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Abstract

Anomaly detection in clinical time-series holds significant potential in identify-
ing suspicious patterns in different biological parameters. This paper proposes
a targeted method that incorporates the clinical domain knowledge into LLMs
to improve their ability to detect anomalies. The Metabolism Pathway-driven
Prompting (MPP) approach is introduced, which integrates the information about
metabolic pathways to better capture the structural and temporal changes in biolog-
ical samples. We applied our method for doping detection in sports, focusing on
steroid metabolism, and evaluated using real-world data from athletes. The results
show that our method improves anomaly detection performance by leveraging
metabolic context, providing an improved prediction of suspicious samples in
athletes’ profiles.

1 Introduction

Clinical time series, also known as longitudinal profiles of individuals, represent repeated measure-
ments of biological samples such as blood, urine, or other biological specimens collected over time
[1,2]. These profiles are important in capturing the dynamic nature of biological processes, as they
provide a time-evolving perspective of various physiological processes. The biomarkers measured
within these samples often reflect underlying metabolic pathways [3].

Figure 1: Simplified
steroid pathway.

In clinical settings, anomaly detection in these longitudinal profiles is an
important task [4]. Identifying abnormal behaviour in such data can reveal
critical insights, ranging from disease diagnosis to sample tampering as
potential doping activity in sports [5,6]. It mainly helps biochemists
or clinicians to monitor biological and physiological changes over time
and detect suspicious behaviour. Therefore, anomaly detection plays a
significant role in both sports integrity and healthcare. Several studies
have highlighted the potential and limitations of Large Language Models
(LLMs) in clinical domain-specific tasks [7,8,9]. Despite their success in
text generation, completion tasks, etc., their ability to process and analyse
clinical time-series data, particularly in the context of metabolic pathways
and biological changes, remains under explored [10,11]. Understanding
how these models can leverage metabolic information to make informed
decisions is critical for improving their performance in anomaly detection tasks.
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This paper aims to understand the current capabilities of LLMs in handling longitudinal data and
leveraging domain-specific knowledge for anomaly detection tasks. Specifically, a targeted prompting
method is proposed by integrating metabolic pathway structures into LLMs to improve their ability
to detect anomalies based on the contextual understanding. We demonstrate the effectiveness of our
approach in doping detection in sports, where it is applied to detect suspicious urine samples within
athletes’ longitudinal profiles. These profiles include the concentrations of different metabolites,
reflecting the steroid metabolism as shown in Fig.1, and are important for identifying potential doping
activities [12,13]. The key contributions of our paper can be summarised as follows:

• Metabolism Pathway-driven Prompting (MPP) is proposed, incorporating information about
metabolic pathway structure and the temporal evolution of different metabolites into LLMs for
anomaly detection task.

• The effectiveness of this method is demonstrated in the context of doping detection in sports and
compare it with the baseline prompting methods like zero-shot learning, in-context learning and
chain-of-thought.

2 Proposed Method

2.1 Problem Formulation

Let the multivariate clinical time-series data be represented as longitudinal profile of athletes
X = {x1, x2, . . . , xn}, where xt ∈ Rm represents the measurements at time t, containing total m
metabolite and xt,i represents the measurement of metabolite i at time t. The temporal difference is
defined as ∆xT

t,i = xt,i − x(t−1),i representing the change in metabolite i over time. The anomaly
detection task is to learn a function f(xt) that gives an anomaly score to each sample xt in the
longitudinal profile X . The function flags the anomalous sample if the magnitude of the sum of ∆xT

t,i
exceeds a predefined threshold δ, indicating significant deviation from the expected change:

f(xt) =

{
1, if

∣∣∣∑m
i=1 ∆xT

t,i

∣∣∣ > δ,

0, otherwise.
(1)

The metabolic structural difference is defined as ∆xM
t,i = xt,i−xt,(i+1) which needs to be considered.

