoption and
satisfaction.

In conclusion, the evolution of HCI in fitness, sports and health reflects a dynamic
interplay between technological innovation, UX design, and evolving consumer
expectations. By embracing HCD principles and leveraging cutting-edge technolo-
gies, HCI practitioners are driving forward the next frontier of fitness, sports, and
health innovation, empowering individuals more efficiently to lead healthier, more
active lifestyles.

7.3.2 Importance of Seamless Interaction Between Humans
and Artificial Intelligence Systems

Al-driven applications can personalize user experiences based on individual prefer-
ences, behaviors, and performance metrics. This personalization should enhance
engagement and effectiveness by tailoring recommendations, feedback, and for
example training programs to the specific needs and goals of users. HCI methods
prioritize understanding the needs, preferences, and behaviors of users to inform
the design process (Dix, 2003). User research, personas, and user journeys help
identify user requirements and pain points, ensuring that the applications address
real-world challenges effectively. Moreover, U/UX design focuses on creating inter-
faces that are intuitive, visually appealing, and easy to navigate. Clear navigation,
logical information architecture, and consistent visual elements enhance usability
and accessibility, enabling users to interact with the applications effortlessly.

However, there is limited understanding of how individuals interact with person-
alized predictions. To address this, a smartphone app called GlucOracle generates
personalized forecasts for post-meal blood glucose levels using self-tracking data
from individuals with type 2 diabetes (Desai et al., 2019). The app was pilot tested
with two populations: an online diabetes community and a low socio-economic status
community. Individuals from both groups found the personalized glucose forecasts
useful for adjusting immediate meal options and planning future meals. The study
also highlighted new questions regarding the appropriate timing, format, and focus
of forecasts, and suggested new research directions for personalized predictions in
health.

Consumer-facing health technologies, particularly Al-based symptom checkers
(AISCs), emerge in everyday healthcare practice. AISCs gather symptom infor-
mation from users and offer medical suggestions and potential diagnoses, a role
traditionally associated with healthcare professionals such as physicians and expert
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patients. This development raises questions about how AISCs influence and trans-
form the concept of medical authority in individuals’ healthcare practices. To explore
this, a recent study conducted interviews with thirty AISC users, examining how
users perceive the medical authority of AISCs based on factors like automated deci-
sions, interaction design patterns, connections to established medical authorities, and
comparisons with other health technologies (You et al., 2021). The findings shed light
on the utilization of AISCs in healthcare delivery, the transformation of traditional
notions of medical authority by Al, and implications for designing Al-enabled health
technologies.

In general, Al algorithms enable applications to process large volumes of complex
data quickly and accurately. In clinical settings, algorithms often have to work with
incomplete patient data and incompletely documented disease progressions (Schmidt
et al., 2015). In sports analytics, Al processes data from various sources, such as
player statistics, game footage, and sensor data, to derive actionable insights and
predictions.

Al techniques such as ML and DL enable the identification of patterns, trends, and
correlations within the data. This allows for predictive modeling in sports analytics,
such as forecasting match outcomes, player performance, and injury risks. Despite the
promise of DL algorithms to enhance workflows and outcomes, their real-world effi-
cacy remains to be fully demonstrated. A recent study emphasizes the importance of
conducting human-centered evaluative research alongside prospective evaluations of
model accuracy to better understand and optimize the integration of Al technologies
into health settings (Beede et al., 2020).

Specifically, the focus in medical image retrieval systems for aiding medical
decision-making processes using ML is on retrieving visually similar medical images
from past cases to assist in diagnosing new patients. However, no algorithm can
perfectly match an expert’s notion of similarity for every case, potentially leading to
irrelevant results for a doctor’s specific diagnostic needs (Cai et al., 2019). There-
fore, one major requirement when searching for similar images retrieved by a DL
algorithm is to empower users to adjust the search algorithm dynamically, empha-
sizing the types of similarity most crucial at different moments. Furthermore, users
adopt new strategies by repurposing these tools to test the underlying algorithm and
differentiate ML errors from their own mistakes. These insights could inform the
development of future human-ML collaborative systems for expert decision-making
in fitness, sports and health contexts.

HCI methods emphasize providing timely and meaningful feedback to users to
guide their interactions and facilitate learning. Visual feedback, progress indicators,
and notifications keep users informed about their actions, progress, and achievements,
fostering motivation and engagement. Interaction design ensures that the user journey
within the application is seamless and coherent. Well-designed interaction patterns,
gestures, and transitions enhance the flow of interaction, minimizing cognitive load
and friction points, and maximizing user satisfaction and retention.
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7.3.3 The Role of HCD in the Interaction Design Process

HCD is an approach to creating products, services, and systems that focuses on
understanding the needs, behaviors, and preferences of the people who will use
them. It involves actively involving end-users in the design process, empathizing
with their experiences, and iterating on designs based on their feedback. HCD aims
to ensure that the final product meets the users’ needs effectively and provides a
positive and intuitive user experience.