2.2 Metabolism Pathway-driven Prompting (MPP)

A targeted prompting method is proposed, integrating metabolic pathway structures and their temporal
evolution as shown in Fig.2. First, LLM (Pre-Prompt I) is tasked to analyse the longitudinal profile
and detect anomalies using zero-shot learning. Here, the LLM usually considers the temporal changes
between consecutive samples. If these changes exceed the statistically significant threshold, it flags
the corresponding sample as anomalous with an explanation. In a different session, we input LLM
(Pre-Prompt II) with temporal and metabolic graph representation of the given longitudinal profile
and task to extract the domain-specific contextual information from these graph structures. The LLM
generates a detailed textual explanation by assessing whether the temporal changes are consistent
with the expected metabolic behaviour based on known pathways. Next, the textual representation of
domain knowledge is provided to the previous LLM, which is then tasked to rethink (Prompt) by
incorporating this domain-specific information. The LLM refines the initial prediction by combining
the domain-specific information and provide more accurate, and contextually aware prediction.

Temporal Graph The graph GT = (VT , ET ) represents the change in concentration levels of
different steroids over time. Nodes are defined as VT = {x1, x2, . . . , xn}, where each node xt

corresponds to the sample in the longitudinal profile and the node feature represents the measurements
for the m steroids. The edges ET = {wT (x1 → x2), wT (x2 → x3), . . . , wT (xn−1 → xn)}
represent transitions between nodes over time, connecting the samples between successive time points
and the edge weights as the Euclidean distance between the steroid levels at two time points and
normalized to the range [0, 1], incorporating the changes in all m steroids. For the edge connecting
xn−1 and xn, the weight could be calculated as:

wT (xn−1 → xn) =

√√√√ m∑
i=1

(xn−1,i − xn,i)2 (2)
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Figure 2: Schematic diagram of Metabolism Pathway-driven Prompting (MPP) method.

Metabolic Graph The graph GM = (VM , EM ) represents the directional flow of m different
metabolites (in this case steroids) in the pathway. Nodes are defined as VM = {S1, S2, . . . , Sm},
where each node Si represents a steroid. The edges EM represent the interactions or metabolic
conversions between these steroids. The weight of an edge wM (Si → Sj) represents the conversion
rate from steroid Si to steroid Sj , where i, j = 1, 2, . . . ,m and i ̸= j. If there is no conversion
between two steroids, the corresponding entry is zero.

EM =


0 wM (S1 → S2) wM (S1 → S3) . . . wM (S1 → Sm)

wM (S2 → S1) 0 wM (S2 → S3) . . . wM (S2 → Sm)
wM (S3 → S1) wM (S3 → S2) 0 . . . wM (S3 → Sm)

...
...

...
. . .

...
wM (Sm → S1) wM (Sm → S2) wM (Sm → S3) . . . 0

 (3)

3 Experiments

Datasets Two real-world datasets (Steroid-M and Steroid-F) were used, consisting of longitudinal
steroid profiles collected from male and female athletes, respectively [14,15]. The Steroid-M dataset
contains 755 profiles with 4214 samples and Steroid-F dataset contains 375 profiles with 2307
samples. The data contains less than 20% anomalous longitudinal profile.

Models and Metrics xperiments are conducted using different open-source LLMs: (i) LLaMa 2-7B
[16], (ii) Mistral-7B [17], (iii) Falcon-7B [18], and (iv) GPT2 [19]. These models are selected due to
their efficiency in providing quicker results, which is particularly suitable for the size of the dataset.
The performance of the proposed method is compared with various baseline prompting methods,
including Zero-Shot prompting (ZS) [20], In-Context Learning (ICL) [21], and Chain-of-Thought
(CoT) [22], as well as two non-LLM-based models, IsoForest [23] and β-VAE [24]. Classification
metrics such as accuracy, sensitivity, specificity, and F1-score are used for the anomaly detection task.