7.3.3.1 Human-Centered Design and Human-Centered
Artificial Intelligence

In the context of Al-powered applications for sports and health, HCD is particularly
crucial for several reasons. First and foremost, these applications deal with sensitive
and personal aspects of individuals’ lives, such as their physical health, fitness goals,
and performance metrics. By prioritizing HCD principles, developers can create
applications that are sensitive to users’ privacy concerns, preferences, and comfort
levels with technology.

Furthermore, the effectiveness of sports and health applications relies heavily on
user engagement and adherence to the recommended activities or interventions. By
involving users in the design process and incorporating their feedback, developers
can create applications that are intuitive, motivating, and enjoyable to use. This, in
turn, could increase user engagement and improve outcomes related to health and
wellness.

Concerns are growing regarding the values embedded in Al systems, their
decision-making processes, and their social consequences, especially in everyday
applications such as spam filtering, credit scoring, and search engines. The
inscrutability of Al models, embedded biases, privacy issues, and environmental costs
are significant considerations. The term “human-centered AI” (HCAI) is gaining
traction, reflecting a desire for Al to serve people amidst concerns about poten-
tial exploitation and manipulation. However, the definition of HCAI varies widely,
encompassing different perspectives on the role of humans in Al systems. By exam-
ining peer-reviewed articles, a recent review paper seeks to identify trends, gaps,
and opportunities in HCAI research, providing a foundation for further exploration
in this field (Capel & Brereton, 2023). They present a historical overview of HCAI
and describe the methodology used to review papers, culminating in a map of the
current state of HCAI research. This map aids in visualizing relationships between
different approaches, methods, and tools in the field and underlines the complexity
of designing and evaluating Al. Their approach includes Ethical Al, Explainable and
Interpretable Al, and Humans Teaming with Al, and combines those fields with an
Human-centered Approach to design and evaluate Al.

While User-Centered Design (UCD) is undoubtedly valuable for creating products
and systems tailored to the needs and preferences of users, HCD offers a broader
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and more holistic approach that considers the entire spectrum of human experiences,
capabilities, and contexts (Dix, 2003). HCD is considered as the right choice for
future developments of Al-driven applications in fitness, sports, and health.

HCD extends beyond individual users to encompass diverse stakeholders, including
caregivers, family members, communities, and the society as a whole. By consid-
ering the broader human ecosystem, HCD ensures that technological solutions are
inclusive, equitable, and responsive to the needs of all individuals, regardless of age,
ability, background, or circumstance.

e HCD places a strong emphasis on empathy, understanding, and advocacy for
users’ voices and experiences. By engaging users as co-creators and partners in
the design process, HCD empowers individuals to actively participate in shaping
the technologies that impact their lives, fostering a sense of ownership, trust, and
empowerment.

e By prioritizing human needs, values, and well-being, HCD creates opportuni-
ties for long-term value creation and positive social impact. By designing with
empathy and foresight, HCD practitioners can develop solutions that not only
address immediate challenges but also contribute to meaningful improvements in
quality of life, health outcomes, and societal well-being over time.

In summary, while UCD is an important aspect of HCD, the latter offers a more
comprehensive and inclusive approach that considers the broader human experience,
societal impacts, and ethical dimensions of technology design and implementation.
As we navigate an increasingly complex and interconnected world, HCD serves as a
guiding framework for creating technologies that are not only useful and usable but
also ethical, equitable, and empowering for all individuals and communities.

7.3.3.2 Brief Outline of HCD from the HCI Community Regarding
Sports, Fitness and Health

The HCD framework is an approach to designing products, services, and systems that
prioritizes understanding the needs, behaviors, and preferences of the people who
will use them. It involves iterative processes of observation, ideation, prototyping,
and testing, with a focus on empathizing with users and incorporating their feedback
throughout the design process.

In the context of health and sports software and hardware, the HCD framework is
used to develop solutions that are tailored to the unique requirements of users in these
domains. This includes considerations such as usability, accessibility, motivation,
and engagement, as well as integration with existing workflows and technologies in
healthcare and sports settings.

Researchers and practitioners in HCI have explored various applications of HCD
in health and sports technology. While specific studies and papers from high impact
conferences vary from year to year, there have been numerous contributions that
address HCD principles and methodologies in these domains. Some noteworthy
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examples of topics related to HCD in health and sports technology that have been
presented in the last decade include:

e UCD of Fitness Trackers: Studies focusing on the design and evaluation of fitness
trackers and wearables, considering factors such as user preferences, motivation,
and usability.

e Interactive Systems for Physical Rehabilitation: Research on the development
of interactive systems and applications to support physical rehabilitation and
therapy, with a focus on user engagement and adherence to treatment protocols.

e Mobile Health Applications: Investigations into the design and usability of
mobile health applications for chronic disease management, medication adher-
ence, and behavior change interventions.

e Accessible and Inclusive Design: Efforts to make health and sports technologies
more accessible to users with disabilities, including studies on inclusive design
practices and the development of assistive technologies.

e Gamification and Behavior Change: Exploration of gamification strategies and
behavior change techniques to promote healthy lifestyles and facilitate adherence
to exercise and wellness programs.

The HCI community has consistently demonstrated interest in applying human-
centered design principles to address challenges and opportunities in health and sports
technology. Researchers and practitioners continue to explore innovative approaches
to designing interactive systems and interfaces that enhance user experiences and
improve outcomes in these domains.

7.3.4 Challenges and Solutions in Ensuring Effective HCI
in Artificial Intelligence-Powered Applications

By considering the human factors throughout the design and development process,
sports and health applications can be tailored to meet the unique needs and pref-
erences of users, ultimately leading to more effective and impactful solutions for
promoting health. Nonetheless, ensuring effective HCI for Al-powered software and
hardware in the context of fitness, sports, and health presents several challenges.

Al algorithms often operate as “black boxes”, making it difficult for users to
understand how decisions are made. In the context of health and sports, users may be
hesitant to trust Al recommendations without insight into the underlying rationale.
Assessments can be contentious, leading to expert disagreement. This raises the ques-
tion of how Al assistants should be designed to handle the classification of ambiguous
cases. Explanations containing irrelevant arguments could reduce experts’ accuracy
in correcting Al-suggested labels, potentially dropping below 50% (Schaekermann
et al., 2020). These observations underscore the importance of clarity and relevance
in Al-generated explanations for enhancing experts’ decision-making processes.
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Despite the widespread use of Al applications, the general public often lacks
the understanding of how black-box algorithms operate and how to address biases
effectively. Therefore, researchers have addressed these challenges through various
approaches and methodologies. They provided insights into the importance of
Explainable AI (XAI) in healthcare and discussed potential ethical concerns related
to the lack of transparency in Al-powered systems (Yuan et al., 2023). Researchers
have formulated 18 human-Al interaction guidelines (Amershi et al., 2019), like
“Make clear what the system can do”. The User Interface (UI) should help the user
to understand what the Al system is capable of doing. An example of the application
of this policy would be an activity tracker where all the metrics it tracks should be
displayed and explained at the same time.

Despite existing strategies, translating research findings into practical design
applications is a key challenge for effective solutions. For example, there are several
challenges and opportunities in integrating insights from personal health informatics
research into the design of applications for health, everyday life, or collaboration
with clinicians. Researchers tested a prototype set of design cards through inter-
views with student designers and health-focused professional designers/researchers,
revealing various tensions, barriers, and needs in designing health-related technolo-
gies (Kirchner et al., 2021). The findings emphasize the importance of supporting
designers in addressing knowledge gaps, advocating for user needs, and integrating
evidence-based approaches in health-related design projects.

Ideally, those systems should be able to personalize recommendations and adapt
to individual user needs and preferences. However, designing algorithms that accu-
rately capture user preferences while avoiding biases and ensuring data privacy can
be challenging. Furthermore, providing meaningful feedback to users is crucial for
fostering trust in Al-powered systems. Feedback mechanisms must strike a balance
between being informative and not overwhelming users with unnecessary informa-
tion. A recent paper examined the role of personalization in adaptive and persuasive
systems for health and wellness. In this work, they presented strategies for designing
personalized interventions that effectively motivate behavior change (Oyebode et al.,
2022).

One of the most important and equally most difficult challenges to ensure is
data privacy and security. Health and fitness data are highly sensitive, and users
expect strict privacy protections. Designing Al-powered systems that collect, store,
and analyze data while maintaining user privacy and complying with regulations
presents significant challenges. Researchers explored privacy concerns in mobile
technology for personal healthcare (Avancha et al., 2012). They discussed privacy-
preserving techniques and design strategies for ensuring the security of user data in
health-related applications.

Overall, HCD is important for Al-powered applications in sports and health
contexts because it helps ensure that the technology is not only technically robust
but also genuinely useful, usable, and valuable to the people it is intended to serv