4 Results

Performance Comparison Table1 shows that by incorporating domain-specific knowledge of
metabolic pathways, MPP improves the LLMs’ understanding of clinical data, leading to better
performance. For the LLaMA 2-7B model, MPP achieves an accuracy of 71.4% and an F1 score
of 57.0%, outperforming ZS’s 65.2% accuracy and 40.3% F1 score on Steroid-M. Notably, MPP
improves both sensitivity and specificity, which is important in clinical settings to balance correctly
identifying actual anomalies while minimising false positives. In contrast, ICL and CoT generally
underperform due to their lack of domain-specific guidance, i.e., ICL with GPT2 on Steroid-M
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Table 1: Performance comparison of our proposed method with different baseline methods.

Model Method Steroid-M Steroid-F
Acc. Sens. Spec. F1 Acc. Sens. Spec. F1

LLaMA 2-7B

ZS 0.652 0.912 0.563 0.403 0.402 0.567 0.382 0.250
ICL 0.563 0.012 0.710 0.005 0.458 0.008 0.506 0.002
CoT 0.228 0.526 0.130 0.208 0.426 0.506 0.381 0.250
MPP 0.714 0.966 0.630 0.570 0.634 0.922 0.464 0.592

Mistral-7B

ZS 0.763 0.931 0.632 0.578 0.724 0.012 0.905 0.028
ICL 0.834 0.920 0.753 0.677 0.506 0.026 0.636 0.009
CoT 0.501 0.894 0.598 0.517 0.626 0.012 0.752 0.002
MPP 0.895 0.928 0.882 0.808 0.758 0.356 0.893 0.198

Falcon-7B

ZS 0.352 0.960 0.125 0.364 0.395 0.308 0.474 0.406
ICL 0.560 0.014 0.710 0.005 0.527 0.472 0.536 0.338
CoT 0.524 0.673 0.432 0.440 0.388 0.024 0.383 0.008
MPP 0.767 0.950 0.632 0.578 0.684 0.820 0.522 0.605

GPT2

ZS 0.326 0.456 0.282 0.202 0.201 0.284 0.191 0.125
ICL 0.282 0.006 0.355 0.002 0.229 0.004 0.253 0.001
CoT 0.114 0.263 0.065 0.104 0.213 0.253 0.190 0.125
MPP 0.357 0.483 0.315 0.285 0.317 0.461 0.232 0.296

Non-LLM IsoForest 0.786 0.296 0.985 0.451 0.719 0.364 0.986 0.528
β-VAE 0.752 0.006 0.992 0.012 0.681 0.002 0.994 0.004

yields only 28.2% accuracy and a negligible 0.2% F1 score. This underperformance highlights the
importance of incorporating domain knowledge, as MPP does, to improve model performance for
specialised tasks like clinical anomaly detection.

t-SNE Representation of Embeddings Fig.3 shows the cluster formation in the embedding space
of the LLM output which represents the distinct latent patterns captured by each prompting method.
Across all models, the MPP forms well-defined clusters, indicating that it consistently produces more
structured and distinct embeddings compared to the other prompting methods. This suggests that
MPP effectively captures relevant patterns for anomaly detection in clinical data, outperforming
the more dispersed clustering seen in ZS and ICL. Notably, CoT also produces structured clusters,
but MPP shows greater distinction and compactness, especially in LLaMA 2-7B and Mistral-7B,
highlighting the efficacy of pathway-driven prompting.

Figure 3: t-SNE representation of embeddings of the output from different prompting methods.

5 Conclusion

The Metabolism Pathway-driven Prompting (MPP) method is proposed to improve the anomaly
detection within longitudinal data. By integrating the metabolic and temporal graphs for contextual
understanding, MPP improves LLM’s ability to detect anomalies, particularly in steroid metabolism,
which is important for doping detection in sports. The results show improved accuracy and sensitivity
compared to conventional prompting methods, demonstrating the significance of incorporating
domain-specific knowledge for more precise and effective anomaly detection in clinical applications.
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A Prompting Methods

A.1 Zero-Shot Learning

It involves making predictions or identifying anomalies without explicit task-specific training. For
longitudinal clinical data, we task LLM to infer whether certain samples are anomalous based
on its prior general knowledge about statistical significance and typical clinical trends. Let X =
{x1, x2, . . . , xn}, where xt ∈ Rm represents the measurements at time t and let At represent an
anomaly indicator, where:

At =

{
1, if an anomaly is detected at time t,

0, otherwise.
(4)

The model attempts to predict At directly from the input data X without prior training on labeled
clinical anomaly data. Fig.4 shows a prompt that we used for an example longitudinal profile.

Figure 4: Example Prompt for Zero-shot Learning.

A.2 In-Context Learning

It involves providing the model with a few examples of what constitutes "normal" and "anoma-
lous" patterns within the context of the prompt. The LLM uses these examples to generalise
and apply its learned knowledge to unseen data points in the clinical data. Le us consider
we are provided with k examples of clinical longitudinal profiles over time, which are labeled
{(X1, A1), (X2, A2), . . . , (Xk, Ak)}. These examples are included as part of the prompt.

Now, we give the longitudinal profile X to LLM to infer the anomaly label At by leveraging the
information gained from the previous examples.

At = f(X | {(X1, A1), (X2, A2), . . . , (Xk, Ak)}), (5)

where function f(.) generalises from the given examples. Fig.5 shows a prompt that we used for an
example longitudinal profile.

A.3 Chain-of-Thought (CoT)

It encourages the model to reason through a multi-step process, explicitly following a logical
progression before reaching its conclusion. For anomaly detection in longitudinal clinical data, this
means that LLM is prompted to analyse how clinical values evolve over time and their relationships
with other biomarkers before flagging an anomaly. We gave the following instructions:
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Figure 5: Example Prompt for In-context Learning.

• Step 1: Analyse the range of each parameter We task to examine the values of each steroid
parameter across all the samples and calculate the mean (µ) and standard deviation (σ) for each
parameter to quantify the "normal" range:

µ =
1

n

n∑
i=1

xi and σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (6)
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• Step 2: Identify deviations across parameters After understanding the range of each parameter,
we focus on finding deviations across multiple parameters within a sample to check if a particular
sample shows unusually high or low values for more than one parameter. In addition, ratios
between key parameters such as the Testosterone-to-Epitestosterone (T/E) ratio—can be useful
indicators of abnormalities. Similarly, other useful ratios include:

RT/E =
T

E
, RT/5αAdiol =

T

5αAdiol
, RT/5β Adiol =

T

5β Adiol
(7)

Sudden deviations in these ratios compared to the rest of the samples can signal an abnormal
sample.

• Step 3: Conclude the anomalous samples Finally, based on the findings from previous steps,
we identify and return the sample number(s) that show significant anomalies. The anomaly is
flagged based on either exceeding the calculated range (µ ± 2σ) or abnormal changes in the
parameter ratios. If no significant anomalies are detected, the conclusion should state that the
profile is clean. Fig.6 shows a prompt that we used for an example longitudinal profile.

Figure 6: Example Prompt for Chain-of-Thought.

B Metabolism Pathway-driven Prompting

Fig.7 shows a Pre-prompt I for LLM that we used for an example longitudinal profile. Fig.8 shows a
pre-prompt II that we used in another session for the same longitudinal profile. Finally, Fig.9 shows
a Prompt that integrates the response of the Pre-prompt II that we used for the same longitudinal
profile.
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Figure 7: Pre-Prompt I for Metabolism Pathway-driven Prompting.
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Figure 8: Pre-Prompt II for Metabolism Pathway-driven Prompting.
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Figure 9: Prompt for Metabolism Pathway-driven Prompting.
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